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Computer Code

Inputs
X1

Xd
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Standard Gaussian Process (GP) Model

d-dimensional vector of inputs x
Output y(x)

Treat y(x) as a realization of

Y(x) = regression model + Z(x)

Z(x) hence Y(x) is a correlated process

@ The correlation function R(x,x") = R(Y(x), Y(x')) is the workhorse of
the GP model
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Standard Gaussian Process (GP) Model

d-dimensional vector of inputs x
Output y(x)

Treat y(x) as a realization of

Y(x) = regression model + Z(x)

Z(x) hence Y(x) is a correlated process

@ The correlation function R(x,x") = R(Y(x), Y(x')) is the workhorse of
the GP model

Sacks et al. (1989)

. | B

All the methods discussed today use this model in some form.
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What's the Problem?

Computational complexity

o Training data of n runs at x(1), ... x(")
e Key is the n x n correlation matrix

R= R(x(i),x(j)) for1<ij<n

e Maximum likelihood or Bayes MCMC needs R~ and det(R), or the
Cholesky decomposition

o Computational time for one likelihood calculation is O(n?)

@ Need 1000's or 10000’s likelihood calculations

@ Prediction at N test points
e Point prediction: O(n) computation per prediction; O(nN) for all test
points
o Predictive variance: O(n?) per prediction; O(n?N) for all test points ......
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Big n? Disclaimer

Dennis pointed out
big n to statisticians is not
so big. For GPs big is 1000’s or 10000's.
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Big n? Disclaimer

Dennis pointed out
big n to statisticians is not
so big. For GPs big is 1000’s or 10000's.

@ To illustrate methods, n will be really small: »

@ Then some results for larger n
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Student Audience Participation

UBC Faculty of Science has an initiative in active learning
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Student Audience Participation

UBC Faculty of Science has an initiative in active learning

Has Gaussian process computation been tamed?

A No

B Yes

C | don't know
D Nobody knows
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Student Audience Participation

UBC Faculty of Science has an initiative in active learning

Has Gaussian process computation been tamed?

A No

B Yes

C I don't know

D Nobody knows

E Who cares? Isn't it dinner time yet?
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Sparse Grid Designs for GPs

Same designs as Henry's talk
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Grid Designs: Intuition

Design for d = 2 inputs

on a 21 x 21 grid (n = 441)
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Grid Designs: Computational Complexity

@ For the above 21 x 21 grid design
Rasixaar = Rgll)le ® Rgzl)le
x1 and xo X1 X2

O(4413) computation becomes 0(213) + O(213) computation
In general, for d = 2 inputs O(n®) becomes O(n/?)
i.e., O(n%/?) speed up

For d inputs, O(n®) becomes O(n*/9): even more relative speed-up

But (dense) grid designs need too many computer-model runs, so ...
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Sparse Grid Designs for GPs (SGDs, Plumlee, 2014)

SGD (eta=2,n=1)
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Sparse Grid Designs for GPs (SGDs, Plumlee, 2014)

SGD (eta=3,n=05)
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Sparse Grid Designs for GPs (SGDs, Plumlee, 2014)
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SGD (eta=4,n=13)
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Sparse Grid Designs for GPs (SGDs, Plumlee,

SGD (eta =5, n = 25)
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Sparse Grid Designs for GPs (SGDs, Plumlee, 2014)

SGD (eta=6,n=41)
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Franke's Function

o
-
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Franke's Function and Sparse Grid Design (n = 41)
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Franke's Function and Maximin Design (n = 41) for
Comparison
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Measures of Prediction Accuracy

@ Prediction accuracy measured using “gold standard” hold-out test set
@ N = 1000 or 10000 random points x in the input space with y known
@ Average error: Normalized root mean squared prediction error

1 ~

v =92

test points
test set standard deviation of y

@ Worst error: Normalized max absolute prediction error

max |y—7¥|
test points

max |y —y]|
test points

o Normalization: 0 = perfect, 1 = no better than predicting using ¥
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Franke's Function: Prediction Accuracy

(1000 test points from a random Latin hypercube)

Normalized
Design RMSPE Max Error
Sparse grid  0.068 0.099
Maximin 0.047 0.110
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Local Approximate Gaussian Processes

(IaGP, Gramacy and Apley, 2015; Gramacy, 2016)

for each test point do
Find ng < n training neighbours of the test point
Fit GP using only the ng neigbours of the test point
Predict the test point using the GP

end for

o O(n®) training computation becomes O(n}), i.e., (n/ng)® speed up

@ Has to be repeated for each prediction
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Franke's Function: Training Data and a Test Point

o
-
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Franke's Function: 10 Training Points
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Franke's Function: Prediction Accuracy

(1000 test points from a random Latin hypercube)

Normalized
Design RMSPE  Max Error
Sparse grid ~ 0.068 0.099
Maximin 0.047 0.110
laGP 0.061 0.127
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Treed GPs (tgp, Gramacy and Lee, 2008)

@ Partition the input space with a binary tree
@ For each leaf (terminal node) fit a GP using the leaf's data

@ Actually builds many trees and averages them for prediction
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Franke's Function: Treed GP

Tree with 2 leaves: xp < 0.44 and x> > 0.44
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Franke's Function: Prediction Accuracy

(1000 test points from a random Latin hypercube)

Normalized
Design RMSPE Max Error
Sparse grid  0.068 0.099
Maximin 0.047 0.110
laGP 0.061 0.127
Treed GP 0.259 0.425
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Two functions y(x) with 8-dimensional x
@ Borehole function: easy to predict

e Corner peak function: difficult to predict (increases rapidly at the
origin)
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Borehole: Normalized RMS Prediction Error Versus n

log:o(RMSPE / sdy)
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10g+o(MAPE / MaxADy)
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Peak: Normalized Max Absolute Error Versus n
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Corner

Peak: Computing Time Versus n
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Other Methods

@ Bayesian local kriging (Pronzato and Rendas, 2017): dynamically
weighted combination of local GPs

e Compactly supported correlated functions (Kaufman, Bingham,
Habib, Heitmann, and Frieman, 2011): induce sparse correlation
matrix
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Conclusion

Has Gaussian process computation been tamed?

A No

B Yes

C | don't know
D Nobody knows

E 3 hours to dinner
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Unknowns

@ Implementation of “standard” analysis is difficult for some local
methods
@ Any one of these methods is not one method:
e How to choose a sparse grid?
e How many points in a local region?
@ Domain of practical problems?
o Do these methods allow large enough n for a useful statistical model of

a complex function?
o Remember, we have to run the computer model n times

34 / 36
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