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Example: Heating a metal block with a crack
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Example ctd’: Mathematical model

Let T (χ, t) be the temperature at spatial point χ and time t.
Its evolution is governed by the partial differential equation
(PDE)

∂T

∂t
= α ∆y for x ∈ Ω and t ∈ [0, tf ]

α being a parameter, subject to the initial condition

T = T0 in Ω at t = 0

and the boundary conditions

T = 100 on the left side of Ω (Dirichlet condition)

∂T

∂n
= −10 on the right side of Ω (Neumann condition)

∂T

∂n
= 0 on all other boundaries (Neumann condition)
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Example ctd’: Calibration and measurement design

If thermal conductivity α and initial condition T0 are
unknown, which is rather typical, we could observe the
temperature evolution at a fixed point and tune α and T0 so
that our model fits the data as best as it can.

Problem

Where to place the pyrometer so as to get the most valuable
information about α and T0 ?

Such situations (PDEs and related sensor location problems)
are common in engineering practice.
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Other motivating examples

environment observation and forecasting systems
air pollution monitoring,
groundwater resources management and river
monitoring,
military applications: surveillance and inspection in
hazardous environments,

fault detection and isolation,

emerging smart materials,

intelligent building monitoring,

habitat monitoring,

intelligent traffic systems,

computer-assisted tomography,

recovery of valuable minerals and hydrocarbon from
underground permeable reservoirs,

and many more . . .
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Observations

Given m sensors and a finite set
{
χ1, . . . , χ`

}
⊂ Ω ∪ ∂Ω of

points at which they can be placed, consider their fixed
configuration.

Spatial domain Ω ∪ ∂Ω

` potential
locations
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configuration.

Spatial domain Ω ∪ ∂Ω

` potential
locations

at most one
sensor at χi
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Observations

Equivalently, we can treat
{
χ1, . . . , χ`

}
⊂ Ω ∪ ∂Ω as gauged

sites at which ` sensors reside and only m from among them
are to be activated.

Combinatorial problem: Which m-element subset to select?

Spatial domain Ω
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Spatiotemporal dynamics

Distributed parameter system—dynamic system whose state
depends on both time and space; its model (a partial
differential equation) is known up to a vector of unknown
parameters θ.

Observations—using sensors in order to estimate θ.

Crucial difficulty: In the previous example, the component T0

of θ = (α, T0) is an element of an infinite dimensional
functional space (here L2(Ω)).
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Approaches to infinite dimensional inverse problems
1 Stuart, Inverse problems: A Bayesian perspective, Acta Numerica, 2010
2 Alexanderian, Petra, Stadler, & Ghattas, A-optimal design of experiments for

infinite-dimensional bayesian linear inverse problems with regularized
`0-sparsification, SIAM J. Sci. Comput., 2014

3 Alexanderian, Gloor, & Ghattas, On Bayesian A- and D-optimal experimental
designs in infinite dimensions, Bayesian Anal., 2016

4 Alexanderian, Petra, Stadler, & Ghattas, A fast and scalable method for
A-optimal design of experiments for infinite-dimensional bayesian nonlinear
inverse problems, SIAM J. Sci. Comput., 2016

5 Gejadze & Shutyaev, On computation of the design function gradient for the
sensor-location problem in variational data assim., SIAM J. Sci. Comput., 2012

6 Gejadze, Le Dimet, & Shutyaev, On analysis error covariances in variational
data assimilation, SIAM J. Sci. Comput., 2008

7 Gejadze, Le Dimet, & Shutyaev, On optimal solution error covariances in
variational data assimilation problems, J. Computat. Phys., 2010

8 Gejadze, Copeland, Le Dimet, & Shutyaev, Computation of the analysis error
covariance in variational data assimilation problems with nonlinear dynamics, J.
Comput. Phys., 2011

9 Haber, Horesh, & Tenorio, Numerical methods for experimental design of large-
scale linear ill-posed inverse problems, Inv. Problems, 2008

10 Haber, Horesh, & Tenorio, Numerical methods for the design of large-scale
nonlinear discrete ill-posed inverse problems, Inv. Problems, 2010

11 Haber, Magnant, Lucero, & Tenorio, Num. methods for A-optimal designs with
a sparsity constraint for ill-posed inv. problems, Comput. Optim. Applics., 2012
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Example: Deformation of machine tools

The prototype machine
column Auerbach ACW 360
deforms during its operation
due to waste heat from two
external electical drives (the
one at the top moves the
sledge holding the main spindle
and the one at the bottom
moves the entire machine
column).
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Example: Deformation of machine tools

The inhomogeneous transient
temperature field displaces the
tool centre point (TCP) and
thus reduces production
accuracy and product quality.

Key idea: Predict the machine
tool deformation based on
measurements from
temperature sensors and then
correct it on line.
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Example: Deformation of machine tools

Key problem: Temperature
sensors may be placed only on
the surface of the machine
column. But which locations
are best?
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Thermo-mechanical system

Heat equation

ρ cp Ṫ − div(λ∇T ) = 0 in Ω× (0, tf )

λ
∂

∂n
T + α(χ) (T − Tref) = r(χ, t) on ∂Ω× (0, tf )

T (χ, 0) = T0(χ) in Ω

T temperature
r thermal surface load
ρ density
cp specific heat at constant pressure
λ thermal conductivity
α coefficient of heat transfer
Tref ambient temperature
T0 initial temperature

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Thermo-mechanical system

Linear elasticity (BCs omitted)

− divσ
(
ε(u), T (tf )

)
= 0 in Ω

σ
(
ε(u), T (tf )

)
= σel(ε(u)) + σth(T (tf ))

σel(ε(u)) =
E

1 + ν
ε(u) +

Eν

(1 + ν)(1− 2ν)
trace(ε(u)) id

σth(T (tf )) = − E

1− 2ν
β
(
T (tf )− Tref

)
id3

ε(u) =
1

2
(∇u+∇u>)

u displacement
σ stress
ε strain
ν, E Poisson’s ratio and modulus of elasticity, resp.
β thermal volumetric expansion coefficient
Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Semi-discretization (method of lines)

The finite-element method (FEM) is a technique for solving
PDEs by first discretizing these equations in their space
dimensions. The discretization is carried out locally over small
regions of simple but arbitrary shape (the finite elements).
Each vertex is called a node.

The solution should be simple on each element. Piecewise
linear functions are a good choice.
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Triangulation of the spatial domain
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Basis functions
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Piecewise linear function
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Resulting approximations

Tetrahedral finite elements and piecewise linear continuous
Lagrange basis functions

{
ϕj
}n
j=1

are used here (specifically,

n = 25 615). The basis functions correspond to nodal points{
χj
}n
j=1

such that

ϕj(χi) = δij for i, j ∈ {1, . . . , n}

We have approximations

T (χ, t) ≈
n∑
j=1

xj(t)ϕj(χ), T0(χ) ≈
n∑
j=1

x0,jϕj(χ)

Define x(t) = (x1(t), . . . , xn(t)) and x0 = (x0,1, . . . , x0,n).

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Large-scale dynamic system

State equation{
E ẋ(t) = A(p)x(t) + f(t), t ∈ [0, tf ]

x(0) = x0 ∈ Rn

E ∈ Rn×n a nonsingular matrix
f(t) ∈ Rn a known forcing input
A(p) ∈ Rn×n a parameter-dependent matrix
p ∈ Rq the vector of unknown parameters

(parameterization of the heat transfer coefficient)

Output equation (r sensors)

yj = Cy x(tj) + ηj ∈ Rm, j = 1, . . . , N

Cy ∈ Rm×n a matrix dependent on sensor locations
ηj ∼ N (0, σ2idm) measurement noise

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Data assimilation problem: Background info

The unknowns are x0 and p. Our prior (background)
information are their prior estimates xbg

0 and pbg which are
supposed to be realizations of Gaussian random vectors with
means x̄0 ∈ Rn and p̄ ∈ Rq, and covariance matrices
Vx0 ∈ Rn×n and Vp ∈ Rq×q, respectively, i.e.,

xbg
0 ∼ N (x̄0, Vx0) and pbg ∼ N (p̄, Vp).

Here x̄0 and p̄ are unknown and interpreted as the ‘true’ initial
state and the ‘true’ parameter, respectively. In turn, as for Vx0
and Vp, we assume that they are known and positive definite,
and hence invertible.

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Data assimilation problem: Objective

The number of unknowns (n+ q) exceeds the number of
measurements (N m). Consequently, regularization terms are
needed expressing prior information about the unknowns:

min
x0∈Rn, p∈Rq

JDA(x0, p) =
1

2
‖x0 − xbg

0 ‖2
V −1
x0

+
1

2
‖p− pbg‖2

V −1
p

+
1

2

N∑
j=1

‖yj − Cy x(tj;x0, p)‖2
V −1
y
,

where the term x(tj;x0, p) is the solution to the state
equation at sampling time tj evaluated at given x0 and p0.

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Digression: How to get Vx0?

Distribution law of T0:

µ = N (T̄0, C) (Gaussian measure on Hilbert space L2(Ω))

Take covariance operator as square of inverse of
Poisson-like operator:

C = (−β∆ + γI)−2, β, γ > 0

C is positive, self-adjoint, of trace class; µ well-defined
on L2(Ω) (Stuart ’10).

γ/β ∝ correlation length; the larger β, the smaller the
variance.

V −1
x0

results from the FEM discretization of C−1.

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Exemplary covariance function c(0, · )
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Variability of the estimates from the DA problem

DA produces estimate θ̂ = (x̂0, p̂) of the ‘true’ θ̄ = (x̄0, p̄).

Approximation via linearization

cov(θ̂) ≈
(
V −1
θ +

N∑
j=1

X(tj)
>C>y V

−1
y CyX(tj)

)−1

Vθ = diag(Vx0 , Vp)

X(t) =
[
X0(t) Xp(t)

]
X0(t) =

∂

∂x0

x(t; x̄0, p̄) ∈ Rn×n

Xp(t) =
∂

∂p
x(t; x̄0, p̄) ∈ Rn×q

Computation of sensitivities X0(t) and Xp(t) is a formidable
challenge. Here the adjoint approach has been adopted.

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Digression: Randomized trace estimator

Randomized Gaussian trace estimator:

trace(A−1) =
1

M

M∑
i=1

ziA
−1zi︸ ︷︷ ︸
=qi

where the zi are M independent random vectors whose entries
are i.i.d. standard normal variables. (qi is evaluated by solving
Aqi = zi.)

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Covariance matrix of the QOI estimator

Our main concern is not to maximize the precision of x̂0 or p̂,
but rather to accurately estimate a quantity of interest z (the
displacement of the tool centre point) depending on the
terminal state x(tf ) at time tf ,

z = Cz x(tf ; θ̄) ∈ Rr

through
ẑ = Cz x(tf ; θ̂) ∈ Rr

with r small compared with the dimension n of the state
variable (here r = 3).

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Covariance matrix of the QOI estimator (ctd’)

Linearization

ẑ ≈ Czx(tf ; θ̄) +Q (θ̂ − θ̄),

with

Q =
∂z

∂θ

∣∣∣∣
θ=θ̄

= CzX(tf ; θ̄) ∈ Rr×(n+q)

yields

Variability of the QOI estimator

cov(ẑ) = Q cov(θ̂)Q>

We are going to minimize its log-determinant through
selection of best m sensor locations from among of a set of
` candidate locations.

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Observations

Combinatorial problem: Which m-element subset to select?

Spatial domain Ω
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Structure of output matrix Cy

The temperature at the i-th candidate location and time
instant t is linearly interpolated as π>i x(t), where the weight
vector πi ∈ Rn can be determined beforehand. (In the
Lagrangian FE setting its components are simply the values of
the corresponding shape functions at the i-th sensor location.)
Let us stack the interpolation weights π>i in the matrix

Π =

π
>
1
...
π>`

 ∈ R`×n

Measurements at m gauged sites selected out of all ` available
sites correspond to the measurement matrix Cy ∈ Rm×n

consisting of m distinct rows of matrix Π selected out of its `
rows. Thus the optimization of Cy can be understood as
choosing best m rows of Π.

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Binary decision variables

Given candidate spatial locations χ1, . . . , χ
`, introduce binary

flags w = (w1, . . . , w`) satisfying

wi =

{
1 if sensor is placed at location χi

0 if no sensor is at χi

Equivalently,

wi =

{
1 if the i-th row of Π is included in Cy

0 otherwise

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems
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Sensor selection as binary optimization

Sensor selection problem

Find a vector w?bin ∈ R` to minimize

J (w) = log det
(
Q I(w)−1Q>

)
subject to

1>` w = m

wi ∈ {0, 1}, i = 1, . . . , `

Bayesian information matrix

I(w) = V −1
θ +

∑̀
i=1

wiΥi

Υi =
1

σ2

N∑
j=1

X(tj)
>πi π

>
i X(tj), i = 1, . . . , `

Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems



31/41

Relaxed formulation

We allow the wi’s to take any values in [0, 1], not only 0 or 1.

Relaxed sensor selection problem

Find a vector w? ∈ R` to minimize

J (w) = log det
(
Q I(w)−1Q>

)
subject to

1>` w = m

0 ≤ wi ≤ 1, i = 1, . . . , `

This performance index is convex and the set of feasible
solutions is the intersection of a hyperplane and a box, i.e., it
is a polyhedral set. Simplicial decomposition is ideally suited
to its numerical solution.
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Simplicial decomposition

Simplicial Decomposition (SD) stands for a class of methods
for solving large-scale continuous problems in mathematical
programming with convex feasible sets (von Hohenbalken,
1977). It iterates by alternately solving

1 a linear programming subproblem (the so-called column
generation problem) which generates an extreme point of
the polyhedron, and

2 a nonlinear restricted master problem (RMP) which finds
the maximum of the objective function over the convex
hull (a simplex) of previously defined extreme points.

Its principal characteristic is that the sequence of successive
solutions to the master problem tends to a solution to the
original problem in such a way that the objective function
strictly monotonically approaches its optimal value.
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Simplicial decomposition
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Roland Herzog, Ilka Riedel, Dariusz Uciński Optimum design for infinite dimensional inverse problems



33/41

Simplicial decomposition

p1
K3 K2 K1 0 1 2 3

p2

K3

K2

K1

1

2

3
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Numerical example

Machine column CAD model with Background values of αbg

mounting points
determining
the TCP location
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Thermal model

Symbol Meaning Value Units

T temperature K
r thermal surface load W m−2

ρ density 7 250 kg m−3

cp specific heat at const. pressure 500 J kg−1 K−1

λ thermal conductivity 46.8 W K−1 m−1

Tref ambient temperature 20 ◦C

αbg background information on α 0 to 12 W K−1 m−2

α heat transfer coefficient unknown W K−1 m−2

T0 initial temperature unknown K
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Displacement model

Symbol Meaning Value Units

u displacement m
σ stress N m−2

ε strain 1

ν Poisson’s ratio 0.3 1
E modulus of elasticity 114·109 N m−2

β thermal volumetric expansion coeff. 1.1·10−5 K−1

L length of the main spindle 0.993 m
σ standard deviation of sensor noise 0.0333 K
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Problem data

α0(χ) =



12 W K−1 m−2 if χ ∈ Γvert (vertical surfaces)

10 W K−1 m−2 if χ ∈ Γup (horiz. surfaces facing up)

8 W K−1 m−2 if χ ∈ Γdown (horiz. surf-s facing down)

5 W K−1 m−2 if χ ∈ Γinner (enclosed surfaces)

0 W K−1 m−2 if χ ∈ Γr1 ∪ Γr2 (surf. with heat sources)

T 0
0 (χ) was set as Tref. The inverse covariance matrices for the

parameter and for the initial state were chosen as V −1
p = id4

and V −1
x0

for β = γ = 1.

r(χ, t) =


6700 W m−2 if χ ∈ Γr1 and 0 s ≤ t ≤ 2400 s

2700 W m−2 if χ ∈ Γr2 and 0 s ≤ t ≤ 4800 s

6700 W m−2 if χ ∈ Γr1 and 4800 s < t ≤ 7200 s

0 otherwise
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Algorithmic data

There are m = 10 sensors to be located.

total number of
mesh nodes

number of mesh
cells

number of nodes on the
boundary (potential sensor
locations)

n = 25 615 79 197 ` = 25 288

Computations were implemented on an Intel Xeon workstation
with a 2.4 GHz CPU using the open-source finite element
package FEniCS 2017.1.

time for computation of sensitivities ≈ 15 min

number of SDP steps 6

total time 2.5 h
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Results

(a) Optimal sensor posi-
tions (m = 10).

0 1 2 3 4 5 6
Iteration

27

28

29

30

31

32

(b) Objective values vs iteration number.
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Results: 90% confidence ellipsoid
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Concluding remarks: Ongoing work

The sensitivities X(tj) =
[
X0(tj) Xp(tj)

]
may

strongly depend on the preliminary parameter/state
estimates θ0 = (x0

0, p
0). This is unsatisfactory when the

DA problem is considered in a moving horizon context
where updated estimates on the unknowns become
continually available, but changes in sensor locations
during the machine operation are impossible to realize.

The method has a tendency to select candidate locations
which are close to one another. Basically, this could be
circumvented by imposing a minimal allowable distance
constraint for gauged sites or a judicious design of the set
of candidate sites, but this requires a thorough
formulation.

Yet another issue is the proper use of parametric model
order reduction to reduce the overall computational effort.
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