Strong Orthogonal Arrays of Strength Two Plus and Second Order Saturated Designs

Boxin Tang

(joint work with Yuanzhen He and Ching-Shui Cheng)

Simon Fraser University

向下 イヨト イヨト

1. Introduction

Designs for computer experiments

- distance or discrepancy criteria
- model-dependent criteria
- orthogonality
- orthogonal arrays or strong orthogonal arrays

McKay, Beckman and Conover (1979); Owen (1992); Tang (1993); He and Tang (2013, 2014).

・ 同 ト ・ ヨ ト ・ ヨ ト

Strong orthogonal arrays (SOAs)

(when compared with ordinary orthogonal arrays)

- more space-filling
- very expensive for strength 4 or higher
- can be constructed at almost no cost for strength 3
- free but no more space-filling for strength 2

Inspired by (t, m, s)-nets (Niederreiter 1992), SOAs were introduced and studied by He and Tang (2013, 2014)

・ 何 ト ・ ヨ ト ・ ヨ ト

2. SOAs of strength 2+ and their characterization

SOAs of strength 2+

- almost as space-filling as SOAs of strength 3
- but much more economical than the latter

御 と く ヨ と く ヨ と …

An SOA $(n, m, s^2, 2+)$

- has *n* runs and *m* factors of s^2 levels
- any two columns are collapsible into an OA(n, 2, s² × s, 2) and an OA(n, 2, s × s², 2)
- i.e., the design achieves stratifications on $(s^2) \times s$ and $s \times (s^2)$ grids in all two-dimensions.

An SOA(16, 10, 4, 2+) is given below:

It achieves stratifications on 2×4 and 4×2 grids in every two-dimension.

To compare, in 16 runs,

- For m ≤ 7 factors, an SOA of strength 3 can be constructed, which can do 2 × 4 and 4 × 2 grids in two-dimensions, and 2 × 2 × 2 in three-dimensions.
- For m ≤ 5 factors, an OA is available and can do 4 × 4 grids in two-dimensions.

★御≯ ★注≯ ★注≯ 一注

An characterization of SOAs of strength 2+

An SOA($n, m, s^2, 2+$), say D, exists if and only if there exist two arrays A and B where

•
$$A = (a_1, ..., a_m)$$
 is an $OA(n, m, s, 2)$ and

- $B = (b_1, \ldots, b_m)$ is an OA(n, m, s, 1) such that
- (a_j, a_k, b_k) is an orthogonal array of strength 3 for any $j \neq k$.

The three arrays are linked through D = sA + B.

3. Construction using 2^{m-p} designs

Let S denote the saturated regular design of $n = 2^k$ runs with m = n - 1 factors.

Theorem 1. If an SOA of strength 2+ is to be constructed using regular A and B with their columns selected from S, then it is necessary and sufficient that $\overline{A} = S \setminus A$ is an SOS design.

A design C is an SOS design if any $d \in \overline{C}$ can be written as d = ab for some $a, b \in C$ (Block and Mee 2003).

The proof shows that an SOA(2^k , m, 4, 2+) can be constructed from an SOS design *C* as follows:

- **1** Take $A = \overline{C}$. Write $A = (a_1, \ldots, a_m)$.
- Since C is an SOS design, we must have a_j = b_jb'_j for some b_j, b'_j ∈ C. Take B = (b₁,..., b_m).
- Solution D, an SOA(2^k , m, 4, 2+), using

$$D=2A+B.$$

The paper provides four constructions of SOS designs, based on which the bounds on the maximum number of factors in an SOA of strength 2+ have been obtained.

Table 1. Maximum numbers of factors for SOAs of strength 3 and 2+.

k	$n=2^{\kappa}$	h_k	m_k
		(strength 3)	(strength 2+)
4	16	7	10*
5	32	15	22*
6	64	31	50*
7	128	63	106
8	256	127	226

個 ト く ヨ ト く ヨ ト 二 ヨ

4. Constructions using s^{m-p} designs

Theorem 4. For any $k \ge 3$ and any prime power $s \ge 3$, an $SOA(s^k, m, s^2, 2+)$ can be constructed where

$$m = (s^k - 1)/(s - 1) - ((s - 1)^k - 1)/(s - 2)$$

Table 2. A comparison of the number m' of factors for $SOA(s^k, m', s^3, 3)$ in He and Tang (2014) and the number m'' of factors for $SOA(s^k, m'', s^2, 2+)$ from Theorem 4.

k	S	$n = s^k$	<i>m</i> ′	<i>m</i> ′′
3	3	27	4	6
3	4	64	5	8
3	5	125	6	10
4	3	81	10	25
4	4	256	17	45
4	5	625	26	71
3	S	s ³	s+1	2 <i>s</i>
4	S	s^4	$s^{2} + 1$	$3s^2 - s + 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

5. A generalization

We only give one example here.

This array (transposed) achieves stratifications on 6×3 and 3×6 grids in all two-dimensions.

6. Discussion and further work

- further design selection by orthogonality, distance and discrepancy criteria
- minimal SOS designs
- construction using nonregular designs (Xu, Phoa and Wong 2009)

御 と く ヨ と く ヨ と

Minimal SOS designs

- concept and usefulness
- characterization using clear 2fi's
- 1-saturating sets and linear codes with covering radius 2: Davydov, Marcugini and Pambianco (2006).

伺下 イヨト イヨト

Construction using nonregular designs

- similar results can be established
- an example is an SOA(48, 33, 4, 2+)

御 と く ヨ と く ヨ と …

э

Thank you!

個 と く ヨ と く ヨ と

э