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Based on “Information-Based Optimal Subdata Selection for Big Data
Linear Regression”, to appear in Journal of the American Statistical
Association (JASA), with

Haiying Wang, U of Connecticut

Min Yang, U of lllinois Chicago
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Big Data Challenge

For “Big Data”, how can we extract useful information under time and
computational constraints?

The data size n and dimension p can both be very large

For us, n > p. For example, n may be on the order of a billion and p
may be over a thousand (Raskutti and Mahoney, 2014).

Data reduction can be critical in such situations because:

¢ analyzing the full data may be computationally unfeasible
¢ a laptop or desktop may be all that is available
« storing all of the data may not be possible

Data reduction refers to using only some of the data points (subdata)
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Data Reduction for Linear Regression

Goal: Select subdata consisting of k cases, k <<< n, and analyze the
subdata

e What should the subdata size k be?
e How to select subdata of size k?

We focus primarily on the second question for given k

In the JASA paper, for the linear regression setting and small p, we
propose a deterministic method for subdata selection, called
Information-Based Optimal Subdata Selection (IBOSS)

Competing subsampling-based methods, such as uniform sampling
(UNIF) and leveraged sampling (LEV), were developed earlier
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Basic Setup

Linear regression model:
_ T T =1
Vi=Bo+2/Bi+e=x/B+e, i=1,...,n,

where z; is a p x 1 covariate vector, and x; = (1,2])7.

Or
y=081+231 +e=XB+¢€

Other assumptions: y;’s are uncorrelated given Z; ¢;'s have mean 0,
variance o2
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Subsampling-Based Methods

A subsampling method consists of
e selection probabilities 7, i=1,...,n, >, m =1

« a weighted estimator 3 = (Z,wm,x,-xf)_1 > jwiniX;y, with
weights w; (often 1/7;) and with »; the number of times that the ith
data point is selected

Uniform subsampling (UNI): 7; = 1/n, w; =1

Algorithmic leveraging (LEV): =; = h;ji/(p+ 1), wj = 1/7;, where
hi = x,.T (XXT)_1 X;; need to approximate the h;’s

Unweighted leveraging (LEVUNW): as LEV, but with w; = 1

Shrinkage leveraging (SLEV): 7; = ah;i/(p+ 1) + (1 — «))/n for some
a € [0,1], wj = 1/7; (Ma, Mahoney, Yu, 2015, JMLR)
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IBOSS
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IBOSS Approach

IBOSS: Select subdata judiciously to maximize the Fisher information
matrix for the model parameters, in some sense

For linear regression, assuming normality and taking o = 1 for
simplicity, the information matrix for 3 with subdata is

n
M(8) =) dixix| = XTAX,
i=1
with §; an “inclusion” indicator, § = (41, ...,0n) and A = diag(9)

Optimize this through a good choice for § subjectto > ;d; = k
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Optimal Design of Experiments

As in optimal design of experiments, we aim to maximize a function of
the information matrix.

D-optimality: Find 4, subject to >, §; = k, that maximizes det(M(9)).

A difference with DOE is that we already have data, and are limited to
a choice for the z;’s that appear in the data.

Another challenge is size: we need a computationally efficient
algorithm to find, approximately, an optimal é (see next slide).
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Algorithm for D-optimality

To maximize det(M(4)), include data points with large and small
covariate values, equally distributed over the extremes

For a fixed subdata size k, using a partition-based selection algorithm,
forj=1,...,p, select the k/(2p) largest and smallest values for the jth
regression variable, and include these data points in the subdata

Estimate 3 by 8P = (XTAX)~'X" Ay

Computational complexity for selection of subdata is O(np); overall
O(kp? + np), or O(np) if n > kp. Better than LEV

Can select subdata one regression variable at a time (no duplication)
or in parallel (possibly less than k data points due to duplication)
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Theory
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Theoretical Results

D-optimal IBOSS can be used no matter what the distribution of the
covariates is ...

... but its performance is affected by it

Let 24, ...,2, be iid, and consider 3 scenarios:
1. Normal, z; ~ N(p, X0)
2. Lognormal, z; ~ LN(p, X)
3. Multivariate t with v df, z; ~ £, (i, X)

For all scenarios, Var(35|2) is proportional to 1/k when n — oo

But the story is different for Var(3?|Z) ...
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Theoretical Results

Elements of Var(3P|Z) converge to 0 when n — oo in all cases (even
though the subdata size k is fixed)

For scenario 1 (normal), elements converge to 0 as 1/log(n)

For scenario 2 (lognormal), the element in position (ji, j2) converges to
0 as exp(—(oj, + 0j,)+/2log(n))

For scenario 3 (t-distribution), elements converge to 0 as n—2/¥

Similar results typically do not hold for subsampling methods UNI, LEV
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Simulations
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Simulations
Simulation setup
p =50, 8 =1s1x1, € ~ N(0,0%) with 0 = 9, X = (.5/(7)).
z;’s are generated from the following distributions.
Normal, z; ~ N(0, X);
Lognormal, z; ~ LN(0, X);
Multivariate t with 2 df, z; ~ (0, 2);

Mixture, z;’s have a mixture distribution of N(1,X), t(1, %),
t3(1, %), Unif[0, 2] and LN(0, 3) with equal proportions.

ol

Each simulation was repeated S = 1000 times
Empirical mean squared errors (MSE) are compared

= full data; black = IBOSS with D-optimality; = uniform
sampling; blue = leveraged sampling
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MSE of the intercept estimator with kK = 1000
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MSE of the slope estiEnators with K = 1000
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MSE of the slope estimators with n = 10°

Discussion
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CPU times for different n, p and kK = 1000

Table: CPU times (seconds) for different n with p = 500

n| D-opt UNI LEV  FULL
5x10% | 1.19 0.33 0.88 1.44
5x10*| 1.36 029 220 13.39
5x10° | 8.89 0.31 21.23 132.04

Table: CPU times (seconds) for different p with n =5 x 10°

p| Dopt UNI LEV FULL
10| 0.19 0.00 1.94 0.21
100 | 1.74 0.02 4.66  6.55

500 | 9.30 0.31 21.94 132.47
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Chemical Sensors Data

Discussion

Chemical sensors data (Fonollosa et al., 2015), with n = 4,188, 261
andp =14

Bootstrap MSE for kK = 4p, 6p, 10p and 20p; 100 bootstrap samples
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Discussion

IBOSS works great for linear models with a modest number of
covariates p. But ...
.. develop a better algorithm for the D-optimal IBOSS approach

.. consider other optimization goals (prediction; other criteria) and
corresponding algorithms

¢ ... consideration of independent categorical variables
e ... combine IBOSS with variable selection methods if p is large
e ... consideration of outliers

¢ ... model inadequacy or other models (interaction terms, pure
quadratlc terms, heteroscedastic errors, nonlinear model,
dependencies)

.. honparametric approach
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THANK YOU
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