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Big Data Challenge

For “Big Data”, how can we extract useful information under time and
computational constraints?

The data size n and dimension p can both be very large

For us, n� p. For example, n may be on the order of a billion and p
may be over a thousand (Raskutti and Mahoney, 2014).

Data reduction can be critical in such situations because:

• analyzing the full data may be computationally unfeasible
• a laptop or desktop may be all that is available
• storing all of the data may not be possible

Data reduction refers to using only some of the data points (subdata)

Information-Based Optimal Subdata Selection John Stufken MATHEMATICS AND STATISTICS 5 / 25



Motivation IBOSS Theory Simulations Discussion

Data Reduction for Linear Regression

Goal: Select subdata consisting of k cases, k <<< n, and analyze the
subdata

• What should the subdata size k be?
• How to select subdata of size k?

We focus primarily on the second question for given k

In the JASA paper, for the linear regression setting and small p, we
propose a deterministic method for subdata selection, called
Information-Based Optimal Subdata Selection (IBOSS)

Competing subsampling-based methods, such as uniform sampling
(UNIF) and leveraged sampling (LEV), were developed earlier
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Basic Setup

Linear regression model:

yi = β0 + zT
i β1 + εi = xT

i β + εi , i = 1, . . . ,n,

where zi is a p × 1 covariate vector, and xi = (1, zT
i )

T .

Or
y = β01 + Zβ1 + ε = Xβ + ε

Other assumptions: yi ’s are uncorrelated given Z; εi ’s have mean 0,
variance σ2
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Subsampling-Based Methods

A subsampling method consists of
• selection probabilities πi , i = 1, . . . ,n,

∑
i πi = 1

• a weighted estimator β̃ =
(∑

i ωiηixixT
i

)−1∑
i ωiηixiy, with

weights ωi (often 1/πi ) and with ηi the number of times that the i th
data point is selected

Uniform subsampling (UNI): πi = 1/n, ωi = 1

Algorithmic leveraging (LEV): πi = hii/(p + 1), ωi = 1/πi , where
hii = xT

i

(
XXT )−1 xi ; need to approximate the hii ’s

Unweighted leveraging (LEVUNW): as LEV, but with ωi = 1

Shrinkage leveraging (SLEV): πi = αhii/(p + 1) + (1− α)/n for some
α ∈ [0,1], ωi = 1/πi (Ma, Mahoney, Yu, 2015, JMLR)
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IBOSS
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IBOSS Approach

IBOSS: Select subdata judiciously to maximize the Fisher information
matrix for the model parameters, in some sense

For linear regression, assuming normality and taking σ2 = 1 for
simplicity, the information matrix for β with subdata is

M(δ) =
n∑

i=1

δixixT
i = XT∆X,

with δi an “inclusion” indicator, δ = (δ1, ..., δn) and ∆ = diag(δ)

Optimize this through a good choice for δ subject to
∑

i δi = k
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Optimal Design of Experiments

As in optimal design of experiments, we aim to maximize a function of
the information matrix.

D-optimality: Find δ, subject to
∑

i δi = k , that maximizes det(M(δ)).

A difference with DOE is that we already have data, and are limited to
a choice for the zi ’s that appear in the data.

Another challenge is size: we need a computationally efficient
algorithm to find, approximately, an optimal δ (see next slide).
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Algorithm for D-optimality

To maximize det(M(δ)), include data points with large and small
covariate values, equally distributed over the extremes

For a fixed subdata size k , using a partition-based selection algorithm,
for j = 1, ...,p, select the k/(2p) largest and smallest values for the j th
regression variable, and include these data points in the subdata

Estimate β by β̂D = (XT∆X)−1XT∆y

Computational complexity for selection of subdata is O(np); overall
O(kp2 + np), or O(np) if n > kp. Better than LEV

Can select subdata one regression variable at a time (no duplication)
or in parallel (possibly less than k data points due to duplication)
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Theory
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Theoretical Results

D-optimal IBOSS can be used no matter what the distribution of the
covariates is ...

... but its performance is affected by it

Let z1, ..., zn be iid, and consider 3 scenarios:

1. Normal, zi ∼ N(µ,Σ)

2. Lognormal, zi ∼ LN(µ,Σ)

3. Multivariate t with ν df, zi ∼ tν(µ,Σ)

For all scenarios, Var(β̂D
0 |Z) is proportional to 1/k when n→∞

But the story is different for Var(β̂D
1 |Z) ...
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Theoretical Results

Elements of Var(β̂D
1 |Z) converge to 0 when n→∞ in all cases (even

though the subdata size k is fixed)

For scenario 1 (normal), elements converge to 0 as 1/ log(n)

For scenario 2 (lognormal), the element in position (j1, j2) converges to
0 as exp(−(σj1 + σj2)

√
2 log(n))

For scenario 3 (t-distribution), elements converge to 0 as n−2/ν

Similar results typically do not hold for subsampling methods UNI, LEV
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Simulations
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Simulation setup

p = 50, β = 151×1, εi ∼ N(0, σ2) with σ2 = 9, Σ = (.5I(i 6=j)).

zi ’s are generated from the following distributions.
1. Normal, zi ∼ N(0,Σ);
2. Lognormal, zi ∼ LN(0,Σ);
3. Multivariate t with 2 df, zi ∼ t2(0,Σ);
4. Mixture, zi ’s have a mixture distribution of N(1,Σ), t2(1,Σ),

t3(1,Σ), Unif[0,2] and LN(0,Σ) with equal proportions.

Each simulation was repeated S = 1000 times

Empirical mean squared errors (MSE) are compared

Light blue = full data; black = IBOSS with D-optimality; green = uniform
sampling; blue = leveraged sampling
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MSE of the intercept estimator with k = 1000
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MSE of the slope estimators with k = 1000
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MSE of the slope estimators with n = 106
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CPU times for different n, p and k = 1000

Table: CPU times (seconds) for different n with p = 500

n D-opt UNI LEV FULL
5× 103 1.19 0.33 0.88 1.44
5× 104 1.36 0.29 2.20 13.39
5× 105 8.89 0.31 21.23 132.04

Table: CPU times (seconds) for different p with n = 5× 105

p D-opt UNI LEV FULL
10 0.19 0.00 1.94 0.21

100 1.74 0.02 4.66 6.55
500 9.30 0.31 21.94 132.47
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Chemical Sensors Data

Chemical sensors data (Fonollosa et al., 2015), with n = 4,188,261
and p = 14

Bootstrap MSE for k = 4p, 6p, 10p and 20p; 100 bootstrap samples
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Discussion
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Discussion

IBOSS works great for linear models with a modest number of
covariates p. But ...

• ... develop a better algorithm for the D-optimal IBOSS approach
• ... consider other optimization goals (prediction; other criteria) and

corresponding algorithms
• ... consideration of independent categorical variables
• ... combine IBOSS with variable selection methods if p is large
• ... consideration of outliers
• ... model inadequacy or other models (interaction terms, pure

quadratic terms, heteroscedastic errors, nonlinear model,
dependencies)

• ... nonparametric approach
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THANK YOU
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