Information-Based Optimal Subdata Selection

John Stufken

CIRM, Design of Experiments: New Challenges April 30-May 4, 2018

《曰》 《聞》 《臣》 《臣》 三臣 …

IBOSS

Theory

Simulations

Discussion

Main Reference

Based on "Information-Based Optimal Subdata Selection for Big Data Linear Regression", to appear in Journal of the American Statistical Association (JASA), with

Haiving Wang, U of Connecticut

Min Yang, U of Illinois Chicago

Information-Based Optimal Subdata Selection

John Stufken

▲圖 ▶ ▲ 注 ▶ ▲ 注 ▶ … **KSU** MATHEMATICS AND STATISTICS 2/25

IBOSS

Theory

Simulations

Discussion

Outline

Problem Motivation and Earlier Approaches

IBOSS for Linear Regression

Theoretical Considerations

Simulations

Discussion

Information-Based Optimal Subdata Selection

John Stufken

・ロト ・ 雪 ト ・ ヨ ト ・ **KSJ** MATHEMATICS AND STATISTICS 3/25

IBOSS

Theory

Simulations

Discussion

Motivation

Information-Based Optimal Subdata Selection

John Stufken

A / 25

æ

590

(日) (日) (日) (日) (日)

Big Data Challenge

For "Big Data", how can we extract useful information under time and computational constraints?

The data size *n* and dimension *p* can both be very large

For us, $n \gg p$. For example, *n* may be on the order of a billion and *p* may be over a thousand (Raskutti and Mahoney, 2014).

Data reduction can be critical in such situations because:

- analyzing the full data may be computationally unfeasible
- a laptop or desktop may be all that is available
- storing all of the data may not be possible

Data reduction refers to using only some of the data points (subdata)

Data Reduction for Linear Regression

Goal: Select subdata consisting of k cases, $k \ll n$, and analyze the subdata

- What should the subdata size k be?
- How to select subdata of size k?

We focus primarily on the second question for given *k*

In the JASA paper, for the linear regression setting and small *p*, we propose a deterministic method for subdata selection, called Information-Based Optimal Subdata Selection (IBOSS)

Competing subsampling-based methods, such as uniform sampling (UNIF) and leveraged sampling (LEV), were developed earlier

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Theory

<ロト < 同ト < 目ト < 目ト < 目 > の < の</p>

Basic Setup

Linear regression model:

$$\mathbf{y}_i = eta_0 + \mathbf{z}_i^T \boldsymbol{\beta}_1 + \epsilon_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i, \quad i = 1, \dots, n,$$

where \mathbf{z}_i is a $p \times 1$ covariate vector, and $\mathbf{x}_i = (1, \mathbf{z}_i^T)^T$.

Or

$$\mathbf{y} = \beta_0 \mathbf{1} + \mathbf{Z} \boldsymbol{\beta}_1 + \boldsymbol{\epsilon} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Other assumptions: y_i 's are uncorrelated given **Z**; ϵ_i 's have mean 0, variance σ^2

Information-Based Optimal Subdata Selection John Stufken KSI MATHEMATICS AND STATISTICS 7 / 25

Subsampling-Based Methods

A subsampling method consists of

- selection probabilities π_i , i = 1, ..., n, $\sum_i \pi_i = 1$
- a weighted estimator $\tilde{\boldsymbol{\beta}} = (\sum_{i} \omega_{i} \eta_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T})^{-1} \sum_{i} \omega_{i} \eta_{i} \mathbf{x}_{i} \mathbf{y}$, with weights ω_{i} (often $1/\pi_{i}$) and with η_{i} the number of times that the *i*th data point is selected

Uniform subsampling (UNI): $\pi_i = 1/n$, $\omega_i = 1$

Algorithmic leveraging (LEV): $\pi_i = h_{ii}/(p+1)$, $\omega_i = 1/\pi_i$, where $h_{ii} = \mathbf{x}_i^T (\mathbf{X}\mathbf{X}^T)^{-1} \mathbf{x}_i$; need to approximate the h_{ii} 's

Unweighted leveraging (LEVUNW): as LEV, but with $\omega_i = 1$

Shrinkage leveraging (SLEV): $\pi_i = \alpha h_{ii}/(p+1) + (1-\alpha)/n$ for some $\alpha \in [0, 1], \omega_i = 1/\pi_i$ (Ma, Mahoney, Yu, 2015, JMLR)

IBOSS

Theory

Simulations

Discussion

Information-Based Optimal Subdata Selection

John Stufken

KSJ MATHEMATICS AND STATISTICS 9/25

æ

Theory

IBOSS Approach

IBOSS: Select subdata judiciously to maximize the Fisher information matrix for the model parameters, in some sense

For linear regression, assuming normality and taking $\sigma^2 = 1$ for simplicity, the information matrix for β with subdata is

$$\mathbf{M}(\boldsymbol{\delta}) = \sum_{i=1}^{n} \delta_i x_i x_i^{\mathsf{T}} = \mathbf{X}^{\mathsf{T}} \boldsymbol{\Delta} \mathbf{X},$$

with δ_i an "inclusion" indicator, $\delta = (\delta_1, ..., \delta_n)$ and $\Delta = diag(\delta)$

Optimize this through a good choice for δ subject to $\sum_i \delta_i = k$

<ロト < 同ト < 目ト < 目ト < 目 > の < の</p>

11/25

Optimal Design of Experiments

As in optimal design of experiments, we aim to maximize a function of the information matrix.

D-optimality: Find δ , subject to $\sum_i \delta_i = k$, that maximizes det(**M**(δ)).

A difference with DOE is that we already have data, and are limited to a choice for the z_i 's that appear in the data.

Another challenge is size: we need a computationally efficient algorithm to find, approximately, an optimal δ (see next slide).

Algorithm for *D*-optimality

To maximize det($\mathbf{M}(\delta)$), include data points with large and small covariate values, equally distributed over the extremes

For a fixed subdata size k, using a partition-based selection algorithm, for j = 1, ..., p, select the k/(2p) largest and smallest values for the *j*th regression variable, and include these data points in the subdata

Estimate
$$\beta$$
 by $\hat{eta}^D = (\mathbf{X}^T \mathbf{\Delta} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{\Delta} \mathbf{y}$

Computational complexity for selection of subdata is O(np); overall $O(kp^2 + np)$, or O(np) if n > kp. Better than LEV

Can select subdata one regression variable at a time (no duplication) or in parallel (possibly less than k data points due to duplication)

IBOSS

Theory

Simulations

Discussion

Theory

Information-Based Optimal Subdata Selection

John Stufken

MATHEMATICS AND STATISTICS 13 / 25

æ

5900

(日) (日) (日) (日) (日)

Theoretical Results

D-optimal IBOSS can be used no matter what the distribution of the covariates is ...

... but its performance is affected by it

Let $\mathbf{z}_1, ..., \mathbf{z}_n$ be iid, and consider 3 scenarios:

- **1.** Normal, $\mathbf{z}_i \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- **2.** Lognormal, $z_i \sim LN(\mu, \Sigma)$
- **3.** Multivariate t with ν df, $z_i \sim t_{\nu}(\mu, \Sigma)$

For all scenarios, $Var(\hat{\beta}_0^D | \mathbf{Z})$ is proportional to 1/k when $n \to \infty$

But the story is different for $Var(\hat{\beta}_1^D | \mathbf{Z})$...

<ロト < 同ト < 目ト < 目ト < 目 > の < の</p>

Theoretical Results

Elements of $Var(\hat{\beta}_1^D | \mathbf{Z})$ converge to 0 when $n \to \infty$ in all cases (even though the subdata size *k* is fixed)

For scenario 1 (normal), elements converge to 0 as $1/\log(n)$

For scenario 2 (lognormal), the element in position (j_1, j_2) converges to 0 as $\exp(-(\sigma_{j_1} + \sigma_{j_2})\sqrt{2\log(n)})$

For scenario 3 (t-distribution), elements converge to 0 as $n^{-2/\nu}$

Similar results typically do not hold for subsampling methods UNI, LEV

IBOSS

Theory

Simulations

Discussion

Simulations

Information-Based Optimal Subdata Selection

John Stufken

MATHEMATICS AND STATISTICS 16 / 25

æ

590

<ロト <回 > < 三 > < 三 > < 三 >

Simulation setup

$$p = 50, \beta = \mathbf{1}_{51 \times 1}, \epsilon_i \sim N(0, \sigma^2)$$
 with $\sigma^2 = 9, \Sigma = (.5^{l(i \neq j)})$.

 \mathbf{z}_i 's are generated from the following distributions.

- **1.** Normal, $z_i \sim N(0, \Sigma)$;
- **2.** Lognormal, $z_i \sim LN(\mathbf{0}, \Sigma)$;
- **3.** Multivariate t with 2 df, $z_i \sim t_2(0, \Sigma)$;
- **4.** Mixture, z_i 's have a mixture distribution of $N(1, \Sigma)$, $t_2(1, \Sigma)$, $t_3(1, \Sigma)$, Unif[0, 2] and $LN(0, \Sigma)$ with equal proportions.

Each simulation was repeated S = 1000 times

Empirical mean squared errors (MSE) are compared

Light blue = full data; black = IBOSS with *D*-optimality; green = uniform sampling; blue = leveraged sampling

MSE of the intercept estimator with k = 1000

Information-Based Optimal Subdata Selection

John Stufken

MATHEMATICS AND STATISTICS 18 / 25

MSE of the slope estimators with k = 1000

Information-Based Optimal Subdata Selection

John Stufken

ASJ MATHEMATICS AND STATISTICS 19

19 / 25

MSE of the slope estimators with $n = 10^6$

Information-Based Optimal Subdata Selection

John Stufken

KSU MATHEMATICS AND STATISTICS

20 / 25

CPU times for different n, p and k = 1000

Table: CPU times (seconds) for different *n* with p = 500

n	D-opt	UNI	LEV	FULL
$5 imes 10^3$	1.19	0.33	0.88	1.44
$5 imes 10^4$	1.36	0.29	2.20	13.39
$5 imes 10^5$	8.89	0.31	21.23	132.04

Table: CPU times (seconds) for different *p* with $n = 5 \times 10^5$

р	D-opt	UNI	LEV	FULL
10	0.19	0.00	1.94	0.21
100	1.74	0.02	4.66	6.55
500	9.30	0.31	21.94	132.47

Information-Based Optimal Subdata Selection

Chemical Sensors Data

Chemical sensors data (Fonollosa et al., 2015), with n = 4, 188, 261 and p = 14

Bootstrap MSE for k = 4p, 6p, 10p and 20p; 100 bootstrap samples

IBOSS

Theory

Simulations

Discussion

Discussion

Information-Based Optimal Subdata Selection

John Stufken

イロト イロト イヨト イヨト **KSU** MATHEMATICS AND STATISTICS 23 / 25

æ

Discussion

IBOSS works great for linear models with a modest number of covariates *p*. But ...

- ... develop a better algorithm for the *D*-optimal IBOSS approach
- ... consider other optimization goals (prediction; other criteria) and corresponding algorithms
- ... consideration of independent categorical variables
- ... combine IBOSS with variable selection methods if p is large
- ... consideration of outliers
- ... model inadequacy or other models (interaction terms, pure quadratic terms, heteroscedastic errors, nonlinear model, dependencies)
- ... nonparametric approach

IBOSS

Theory

Simulations

Discussion

THANK YOU

Information-Based Optimal Subdata Selection

John Stufken

MATHEMATICS AND STATISTICS 25 / 25

э

<ロト <回 > < 三 > < 三 > < 三 >