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The Michaelis-Menten model and its shortcoming

The Michaelis-Menten model is given by

Yi = η(Si , θ̃) + εi =
VSi

Si + Km
+ εi , i = 1, . . . , n

the dose levels Si ∈ S = [Smin, Smax], 0 ≤ Smin,

θ̃ = (V ,Km)T ∈ R2 is the unknown parameter,

εi
i .i .d∼ N (0, σ2), σ2 > 0.
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The Michaelis-Menten model and its shortcoming

The Michaelis-Menten model is well justified in the absence of
enzyme inhibition.

BUT:

Many diseases require co-administration of several drugs.

New drugs are often also screened for their inhibitory potential.

Adequate modeling has to reflect this fact.
We extend the model by including the effect of inhibitor concentration.
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The non-competitive inhibition model

Instead of the Michaelis-Menten model

Yi = η(Si , θ̃) + εi =
VSi

Si + Km
+ εi , i = 1, . . . , n

where

the dose levels Si ∈ S = [Smin, Smax],

θ̃ = (V ,Km)T ∈ R2 is the unknown parameter,

εi
i .i .d∼ N (0, σ2), σ2 > 0.

GOAL: Determine optimal designs for this model.
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The non-competitive inhibition model

We consider the non-competitive inhibition model

Yi = η(Si , Ii , θ) + εi

=
V · Si

(Km + Si )(1 + Ii
Kic

)
+ εi , i = 1, . . . , n,

where

(Si , Ii ),∈ S = [Smin,Smax]× [Imin, Imax],
0 ≤ Smin < Smax and 0 ≤ Imin < Imax,

θ = (V ,Km,Kic)T ∈ R3 is the unknown parameter,

εi
i .i .d∼ N (0, σ2), σ2 > 0.
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The structure of the information matrix

Let ξ be an approximate design with finite support in S, that is,

ξ =

(
(S1, I1) · · · (Sk , Ik)
ξ1 · · · ξk

)
.

The information matrix of the design ξ is then given by

M(ξ, θ) =

∫
S

∂η(S , I , θ)

∂θ

(∂η(S , I , θ)

∂θ

)T
dξ(S , I ),

where

∂η(S , I , θ)

∂θ
=

S

(Km + S)

1

(1 + I/Kic)

(
1,− V

Km + S
,
V · I/K 2

ic

1 + I/Kic

)T
.
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Considered optimality criteria

We are now interested in determining

D-optimal designs, that is designs such that

ΦD{M(ξ, θ)} = det{M(ξ, θ)}

is maximised with respect to ξ.

ej -optimal designs, j = 1, 2, 3, that is designs that that

Φej{M(ξ, θ)} = (ejM
−(ξ, θ)ej)

−1 , j = 1, 2, 3 .

is maximised with respect to ξ under the condition that ej ∈
Range(M(ξ, θ)).
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The non-competitive inhibition model and optimal design

Main problem:

Model is highly non-linear and therefore the criteria are difficult to
analyse mathematically.

That is the reason why:

Not much literature on optimal designs for this type of models.
(see Youdim et al. (2010); Bogacka et al. (2011); Atkinson and Bogacka (2013);

Chen et al. (2017))

Most results exist for D-optimal and Ds -optimal designs.

In most cases optimal designs have to be found numerically.

Our idea:

Use a non-linear transformation of the variables (S , I ) to achieve
multivariate polynomial regression model.

Then the analysis of the model becomes much easier.
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Transformation of the variable (S , I )

We define a one-to-one transformation of the variable (S , I ) by(
x
y

)
= ψ(S , I ) =

(
S

Km+S
1

1+I/Kic

)
.

where (x , y) ∈ X = [xmin, xmax]× [ymin, ymax].

The boundary points of the two intervals are defined by

xmin = Smin
Km+Smin

; xmax = Smax
Km+Smax

; ymin = 1
1+Imax/Kic

; ymax = 1
1+Imin/Kic

.

Note that xmin, xmax, ymin, ymax ∈ [0, 1].
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Transformation of the gradient

Using the transformation the gradient

∂η(S ,I ,θ)
∂θ = S

(Km+S)
1

(1+I/Kic )

(
1,− V

Km+S ,
V ·I/K2

ic
1+I/Kic

)T
can be represented by

∂η(S ,I ,θ)
∂θ = A(θ)f (x , y),

where the non-singular matrix A(θ) and the vector f (x , y) are given by

A(θ) =

 1 0 0

− V
Km

V
Km

0
V
Kic

0 − V
Kic

 , f (x , y) = xy

1
x
y

 .

The vector f (x , y) corresponds to the regression function of a multivariate
polynomial regression model.
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Transformation of the design and the information matrix

We transform the design ξ, that is,

ξ design on S
ψ(S ,I )



ψ−1(x ,y)
ξ̃ induced design on X .

The information matrix can then be represented by

M(ξ, θ) = A(θ)M̃(ξ̃)AT (θ),

where the matrix M̃(ξ̃) is defined by

M̃(ξ̃) =

∫
X
f (x , y)f T (x , y)d ξ̃(x , y).
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Transformation of the criteria

maximising Φ(M(ξ, θ))⇔ maximising Φ(A(θ)M̃(ξ̃)AT (θ)).

In the case of ej -optimality, we get for j = 1, 2, 3:

Φej (M(ξ, θ)) = (eTj (A(θ)M̃(ξ̃)AT (θ))−ej)
−1

= ((A−1(θ)ej)
T M̃−(ξ̃)(A−1(θ))−1ej))−1

= (ẽTj M̃−(ξ̃)ẽj)
−1.
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Structure of D-optimal designs I

Theorem

Let X = [xmin, xmax]× [ymin, ymax] and x0min = xmin
xmax

, y0min = ymin
ymax

.
The D-optimal design is supported at three points if and only if
(x0min, y

0
min) is within the set D ⊂ R2.
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Structure of D-optimal designs II
Theorem

Let X = [xmin, xmax]× [ymin, ymax] and x0min = xmin
xmax

, y0min = ymin
ymax

.

If (x0min, y
0
min) ∈ D ⊂ R2, the D-optimal design is given by

ξ̃∗ =

((
max{xmin,

xmax
2 }, ymax

) (
xmax,max{ ymax

2 , ymin}
)

(xmax, ymax)
1
3

1
3

1
3

)
.
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Remarks to D-optimal designs

Bogacka et al. (2011) stated that the D-optimal design is always
supported by three points.

Chen et al. (2017) found a parameter combination where the
corresponding design with three support points fails to be D-optimal.

Because of the transformation we were able to derive explicit
conditions under which the saturated design is D-optimal.
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Example

Let θ = (V ,Km,Kic)T = (1, 4, 2)T and S = [7, 30]× [30, 60].

Then the regression function is given by η(S , I , θ) = S
(4+S)(1+ I

2
)
.

S

10

20

30

I

30

40

50

60

0.02

0.04
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Example (continued)

Let θ = (V ,Km,Kic)T = (1, 4, 2)T and S = [7, 30]× [30, 60].

The transformed design space is then given by: X = [ 7
11 ,

15
17 ]× [ 1

31 ,
1
16 ].

Therefore: x0min = 119
165 and y0min = 16

31 and (x0min, y
0
min) ∈ D.

Therefore: x0min = 17
19 and y0min = 16

31 and (x0min, y
0
min) /∈ D.

The D-optimal design is (using the
transformation to the original space):

ξ∗ =

((
7, 30

)
(30, 30) (30, 60)

1
3

1
3

1
3

)
.
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ej -optimality in the transformed model

In the case of ej -optimality, we get for j = 1, 2, 3:

Φej (M(ξ, θ)) = ((A−1(θ)ej)
T M̃−(ξ̃)(A−1(θ))−1ej))−1

= (ẽTj M̃−(ξ̃)ẽj)
−1.

What does ẽj look like for the different cases?
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Optimal designs for ẽ2

Theorem

The optimal design maximising (ẽT2 M̃−(ξ̃)ẽ2)−1 is of the form

ξ̃ =

(
(xmax, ymax) (x , ymax)

x
1+x

1
1+x

)
,

where x = max
{
xmin, (

√
2− 1)xmax

}
.

We have to transform the design ξ̃ to the original space S to get the
optimal design for estimating the Michaelis-Menten constant Km.
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Optimal design for estimating the parameter Km

Corollary

The optimal design for estimating the Michaelis-Menten constant Km is
given by

ξ =

((
Smax, Imin

) (
S , Imin

)
1− ω ω

)
,

where

S = max
{
Smin ,

KmSmax(
√

2− 1)

Km + (2−
√

2)Smax

}
,

ω =
(

1 + max
{ Smin

Km + Smin
,

(
√

2− 1)Smax

Km + Smax

})−1
.
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Example(continued)

Let θ = (V ,Km,Kic)T = (1, 4, 2)T and S = [7, 30]× [30, 60].

Then the design for estimating the constant Km is given by

ξ =

(
(7, 30) (30, 30)
0.61̄ 1− 0.61̄

)
.

S

10

20

30

I

30

40

50

60

0.02

0.04
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Conclusion and further comments

The non-linear transformation is useful to make the optimisation
problem more tractable.

Similar transformations are possible for other inhibition models and
can simplify the (numerical) optimisation problem.

For instance, we can use the algorithm presented by Fabrice Gamboa
today.

Thank you very much for your
attention!
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