# Using the S-Lemma to Design Robust Experiments 

Guillaume Sagnol

TU Berlin

Design of Experiments: New Challenges
CIRM Workshop, Marseille, May 3, 2018

## Design of Experiment

■ $X \subset \mathbb{R}^{d}$ : compact design space
An experiment with $N$ trials is defined by a design

$$
\xi=\left\{\begin{array}{lll}
\boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{n} \\
N_{1} & \cdots & N_{n}
\end{array}\right\}
$$

where
$\square \boldsymbol{x}_{i} \in X$ is the $i$ th support point of the design
■ $N_{i} \in \mathbb{N}$ is the replication at the $i$ th design point

- $\sum_{i=1}^{s} N_{i}=N$.


## Design of Experiment

$\square X \subset \mathbb{R}^{d}:$ compact design space
When $N \rightarrow \infty$, we can consider approximate designs:

$$
\xi=\left\{\begin{array}{lll}
\boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{n} \\
w_{1} & \cdots & w_{n}
\end{array}\right\}
$$

where $w_{i} \in \mathbb{R}_{+}$is the proportion of the total number of trials at $i$ th design point, and $\sum_{i=1}^{n} w_{i}=1$.

In this work, we assume that the candidates design points $x_{1}, \ldots, x_{n}$ are fixed, so the set of all approximate designs is isomorphic to

$$
\mathcal{W}:=\left\{\boldsymbol{w} \geq \mathbf{0}: \sum_{i=1}^{m} w_{i}=1\right\}
$$

## The Linear Model

A trial at the design point $\boldsymbol{x} \in X$ provides an observation

$$
y=f(\boldsymbol{x})^{\top} \boldsymbol{\theta}+\boldsymbol{\epsilon},
$$

where
■ $\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^{m}$ is an unknown vector of parameters;
■ $f: X \mapsto \mathbb{R}^{m}$ is known;
■ $\mathbb{E}[\epsilon]=\mathbf{0}, \quad \mathbb{V}[\epsilon]=\sigma^{2}$ (a known constant), and the noises $\epsilon, \epsilon^{\prime}$ of two distinct trials are uncorrelated.

Standard approaches minimize a convex functional of the information matrix of the design $\xi$,

$$
M(\xi):=\sum_{i=1}^{s} w_{i} f\left(\boldsymbol{x}_{i}\right) f\left(\boldsymbol{x}_{i}\right)^{T} \in \mathbb{S}_{m}^{+} .
$$

## The Linear Model

A trial at the design point $\boldsymbol{x} \in X$ provides an observation

$$
y=f(\boldsymbol{x})^{\top} \boldsymbol{\theta}+\boldsymbol{\epsilon},
$$

where
■ $\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^{m}$ is an unknown vector of parameters;

$$
f: X_{\hookrightarrow} \rightarrow \mathbb{R}^{m} \text { is known; }
$$

$\square \mathbb{E}[\epsilon]=\mathbf{0}, \quad \mathbb{V}[\epsilon]=\sigma^{2}$ (a known constant), and the noises $\epsilon, \epsilon^{\prime}$ of two distinct trials are uncorrelated.

## The function $f$ is not always known accurately

Linear model $y=f(\boldsymbol{x})^{T} \boldsymbol{\theta}+\epsilon$.

1 Error-in-variables Models

- Instead of observing $y=f(\boldsymbol{x})^{\top} \boldsymbol{\theta}+\epsilon$, the experimenter measures

$$
y=f(\boldsymbol{x}+\boldsymbol{\eta})^{\top} \boldsymbol{\theta}+\epsilon,
$$

where $\eta$ is an unknown noise.
■ Model studied in [Konstantinou \& Dette, 2015], for the case of ML estimation and LS estimation.

Linear model $y=f(\boldsymbol{x})^{T} \boldsymbol{\theta}+\epsilon$.
2. The assumed model is Nonlinear

■ $y=g(\boldsymbol{x}, \boldsymbol{\theta})+\epsilon$
$■$ Standard approach: local optimal design. The model is linearized around $\theta_{0}$, and we compute an optimal design for the linear model

$$
y \simeq f(\boldsymbol{x})^{T} \boldsymbol{\theta}+\epsilon
$$

where $f(\boldsymbol{x}):=\nabla g\left(\boldsymbol{x}, \boldsymbol{\theta}_{\mathbf{0}}\right)$
■ But wrong choice of $\boldsymbol{\theta}_{0}$ leads to an error in the regressor function $f$.

## The function $f$ is not always known accurately

## Linear model $y=f(\boldsymbol{x})^{T} \boldsymbol{\theta}+\epsilon$.

3 Design for computer experiments with a GP surogate.

- $y=\eta(\boldsymbol{x})+\epsilon$, where $\eta(\boldsymbol{x})$ is the realization of a Gaussian process with a known semidefinite covariance kernel $K(\cdot, \cdot)$.
- We can reduce to a linear model by truncating the Karhunen-Loève expansion of the kernel

■ But in practice, the resulting linear model depends on the eigenfunctions of $K$, which must be estimated using the Nyström approximation, and estimates of Kernel hyperparameters.

## The function $f$ is not always known accurately

## Linear model $\boldsymbol{y}=f(\boldsymbol{x})^{T} \boldsymbol{\theta}+\epsilon$.

4 X-ray based Anatomy Reconstruction with Low Radiation Exposure [ongoing work with Jentsch \& Weiser]

- Goal: estimation of geometry parameters of the patient's anatomy
■ Design: there is a "budget" of exposure to distribute over diffenret projection angles $\boldsymbol{x} \in X$
$\square$ Computing the linearized model $f(\boldsymbol{x})$ requires multidimensional integrals, typically approximated with quadratures.


## Outline

1 A new robust design criterion

2 The S-lemma

3 SDP formulation for robust designs

4 Preliminary results

## Robust Linear Model

Linear model in vector form

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{\theta}+\boldsymbol{\epsilon},
$$

where

$$
\boldsymbol{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \in \mathbb{R}^{n}, \quad \boldsymbol{A}=\left[\begin{array}{l}
f\left(\boldsymbol{x}_{1}\right)^{T} \\
f\left(\boldsymbol{x}_{2}\right)^{T} \\
\vdots \\
f\left(\boldsymbol{x}_{n}\right)^{T}
\end{array}\right] \in \mathbb{R}^{n \times m}
$$

■ $\mathbb{E}[\epsilon]=\mathbf{0}, \quad \mathbb{V}[\epsilon]=\sigma^{2} \operatorname{Diag}(\boldsymbol{w})^{-1}$.

- The matrix $A$ is not known, but assumed to lie in the ball

$$
\mathcal{A}:=\left\{A_{0}+\Delta \mid\|\Delta\| \leq \delta\right\} .
$$

■ The unknown parameter $\theta$ is assumed to lie in an ellipsoid $\Theta=\left\{\theta^{\top} \Sigma^{-1} \theta \leq 1\right\}$.

## Estimators for the robust linear model

■ Estimators for the robust linear model have been proposed in [EI Ghaoui \& Lebret 1997, Calafiore \& El Ghaoui 2001, Eldar, Ben-Tal \& Nemirovski 2005 ]

■ Approaches based on Semidefinite Programming formulations using the S-Lemma

- In this talk, we extend this work
- Goal: simultaneous computation of a robust estimator, and optimal design weights w
- We obtain robust designs for estimation of $\boldsymbol{\theta}$, and for prediction of $f(\boldsymbol{x})^{T} \boldsymbol{\theta}$ at unsampled locations $\boldsymbol{x}$ 's.


## A robust criterion

Consider the linear estimator

$$
\hat{\boldsymbol{\theta}}=G \boldsymbol{y}
$$

We introduce a criterion depending on both the coefficients $G$ and the design weights $\boldsymbol{w} \in \mathcal{W}$ :

$$
\begin{aligned}
\phi(G, \boldsymbol{w}) & =\sup _{A \in \mathcal{A}} \sup _{\theta \in \Theta} \mathbb{E}\left[\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}\|^{2}\right] \\
& =\sup _{A \in \mathcal{A}} \sup _{\theta \in \Theta} \mathbb{E}\left[\|G(A \boldsymbol{\theta}+\boldsymbol{\epsilon})-\boldsymbol{\theta}\|^{2}\right] \\
& =\sup _{A \in \mathcal{A}} \sup _{\boldsymbol{\theta} \in \Theta}\|(G A-I) \boldsymbol{\theta}\|^{2}+\sigma^{2} \operatorname{trace} G \operatorname{Diag}(\boldsymbol{w})^{-1} G^{T} \\
& =\sup _{A \in \mathcal{A}} \lambda_{\max }\left((G A-I)^{T} \Sigma(G A-I)\right)+\sigma^{2} \sum_{i=1}^{n} \frac{\left\|\boldsymbol{g}_{i}\right\|^{2}}{\boldsymbol{w}_{i}}
\end{aligned}
$$

## Outline

## 1 A new robust design criterion

2 The S-lemma

3 SDP formulation for robust designs

4 Preliminary results

## The S-Lemma

## S-lemma (homogeneous version) [Yakubovich 71]

 Let $Q_{1}$, and $Q_{2}$ be two quadratic forms over $\mathbb{R}^{n}$ and assume that $\exists \boldsymbol{x}_{0} \in \mathbb{R}^{n}: Q_{1}\left(\boldsymbol{x}_{0}\right)>0$. Then, TFAE$$
\begin{aligned}
& \forall \boldsymbol{x} \in \mathbb{R}^{n}, \quad\left(Q_{1}(\boldsymbol{x}) \geq 0 \Longrightarrow Q_{2}(\boldsymbol{x}) \geq 0\right) \\
& \exists \lambda \geq 0: \quad Q_{2}(\boldsymbol{x}) \geq \lambda Q_{1}(\boldsymbol{x}), \forall \boldsymbol{x} \in \mathbb{R}^{n} .
\end{aligned}
$$

We can reformulate the S-lemma as follows: Let $M_{1}, M_{2}$ be symmetric matrices of size $n$, and let:

$$
\begin{array}{rll}
v^{*}:=\inf & \boldsymbol{x}^{\top} M_{2} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x}^{\top} M_{1} \boldsymbol{x} \geq 0 .
\end{array}
$$

Then,

$$
v^{*} \geq 0 \quad \Longleftrightarrow \quad \exists \lambda \geq 0: M_{2}-\lambda M_{1} \succeq 0 .
$$

## Consequence of the S-Lemma

## Theorem (Ben-Tal \& Nemirovski, 1998)

The linear matrix inequality (with variables $M$ and $L$ )

$$
M+L \Delta R+R^{T} \Delta^{\top} L^{T} \succeq 0
$$

holds for all $\Delta$ such that $\|\Delta\| \leq \delta$ iff

$$
\exists \lambda \geq 0:\left(\begin{array}{cc}
M-\lambda \delta^{2} R^{T} R & L \\
L^{T} & \lambda I
\end{array}\right) \succeq 0 .
$$

## Consequence of the S-Lemma

$$
M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \Longleftrightarrow \exists \lambda \geq 0:\left(\begin{array}{cc}
M-\lambda \delta^{2} R^{T} R & L \\
L^{T} & \lambda I
\end{array}\right) \succeq 0
$$

Proof.

$$
M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta
$$

## Consequence of the S-Lemma

$$
M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \Longleftrightarrow \exists \lambda \geq 0:\left(\begin{array}{cc}
M-\lambda \delta^{2} R^{T} R & L \\
L^{T} & \lambda /
\end{array}\right) \succeq 0
$$

Proof.

$$
\begin{aligned}
& M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \\
\Longleftrightarrow & \boldsymbol{y}^{T}\left(M+L \Delta R+R^{T} \Delta^{T} L^{T}\right) \boldsymbol{y} \geq 0, \quad \forall\|\Delta\| \leq \delta, \forall \boldsymbol{y} \in \mathbb{R}^{n}
\end{aligned}
$$

## Consequence of the S-Lemma

$$
M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \Longleftrightarrow \exists \lambda \geq 0:\left(\begin{array}{cc}
M-\lambda \delta^{2} R^{\top} R & L \\
L^{T} & \lambda l
\end{array}\right) \succeq 0
$$

Proof.

$$
\begin{aligned}
& M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \\
\Longleftrightarrow & \boldsymbol{y}^{T}\left(M+L \Delta R+R^{T} \Delta^{T} L^{T}\right) \boldsymbol{y} \geq 0, \quad \forall\|\Delta\| \leq \delta, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
\Longleftrightarrow & \boldsymbol{y}^{T} M \boldsymbol{y}+2 \inf _{\|\Delta\| \leq \delta}\left(L^{T} \boldsymbol{y}\right)^{T} \Delta(R \boldsymbol{y}) \geq 0, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n}
\end{aligned}
$$

## Consequence of the S-Lemma

$$
M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \Longleftrightarrow \exists \lambda \geq 0:\left(\begin{array}{cc}
M-\lambda \delta^{2} R^{\top} R & L \\
L^{T} & \lambda l
\end{array}\right) \succeq 0
$$

Proof.

$$
\begin{aligned}
& M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \\
\Longleftrightarrow & \boldsymbol{y}^{T}\left(M+L \Delta R+R^{T} \Delta^{T} L^{T}\right) \boldsymbol{y} \geq 0, \quad \forall\|\Delta\| \leq \delta, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
\Longleftrightarrow & \boldsymbol{y}^{\top} M \boldsymbol{y}+2 \inf _{\|\Delta\| \leq \delta}\left(L^{T} \boldsymbol{y}\right)^{T} \Delta(R \boldsymbol{y}) \geq 0, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
\Longleftrightarrow & \boldsymbol{y}^{T} M \boldsymbol{y}+2\left(-\delta \cdot\left\|L^{T} \boldsymbol{y}\right\| \cdot\|R \boldsymbol{y}\|\right) \geq 0 \quad \forall \boldsymbol{y} \in \mathbb{R}^{n}
\end{aligned}
$$

## Consequence of the S-Lemma

$$
M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \Longleftrightarrow \exists \lambda \geq 0:\left(\begin{array}{cc}
M-\lambda \delta^{2} R^{\top} R & L \\
L^{T} & \lambda l
\end{array}\right) \succeq 0
$$

Proof.

$$
\begin{aligned}
& M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \\
\Longleftrightarrow & \boldsymbol{y}^{T}\left(M+L \Delta R+R^{T} \Delta^{T} L^{T}\right) \boldsymbol{y} \geq 0, \quad \forall\|\Delta\| \leq \delta, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
\Longleftrightarrow & \boldsymbol{y}^{\top} M \boldsymbol{y}+2 \inf _{\|\Delta\| \leq \delta}\left(L^{T} \boldsymbol{y}\right)^{T} \Delta(R \boldsymbol{y}) \geq 0, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
\Longleftrightarrow & \boldsymbol{y}^{T} M \boldsymbol{y}+2\left(-\delta \cdot\left\|L^{T} \boldsymbol{y}\right\| \cdot\|R \boldsymbol{y}\|\right) \geq 0 \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
\Longleftrightarrow & \boldsymbol{y}^{\top} M \boldsymbol{y}+2 \inf _{\{z:\|z\| \leq \delta\|R \boldsymbol{i n}\|\}} \boldsymbol{y}^{T} L \boldsymbol{z} \geq 0, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n}
\end{aligned}
$$

## Consequence of the S-Lemma

$$
M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \Longleftrightarrow \exists \lambda \geq 0:\left(\begin{array}{cc}
M-\lambda \delta^{2} R^{T} R & L \\
L^{T} & \lambda l
\end{array}\right) \succeq 0
$$

## Proof.

$$
\begin{aligned}
& M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \\
\Longleftrightarrow & \boldsymbol{y}^{T}\left(M+L \Delta R+R^{T} \Delta^{T} L^{T}\right) \boldsymbol{y} \geq 0, \quad \forall\|\Delta\| \leq \delta, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
\Longleftrightarrow & \boldsymbol{y}^{\top} M \boldsymbol{y}+2 \inf _{\|\Delta\| \leq \delta}\left(L^{T} \boldsymbol{y}\right)^{T} \Delta(R \boldsymbol{y}) \geq 0, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
\Longleftrightarrow & \boldsymbol{y}^{T} M \boldsymbol{y}+2\left(-\delta \cdot\left\|L^{T} \boldsymbol{y}\right\| \cdot\|R \boldsymbol{y}\|\right) \geq 0 \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
\Longleftrightarrow & \boldsymbol{y}^{\top} M \boldsymbol{y}+2 \inf _{\{z:\|\boldsymbol{\operatorname { n n }} \leq \delta\|\|\boldsymbol{x}\|\}} \boldsymbol{y}^{\top} L \boldsymbol{z} \geq 0, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
\Longleftrightarrow & \left((\|\boldsymbol{z}\| \leq \delta\|R \boldsymbol{y}\|) \Longrightarrow\left(\boldsymbol{y}^{\top} M \boldsymbol{y}+2 \boldsymbol{y}^{\top} L \boldsymbol{z} \geq 0\right)\right)
\end{aligned}
$$

## Consequence of the S-Lemma

$$
M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \Longleftrightarrow \exists \lambda \geq 0:\left(\begin{array}{cc}
M-\lambda \delta^{2} R^{T} R & L \\
L^{T} & \lambda I
\end{array}\right) \succeq 0
$$

$$
\begin{aligned}
& M+L \Delta R+R^{T} \Delta^{T} L^{T} \succeq 0, \quad \forall\|\Delta\| \leq \delta \\
& \Longleftrightarrow \boldsymbol{y}^{\top}\left(M+L \Delta R+R^{T} \Delta^{\top} L^{T}\right) \boldsymbol{y} \geq 0, \quad \forall\|\Delta\| \leq \delta, \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
& \Longleftrightarrow \boldsymbol{y}^{\top} M \boldsymbol{y}+2 \inf _{\|\Delta\| \leq \delta}\left(L^{\top} \boldsymbol{y}\right)^{T} \Delta(R \boldsymbol{y}) \geq 0, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
& \Longleftrightarrow \boldsymbol{y}^{\top} M \boldsymbol{y}+2\left(-\delta \cdot\left\|L^{\top} \boldsymbol{y}\right\| \cdot\|R \boldsymbol{y}\|\right) \geq 0 \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
& \Longleftrightarrow \boldsymbol{y}^{\top} M \boldsymbol{y}+2 \inf _{\{\boldsymbol{z}: \mid \boldsymbol{z}\|\leq \delta\| R \boldsymbol{y} \|\}} \boldsymbol{y}^{\top} L \boldsymbol{z} \geq 0, \quad \forall \boldsymbol{y} \in \mathbb{R}^{n} \\
& \Longleftrightarrow\left((\|\boldsymbol{z}\| \leq \delta\|R \boldsymbol{y}\|) \Longrightarrow\left(\boldsymbol{y}^{\top} M \boldsymbol{y}+2 \boldsymbol{y}^{\top} L \boldsymbol{z} \geq 0\right)\right) \\
& \Longleftrightarrow\left[\binom{y}{z}^{T}\left(\begin{array}{ll}
\delta^{2} R^{\top} R & \\
& -1
\end{array}\right)\binom{y}{z} \geq 0\right. \\
& \left.\Longrightarrow\binom{y}{z}^{T}\left(\begin{array}{cc}
M & L \\
L^{T}
\end{array}\right)\binom{y}{z} \geq 0\right]
\end{aligned}
$$

## Outline

## 1 A new robust design criterion

2 The S-lemma

3 SDP formulation for robust designs

4 Preliminary results

Recall that we want to minimize
$\phi(G, \boldsymbol{w})=\sup _{A \in \mathcal{A}} \quad \lambda_{\max }\left((G A-I)^{T} \Sigma(G A-I)\right)+\sigma^{2} \sum_{i=1}^{n} \frac{\left\|\boldsymbol{g}_{i}\right\|^{2}}{w_{i}}$.
This is the same as minimizing $t+\sigma^{2} u$ under the constraints

$$
\begin{aligned}
& \text { - } \lambda_{\max }\left((G A-I)^{\top} \Sigma(G A-I)\right) \leq t, \quad \forall A \in \mathcal{A} \\
& -\sum_{i=1}^{n} \frac{\left\|\boldsymbol{g}_{\boldsymbol{i}}\right\|^{2}}{w_{i}} \leq u .
\end{aligned}
$$

## SDP formulation

$$
\text { - } \lambda_{\max }\left((G A-I)^{T} \Sigma(G A-I)\right) \leq t, \quad \forall A \in \mathcal{A}
$$

Using a Schur-complement, this can be rewritten as

$$
\left(\begin{array}{cc}
t l & (G A-I)^{T} \\
(G A-I) & \Sigma^{-1}
\end{array}\right) \succeq 0, \quad \forall A \in \mathcal{A} .
$$

With $A=A_{0}+\Delta$, we obtain:
$\underbrace{\left(\begin{array}{cc}t l & \left(G A_{0}-I\right)^{T} \\ \left(G A_{0}-I\right) \\ \Sigma^{-1}\end{array}\right)}_{M}+\underbrace{\binom{0}{G}}_{L} \Delta \underbrace{(I 0)}_{R}+\binom{I}{0} \Delta^{T}\left(0 G^{T}\right) \succeq 0$,
which has the desired form to apply the S-lemma for robust LMIs.

## SDP formulation

$$
\square \sum_{i=1}^{n} \frac{\left\|\boldsymbol{g}_{i}\right\|^{2}}{w_{i}} \leq u
$$

To handle these constraints with LMIs, we introduce a variable $v_{i}$ for each summand:

$$
\sum_{i=1}^{n} \frac{\left\|\boldsymbol{g}_{i}\right\|^{2}}{w_{i}} \leq u \Longleftrightarrow \exists \boldsymbol{v} \geq \mathbf{0}:\left\{\begin{array}{l}
\left\|\boldsymbol{g}_{i}\right\|^{2} \leq w_{i} v_{i}, \quad \forall i \in\{1, \ldots, n\} \\
\sum_{i=1}^{m} v_{i} \leq u
\end{array}\right.
$$

Then, it is well known that each constraint $\left\|\boldsymbol{g}_{i}\right\|^{2} \leq w_{i} v_{i}$ can be reformulated as the equivalent second-order cone constraint $\left\|\binom{2 \boldsymbol{g}_{i}}{w_{i}-v_{i}}\right\| \leq w_{i}+v_{i}$, or as the LMI

$$
\left(\begin{array}{ll}
v_{i} & \boldsymbol{g}_{i}^{T} \\
\boldsymbol{g}_{i} & w_{i} I
\end{array}\right) \succeq 0 .
$$

## SDP formulation

Putting all together, we obtain the following SDP to minimize $\phi(G, \boldsymbol{w})$ :

$$
\begin{array}{ll} 
& t+\sigma^{2} \sum v_{i} \\
\text { s.t. } & \left(\begin{array}{ccc}
\left(t-\lambda \delta^{2}\right) I & \left(G A_{0}-I\right)^{T} & 0 \\
\left(G A_{0}-I\right) & \Sigma^{-1} & G \\
0 & G^{T} & \lambda I
\end{array}\right) \succeq 0 \\
& \lambda \geq 0 \\
& \left(\begin{array}{cc}
v_{i} & \boldsymbol{g}_{i}^{T} \\
\boldsymbol{g}_{i} & w_{i} I
\end{array}\right) \succeq 0, \quad \forall i \in\{1, \ldots, n\} \\
& \boldsymbol{w}, \boldsymbol{v} \geq \mathbf{0} \\
& \sum_{i=1}^{m} w_{i}=1 .
\end{array}
$$

## Possible extensions to the SDP model

We can also obtain similar tractable SDPs when
■ $A$ varies in a "scaled ball"

$$
\mathcal{A}=\left\{A_{0}+\Delta \mid\|S \Delta T\| \leq \delta\right\},
$$

for some invertible matrices $S \in \mathbb{R}^{n \times n}$ and $T \in \mathbb{R}^{m \times m}$.

## Possible extensions to the SDP model

We can also obtain similar tractable SDPs when
■ A varies in a "scaled ball"

$$
\mathcal{A}=\left\{A_{0}+\Delta \mid\|S \Delta T\| \leq \delta\right\},
$$

for some invertible matrices $S \in \mathbb{R}^{n \times n}$ and $T \in \mathbb{R}^{m \times m}$.
■ There is a prior $\boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \Sigma)$, and we minimize

$$
\Phi_{E}(G, \boldsymbol{w})=\sup _{A \in \mathcal{A}} \mathbb{E}_{\boldsymbol{\theta}, \epsilon}\left[\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}\|^{2}\right]
$$

(integrate over $\theta$ instead of taking the worst-case).

## Possible extensions to the SDP model

We can also obtain similar tractable SDPs when

- A varies in a "scaled ball"

$$
\mathcal{A}=\left\{A_{0}+\Delta \mid\|S \Delta T\| \leq \delta\right\}
$$

for some invertible matrices $S \in \mathbb{R}^{n \times n}$ and $T \in \mathbb{R}^{m \times m}$.
■ There is a prior $\theta \sim \mathcal{N}(\mathbf{0}, \Sigma)$, and we minimize

$$
\Phi_{E}(G, \boldsymbol{w})=\sup _{A \in \mathcal{A}} \mathbb{E}_{\boldsymbol{\theta}, \epsilon}\left[\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}\|^{2}\right]
$$

(integrate over $\theta$ instead of taking the worst-case).
■ We want to predict $\eta(\boldsymbol{x})=f(\boldsymbol{x})^{\top} \boldsymbol{\theta}$ over $X$, we search a linear predictor of the form $\hat{\eta}(\boldsymbol{x})=f_{0}(\boldsymbol{x})^{T} G \boldsymbol{y}$, and we minimize

$$
\Phi_{\mu}(G, \boldsymbol{w})=\sup _{A \in \mathcal{A}} \sup _{\theta \in \Theta} \int_{\boldsymbol{x} \in X} \mathbb{E}_{\epsilon}\left[\|\eta(\boldsymbol{x})-\hat{\eta}(\boldsymbol{x})\|^{2}\right] d \mu(\boldsymbol{x})
$$

## Outline

## 1 A new robust design criterion

2 The S-lemma

## 3 SDP formulation for robust designs

4 Preliminary results

## Error-in-Variables Model

We consider an Error-In-Variable models for polynomial regression.
$\square X=[-1,1]$, discretized with $n=51$ points.

- We assume the observed function is a polynomial of degree 4 , so $m=5$;
- As basis functions we take the first Legendre polynomials: $P(x)=\sum_{i=1}^{5} \theta_{i} L_{i}(x)$, i.e.,

$$
f_{0}(x)=\left[L_{1}(x), L_{2}(x), \ldots, L_{5}(x)\right]^{T} .
$$

■ When the experimenter wants to observe $P(x)$, he/she gets a (noisy) observation of $P(x+\eta)$ instead, where $\eta \sim \mathcal{N}\left(0,0.03^{2}\right)$.

- We generate a true $\boldsymbol{\theta} \sim \mathcal{N}(0, I)$


## Optimal designs




Left: Bayesian $A$-optimal design, computed with prior

$$
\boldsymbol{\theta} \sim \mathcal{N}(0, I)
$$

Right: Robust design, for $\Theta=\left\{\boldsymbol{\theta} \in \mathbb{R}^{m} \mid\|\boldsymbol{\theta}\| \leq 1\right\}$ (i.e., $\Sigma=I$ ) and robustness level $\delta=0.1$.

## Comparisons of designs

■ We run tests with $N_{1}=10$ randomly generated polynomials.
■ For each, we generate $N_{2}=100$ observartion vector $\boldsymbol{y}$ for randomly generated offsets of the observation location $x_{i}^{\prime}=x_{i}+\eta_{i}$.
■ We compute an estimate of $\theta$ :

- For the Bayesian $A$-optimal design, with LS estimation ignoring the $x_{i}$-offsets.
- For the Bayesian $A$-optimal design, with a robust estimator [EI Ghaoui \& Lebret]
- For the robust design, with the robust linear estimator $\boldsymbol{\theta}=\boldsymbol{G y}$.


## Comparisons of designs

Box plots of squared estimation error
distribution of errors


A-optimal design
LS estimator

A-optimal design robust estimator
robust design linear robust estimator

## Estimation vs. prediction




A-II- optimal


## Comparisons of designs

Box plots of integrated squared prediction error
distribution of integrated squared prediction error


G-optimal design LS predictor

G-optimal design robust predictor
robust design linear robust predictor

## Conclusion \& Perspectives

- Tools of robust optimal control used to compute robust optimal designs
TO DO:
- Study influence of robustness level $\delta$
- Can we formulate an equivalence theorem for the robust criterion, in particular for the case where $X$ is not discretized?
- Analytical computation of robust design measure in simple cases

■ Real-world applications (e.g. X-ray imaging)

## References

A few references on robust estimation:

- L. El Ghaoui and H. Lebret, "Robust solutions to least-squares problems with uncertain data", SIAM Journal on matrix analysis and applications, 18.4 (1997): 1035-1064.

■ G. Calafiore and L. El Ghaoui, "Robust maximum likelihood estimation in the linear model", Automatica, 37.4 (2001): 573-580.

■ Y.C. Eldar, A. Ben-Tal and A. Nemirovski, "Robust mean-squared error estimation in the presence of model uncertainties", IEEE Transactions on Signal Processing, 53.1 (2005): 168-181.
■ I. Pólik and T. Terlaky, "A survey of the S-lemma", SIAM review, 49.3 (2007): 371-418.

