Using the S-Lemma to Design Robust Experiments

Guillaume Sagnol

TU Berlin

Design of Experiments: New Challenges CIRM Workshop, Marseille, May 3, 2018

Design of Experiment

X $\subset \mathbb{R}^d$: compact design space

An experiment with N trials is defined by a design

$$\xi = \left\{ \begin{array}{ccc} \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_n \\ \boldsymbol{N}_1 & \cdots & \boldsymbol{N}_n \end{array} \right\},\,$$

where

- **x**_i \in *X* is the *i*th *support point* of the design
- $N_i \in \mathbb{N}$ is the replication at the *i*th design point
- $\blacksquare \sum_{i=1}^{s} N_i = N.$

Design of Experiment

■ $X \subset \mathbb{R}^d$: compact design space

When $N \to \infty$, we can consider *approximate designs*:

$$\xi = \left\{ \begin{array}{ccc} \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_n \\ \boldsymbol{w}_1 & \cdots & \boldsymbol{w}_n \end{array} \right\},\,$$

where $w_i \in \mathbb{R}_+$ is the proportion of the total number of trials at *i*th design point, and $\sum_{i=1}^{n} w_i = 1$.

In this work, we assume that the candidates design points x_1, \ldots, x_n are fixed, so the set of all approximate designs is isomorphic to

$$W := \{ \mathbf{w} \geq \mathbf{0} : \sum_{i=1}^{m} w_i = 1 \}.$$

The Linear Model

A trial at the design point $x \in X$ provides an observation

$$y = f(\mathbf{x})^T \mathbf{\theta} + \boldsymbol{\epsilon},$$

where

- ullet $\theta \in \Theta \subset \mathbb{R}^m$ is an *unknown* vector of parameters;
- lacksquare $f: X \mapsto \mathbb{R}^m$ is known;
- $\mathbb{E}[\epsilon] = \mathbf{0}$, $\mathbb{V}[\epsilon] = \sigma^2$ (a known constant), and the noises ϵ, ϵ' of two distinct trials are uncorrelated.

Standard approaches minimize a convex functional of the *information matrix* of the design ξ ,

$$M(\xi) := \sum_{i=1}^{s} w_i f(\boldsymbol{x}_i) f(\boldsymbol{x}_i)^T \in \mathbb{S}_m^+.$$

The Linear Model

A trial at the design point $x \in X$ provides an observation

$$y = f(\mathbf{x})^T \boldsymbol{\theta} + \boldsymbol{\epsilon},$$

where

■ $\theta \in \Theta \subset \mathbb{R}^m$ is an *unknown* vector of parameters;

$$f: X \mapsto \mathbb{R}^m$$
 is known;

■ $\mathbb{E}[\epsilon] = \mathbf{0}$, $\mathbb{V}[\epsilon] = \sigma^2$ (a known constant), and the noises ϵ, ϵ' of two distinct trials are uncorrelated.

Linear model $y = f(\mathbf{x})^T \boldsymbol{\theta} + \epsilon$.

- Error-in-variables Models
 - Instead of observing $y = f(\mathbf{x})^T \theta + \epsilon$, the experimenter measures

$$y = f(\mathbf{x} + \boldsymbol{\eta})^T \boldsymbol{\theta} + \epsilon,$$

where η is an unknown noise.

Model studied in [Konstantinou & Dette, 2015], for the case of ML estimation and LS estimation.

Linear model
$$y = f(\mathbf{x})^T \theta + \epsilon$$
.

- The assumed model is Nonlinear
 - $y = g(x, \theta) + \epsilon$
 - Standard approach: *local optimal design*. The model is linearized around θ_0 , and we compute an optimal design for the linear model

$$\mathbf{y} \simeq f(\mathbf{x})^T \boldsymbol{\theta} + \epsilon,$$

where $f(\mathbf{x}) := \nabla g(\mathbf{x}, \mathbf{\theta_0})$

■ But wrong choice of θ_0 leads to an error in the regressor function f.

Linear model $y = f(\mathbf{x})^T \theta + \epsilon$.

- 3 Design for computer experiments with a GP surogate.
 - **y** = $\eta(\mathbf{x}) + \epsilon$, where $\eta(\mathbf{x})$ is the realization of a Gaussian process with a known semidefinite covariance kernel $K(\cdot, \cdot)$.
 - We can reduce to a linear model by truncating the Karhunen–Loève expansion of the kernel
 - But in practice, the resulting linear model depends on the eigenfunctions of K, which must be estimated using the Nyström approximation, and estimates of Kernel hyperparameters.

Linear model $y = f(\mathbf{x})^T \boldsymbol{\theta} + \epsilon$.

X-ray based Anatomy Reconstruction with Low Radiation Exposure [ongoing work with Jentsch & Weiser]

- Goal: estimation of geometry parameters of the patient's anatomy
- Design: there is a "budget" of exposure to distribute over differret projection angles x ∈ X
- Computing the linearized model f(x) requires multidimensional integrals, typically approximated with quadratures.

Outline

- 1 A new robust design criterion
- 2 The S-lemma
- 3 SDP formulation for robust designs
- 4 Preliminary results

Robust Linear Model

Linear model in vector form

$$\mathbf{y} = \mathbf{A}\mathbf{\theta} + \boldsymbol{\epsilon},$$

where

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n, \quad A = \begin{bmatrix} f(\mathbf{x}_1)^T \\ f(\mathbf{x}_2)^T \\ \vdots \\ f(\mathbf{x}_n)^T \end{bmatrix} \in \mathbb{R}^{n \times m}.$$

- $\mathbb{E}[\epsilon] = \mathbf{0}, \quad \mathbb{V}[\epsilon] = \sigma^2 \operatorname{Diag}(\mathbf{w})^{-1}.$
- The matrix *A* is not known, but assumed to lie in the ball

$$\mathcal{A} := \{ A_0 + \Delta | \|\Delta\| < \delta \}.$$

■ The unknown parameter θ is assumed to lie in an ellipsoid $\Theta = \{\theta^T \Sigma^{-1} \theta \le 1\}$.

Estimators for the robust linear model

- Estimators for the robust linear model have been proposed in [El Ghaoui & Lebret 1997, Calafiore & El Ghaoui 2001, Eldar, Ben-Tal & Nemirovski 2005]
- Approaches based on Semidefinite Programming formulations using the S-Lemma
- In this talk, we extend this work
 - Goal: simultaneous computation of a robust estimator, and optimal design weights w
 - We obtain robust designs for estimation of θ , and for prediction of $f(\mathbf{x})^T \theta$ at unsampled locations \mathbf{x} 's.

A robust criterion

Consider the linear estimator

$$\hat{m{ heta}} = m{G} m{y}$$

We introduce a criterion depending on both the coefficients G and the design weights $\mathbf{w} \in \mathcal{W}$:

$$\begin{split} \phi(G, \mathbf{w}) &= \sup_{A \in \mathcal{A}} \quad \sup_{\theta \in \Theta} \ \mathbb{E}[\|\hat{\theta} - \theta\|^2] \\ &= \sup_{A \in \mathcal{A}} \quad \sup_{\theta \in \Theta} \ \mathbb{E}[\|G(A\theta + \epsilon) - \theta\|^2] \\ &= \sup_{A \in \mathcal{A}} \quad \sup_{\theta \in \Theta} \ \|(GA - I)\theta\|^2 + \sigma^2 \operatorname{trace} G \operatorname{Diag}(\mathbf{w})^{-1} G^T \\ &= \sup_{A \in \mathcal{A}} \quad \lambda_{\max} \Big((GA - I)^T \Sigma (GA - I) \Big) + \sigma^2 \sum_{i=1}^n \frac{\|\mathbf{g}_i\|^2}{\mathbf{w}_i} \end{split}$$

Outline

- 1 A new robust design criterion
- 2 The S-lemma
- 3 SDP formulation for robust designs
- 4 Preliminary results

The S-Lemma

S-lemma (homogeneous version) [Yakubovich 71]

Let Q_1 , and Q_2 be two quadratic forms over \mathbb{R}^n and assume that $\exists \mathbf{x}_0 \in \mathbb{R}^n : Q_1(\mathbf{x}_0) > 0$. Then, TFAE

$$\forall \boldsymbol{x} \in \mathbb{R}^n, \quad \left(\textit{Q}_1(\boldsymbol{x}) \geq 0 \implies \textit{Q}_2(\boldsymbol{x}) \geq 0 \right)$$

$$\exists \lambda \geq 0: \quad \textit{Q}_2(\textbf{\textit{x}}) \geq \lambda \textit{Q}_1(\textbf{\textit{x}}), \forall \textbf{\textit{x}} \in \mathbb{R}^n.$$

We can reformulate the S-lemma as follows: Let M_1 , M_2 be symmetric matrices of size n, and let:

$$v^* := \inf \quad \boldsymbol{x}^T M_2 \boldsymbol{x}$$

s.t. $\boldsymbol{x}^T M_1 \boldsymbol{x} \ge 0$.

Then,

$$v^* \ge 0 \quad \iff \quad \exists \lambda \ge 0 : M_2 - \lambda M_1 \succeq 0.$$

Theorem (Ben-Tal & Nemirovski, 1998)

The linear matrix inequality (with variables M and L)

$$M + L\Delta R + R^T \Delta^T L^T \succeq 0$$

holds for all Δ such that $\|\Delta\| \leq \delta$ iff

$$\exists \lambda \geq 0 : \left(\begin{array}{cc} M - \lambda \delta^2 R^T R & L \\ L^T & \lambda I \end{array} \right) \succeq 0.$$

$$M + L\Delta R + R^T \Delta^T L^T \succeq 0, \quad \forall \|\Delta\| \le \delta \iff \exists \lambda \ge 0 : \begin{pmatrix} M - \lambda \delta^2 R^T R & L \\ L^T & \lambda I \end{pmatrix} \succeq 0$$

$$M + L\Delta R + R^T \Delta^T L^T \succeq 0, \quad \forall ||\Delta|| \leq \delta$$

$$M + L\Delta R + R^T \Delta^T L^T \succeq 0, \quad \forall \|\Delta\| \le \delta \iff \exists \lambda \ge 0 : \begin{pmatrix} M - \lambda \delta^2 R^T R & L \\ L^T & \lambda I \end{pmatrix} \succeq 0$$

$$M + L\Delta R + R^T \Delta^T L^T \succeq 0, \quad \forall ||\Delta|| \le \delta$$

$$\iff \mathbf{y}^T (M + L\Delta R + R^T \Delta^T L^T) \mathbf{y} \ge 0, \quad \forall ||\Delta|| \le \delta, \ \forall \mathbf{y} \in \mathbb{R}^n$$

$$M + L\Delta R + R^T \Delta^T L^T \succeq 0, \quad \forall \|\Delta\| \le \delta \iff \exists \lambda \ge 0 : \begin{pmatrix} M - \lambda \delta^2 R^T R & L \\ L^T & \lambda I \end{pmatrix} \succeq 0$$

$$M + L\Delta R + R^{T}\Delta^{T}L^{T} \succeq 0, \quad \forall ||\Delta|| \leq \delta$$

$$\iff \mathbf{y}^{T}(M + L\Delta R + R^{T}\Delta^{T}L^{T})\mathbf{y} \geq 0, \quad \forall ||\Delta|| \leq \delta, \ \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$\iff \mathbf{y}^{T}M\mathbf{y} + 2\inf_{||\Delta|| \leq \delta} (L^{T}\mathbf{y})^{T}\Delta(R\mathbf{y}) \geq 0, \quad \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$M + L\Delta R + R^T \Delta^T L^T \succeq 0$$
, $\forall ||\Delta|| \le \delta \iff \exists \lambda \ge 0 : \begin{pmatrix} M - \lambda \delta^2 R^T R & L \\ L^T & \lambda I \end{pmatrix} \succeq 0$

$$M + L\Delta R + R^{T}\Delta^{T}L^{T} \succeq 0, \quad \forall ||\Delta|| \leq \delta$$

$$\iff \mathbf{y}^{T}(M + L\Delta R + R^{T}\Delta^{T}L^{T})\mathbf{y} \geq 0, \quad \forall ||\Delta|| \leq \delta, \ \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$\iff \mathbf{y}^{T}M\mathbf{y} + 2\inf_{||\Delta|| \leq \delta} (L^{T}\mathbf{y})^{T}\Delta(R\mathbf{y}) \geq 0, \quad \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$\iff \mathbf{y}^{T}M\mathbf{y} + 2(-\delta \cdot ||L^{T}\mathbf{y}|| \cdot ||R\mathbf{y}||) \geq 0 \quad \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$M + L\Delta R + R^T \Delta^T L^T \succeq 0, \quad \forall ||\Delta|| \le \delta \iff \exists \lambda \ge 0 : \begin{pmatrix} M - \lambda \delta^2 R^T R & L \\ L^T & \lambda I \end{pmatrix} \succeq 0$$

$$M + L\Delta R + R^{T}\Delta^{T}L^{T} \succeq 0, \quad \forall ||\Delta|| \leq \delta$$

$$\iff \mathbf{y}^{T}(M + L\Delta R + R^{T}\Delta^{T}L^{T})\mathbf{y} \geq 0, \quad \forall ||\Delta|| \leq \delta, \ \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$\iff \mathbf{y}^{T}M\mathbf{y} + 2\inf_{\|\Delta\| \leq \delta} (L^{T}\mathbf{y})^{T}\Delta(R\mathbf{y}) \geq 0, \quad \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$\iff \mathbf{y}^{T}M\mathbf{y} + 2(-\delta \cdot ||L^{T}\mathbf{y}|| \cdot ||R\mathbf{y}||) \geq 0 \quad \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$\iff \mathbf{y}^{T}M\mathbf{y} + 2\inf_{\{\mathbf{z}: ||\mathbf{z}|| \leq \delta ||R\mathbf{y}||\}} \mathbf{y}^{T}L\mathbf{z} \geq 0, \quad \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$M + L\Delta R + R^T \Delta^T L^T \succeq 0, \quad \forall ||\Delta|| \le \delta \iff \exists \lambda \ge 0 : \begin{pmatrix} M - \lambda \delta^2 R^T R & L \\ L^T & \lambda I \end{pmatrix} \succeq 0$$

$$\begin{aligned} M + L\Delta R + R^T \Delta^T L^T \succeq 0, \quad \forall \|\Delta\| \leq \delta \\ \iff \mathbf{y}^T (M + L\Delta R + R^T \Delta^T L^T) \mathbf{y} \geq 0, \quad \forall \|\Delta\| \leq \delta, \ \forall \mathbf{y} \in \mathbb{R}^n \\ \iff \mathbf{y}^T M \mathbf{y} + 2 \inf_{\|\Delta\| \leq \delta} (L^T \mathbf{y})^T \Delta (R \mathbf{y}) \geq 0, \quad \forall \mathbf{y} \in \mathbb{R}^n \\ \iff \mathbf{y}^T M \mathbf{y} + 2 (-\delta \cdot \|L^T \mathbf{y}\| \cdot \|R \mathbf{y}\|) \geq 0 \quad \forall \mathbf{y} \in \mathbb{R}^n \\ \iff \mathbf{y}^T M \mathbf{y} + 2 \inf_{\{\mathbf{z}: \|\mathbf{z}\| \leq \delta \|R \mathbf{y}\|\}} \mathbf{y}^T L \mathbf{z} \geq 0, \quad \forall \mathbf{y} \in \mathbb{R}^n \\ \iff (\|\mathbf{z}\| \leq \delta \|R \mathbf{y}\|) \implies (\mathbf{y}^T M \mathbf{y} + 2 \mathbf{y}^T L \mathbf{z} \geq 0)) \end{aligned}$$

$$M + L\Delta R + R^T \Delta^T L^T \succeq 0, \quad \forall ||\Delta|| \le \delta \iff \exists \lambda \ge 0 : \begin{pmatrix} M - \lambda \delta^2 R^T R & L \\ L^T & \lambda I \end{pmatrix} \succeq 0$$

$$M + L\Delta R + R^{T}\Delta^{T}L^{T} \succeq 0, \quad \forall \|\Delta\| \leq \delta$$

$$\iff \mathbf{y}^{T}(M + L\Delta R + R^{T}\Delta^{T}L^{T})\mathbf{y} \geq 0, \quad \forall \|\Delta\| \leq \delta, \ \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$\iff \mathbf{y}^{T}M\mathbf{y} + 2\inf_{\|\Delta\| \leq \delta} (L^{T}\mathbf{y})^{T}\Delta(R\mathbf{y}) \geq 0, \quad \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$\iff \mathbf{y}^{T}M\mathbf{y} + 2(-\delta \cdot \|L^{T}\mathbf{y}\| \cdot \|R\mathbf{y}\|) \geq 0 \quad \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$\iff \mathbf{y}^{T}M\mathbf{y} + 2\inf_{\{\mathbf{z}: \|\mathbf{z}\| \leq \delta \|R\mathbf{y}\|\}} \mathbf{y}^{T}L\mathbf{z} \geq 0, \quad \forall \mathbf{y} \in \mathbb{R}^{n}$$

$$\iff ((\|\mathbf{z}\| \leq \delta \|R\mathbf{y}\|) \implies (\mathbf{y}^{T}M\mathbf{y} + 2\mathbf{y}^{T}L\mathbf{z} \geq 0))$$

$$\iff \left[\begin{pmatrix} \mathbf{y} \\ \mathbf{z} \end{pmatrix}^{T} \begin{pmatrix} \delta^{2}R^{T}R \\ -I \end{pmatrix} \begin{pmatrix} \mathbf{y} \\ \mathbf{z} \end{pmatrix} \geq 0 \right]$$

$$\iff \begin{pmatrix} \mathbf{y} \\ \mathbf{z} \end{pmatrix}^{T} \begin{pmatrix} M & L \\ L^{T} \end{pmatrix} \begin{pmatrix} \mathbf{y} \\ \mathbf{z} \end{pmatrix} \geq 0$$

Outline

- 1 A new robust design criterion
- 2 The S-lemma
- 3 SDP formulation for robust designs
- 4 Preliminary results

Recall that we want to minimize

$$\phi(G, \mathbf{w}) = \sup_{A \in \mathcal{A}} \quad \lambda_{\max} \Big((GA - I)^T \Sigma (GA - I) \Big) + \sigma^2 \sum_{i=1}^n \frac{\|\mathbf{g}_i\|^2}{\mathbf{w}_i}.$$

This is the same as minimizing $t + \sigma^2 u$ under the constraints

Using a Schur-complement, this can be rewritten as

$$\left(\begin{array}{cc} tI & (GA-I)^T \\ (GA-I) & \Sigma^{-1} \end{array}\right) \succeq 0, \qquad \forall A \in \mathcal{A}.$$

With $A = A_0 + \Delta$, we obtain:

$$\underbrace{\left(\begin{array}{cc} \textit{tI} & (\textit{GA}_0 - \textit{I})^T \\ (\textit{GA}_0 - \textit{I}) & \Sigma^{-1} \end{array}\right)}_{\textit{M}} + \underbrace{\left(\begin{array}{c} 0 \\ \textit{G} \end{array}\right)}_{\textit{L}} \Delta \underbrace{(\textit{I0})}_{\textit{R}} + \left(\begin{array}{c} \textit{I} \\ 0 \end{array}\right) \Delta^T (0 \; \textit{G}^T) \succeq 0,$$

which has the desired form to apply the S-lemma for robust LMIs.

To handle these constraints with LMIs, we introduce a variable v_i for each summand:

$$\sum_{i=1}^{n} \frac{\|\boldsymbol{g}_{i}\|^{2}}{w_{i}} \leq u \iff \exists \boldsymbol{v} \geq \boldsymbol{0} : \left\{ \begin{array}{l} \|\boldsymbol{g}_{i}\|^{2} \leq w_{i}v_{i}, & \forall i \in \{1, \dots, n\} \\ \sum_{i=1}^{m} v_{i} \leq u \end{array} \right.$$

Then, it is well known that each constraint $\|\boldsymbol{g}_i\|^2 \leq w_i v_i$ can be reformulated as the equivalent second-order cone constraint $\left\|\begin{pmatrix} 2\boldsymbol{g}_i \\ w_i - v_i \end{pmatrix}\right\| \leq w_i + v_i$, or as the LMI

$$\left(\begin{array}{cc} \mathbf{v}_i & \mathbf{g}_i^T \\ \mathbf{g}_i & \mathbf{w}_i \mathbf{I} \end{array}\right) \succeq \mathbf{0}.$$

Putting all together, we obtain the following SDP to minimize $\phi(G, \mathbf{w})$:

Possible extensions to the SDP model

We can also obtain similar tractable SDPs when

A varies in a "scaled ball"

$$\mathcal{A} = \{ A_0 + \Delta | \| S \Delta T \| \le \delta \},$$

for some invertible matrices $S \in \mathbb{R}^{n \times n}$ and $T \in \mathbb{R}^{m \times m}$.

Possible extensions to the SDP model

We can also obtain similar tractable SDPs when

A varies in a "scaled ball"

$$\mathcal{A} = \{ A_0 + \Delta | \| S \Delta T \| \le \delta \},$$

for some invertible matrices $S \in \mathbb{R}^{n \times n}$ and $T \in \mathbb{R}^{m \times m}$.

■ There is a prior $\theta \sim \mathcal{N}(\mathbf{0}, \Sigma)$, and we minimize

$$\Phi_{E}(G, \mathbf{w}) = \sup_{A \in \mathcal{A}} \mathbb{E}_{\boldsymbol{\theta}, \epsilon}[\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\|^{2}]$$

(integrate over θ instead of taking the worst-case).

Possible extensions to the SDP model

We can also obtain similar tractable SDPs when

A varies in a "scaled ball"

$$\mathcal{A} = \{ A_0 + \Delta | \| S \Delta T \| \le \delta \},$$

for some invertible matrices $S \in \mathbb{R}^{n \times n}$ and $T \in \mathbb{R}^{m \times m}$.

■ There is a prior $\theta \sim \mathcal{N}(\mathbf{0}, \Sigma)$, and we minimize

$$\Phi_{\mathcal{E}}(G, \mathbf{w}) = \sup_{A \in \mathcal{A}} \ \mathbb{E}_{\theta, \epsilon}[\|\hat{\theta} - \theta\|^2]$$

(integrate over θ instead of taking the worst-case).

■ We want to predict $\eta(\mathbf{x}) = f(\mathbf{x})^T \theta$ over X, we search a linear predictor of the form $\hat{\eta}(\mathbf{x}) = f_0(\mathbf{x})^T G \mathbf{y}$, and we minimize

$$\Phi_{\mu}(\boldsymbol{G}, \boldsymbol{w}) = \sup_{\boldsymbol{A} \in \mathcal{A}} \sup_{\boldsymbol{\theta} \in \Theta} \int_{\boldsymbol{x} \in X} \mathbb{E}_{\boldsymbol{\epsilon}}[\|\eta(\boldsymbol{x}) - \hat{\eta}(\boldsymbol{x})\|^2] \ d\mu(\boldsymbol{x})$$

Outline

- 1 A new robust design criterion
- 2 The S-lemma
- 3 SDP formulation for robust designs
- 4 Preliminary results

Error-in-Variables Model

We consider an Error-In-Variable models for polynomial regression.

- X = [-1, 1], discretized with n = 51 points.
- We assume the observed function is a polynomial of degree 4, so m = 5;
- As basis functions we take the first Legendre polynomials: $P(x) = \sum_{i=1}^{5} \theta_i L_i(x)$, i.e.,

$$f_0(x) = [L_1(x), L_2(x), \dots, L_5(x)]^T.$$

- When the experimenter wants to observe P(x), he/she gets a (noisy) observation of $P(x + \eta)$ instead, where $\eta \sim \mathcal{N}(0, 0.03^2)$.
- We generate a *true* $\theta \sim \mathcal{N}(0, I)$

Optimal designs

Left: Bayesian *A*—optimal design, computed with prior

$$\theta \sim \mathcal{N}(0, I)$$

Right: Robust design, for $\Theta = \{\theta \in \mathbb{R}^m | \|\theta\| \le 1\}$ (i.e., $\Sigma = I$) and robustness level $\delta = 0.1$.

Comparisons of designs

- We run tests with $N_1 = 10$ randomly generated polynomials.
- For each, we generate $N_2 = 100$ observartion vector \mathbf{y} for randomly generated offsets of the observation location $x_i' = x_i + \eta_i$.
- We compute an estimate of θ :
 - For the Bayesian A-optimal design, with LS estimation ignoring the x_i-offsets.
 - For the Bayesian A—optimal design, with a robust estimator [El Ghaoui & Lebret]
 - For the robust design, with the robust linear estimator $\theta = G\mathbf{y}$.

Comparisons of designs

Box plots of squared estimation error

A-optimal design LS estimator

A-optimal design robust estimator

robust design linear robust estimator

Estimation vs. prediction

Comparisons of designs

Box plots of integrated squared prediction error

G-optimal design LS predictor

G-optimal design robust predictor

robust design linear robust predictor

Conclusion & Perspectives

 Tools of robust optimal control used to compute robust optimal designs

TO DO:

- Study influence of robustness level δ
- Can we formulate an equivalence theorem for the robust criterion, in particular for the case where X is not discretized?
- Analytical computation of robust design measure in simple cases
- Real-world applications (e.g. X-ray imaging)

References

A few references on robust estimation:

- L. El Ghaoui and H. Lebret, "Robust solutions to least-squares problems with uncertain data", SIAM Journal on matrix analysis and applications, 18.4 (1997): 1035-1064.
- G. Calafiore and L. El Ghaoui, "Robust maximum likelihood estimation in the linear model", *Automatica*, 37.4 (2001): 573-580.
- Y.C. Eldar, A. Ben-Tal and A. Nemirovski, "Robust mean-squared error estimation in the presence of model uncertainties", *IEEE Transactions on Signal Processing*, **53.1** (2005): 168-181.
- I. Pólik and T. Terlaky, "A survey of the S-lemma", SIAM review, 49.3 (2007): 371-418.