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Design of Experiment

m X C RY: compact design space

An experiment with N trials is defined by a design
. X1 -+ Xp
e={n Nt
where

m x; € X is the ith support point of the design
m N; € N is the replication at the ith design point
| Z,-s:1 N,' = N.



Design of Experiment

m X C R?: compact design space

When N — oo, we can consider approximate designs:

_ Xi - Xj
£= { Wy e W, } ’
where w; € R, is the proportion of the total number of

trials at ith design point, and Y7, w; = 1.

In this work, we assume that the candidates design
points x4, ..., x, are fixed, so the set of all
approximate designs is isomorphic to

Wi={w>0:> w=1}
i=1



The Linear Model

A trial at the design point x € X provides an observation
y=f(x)70 +e¢
where

m 0 € © C R™is an unknown vector of parameters;

mf: X— R"is known;

m E[e] =0, V[e] = o? (a known constant), and the
noises e, €' of two distinct trials are uncorrelated.

Standard approaches minimize a convex functional of the
information matrix of the design &,

S

M(&) = wif(x;) f(x;)" € Sf,.



The Linear Model

A trial at the design point x € X provides an observation
y=f(x)70 +e,

where
m 0 € © C R™is an unknown vector of parameters;

N

fF—X+—RTisknrown;

m E[le] =0, V[e] = 0? (a known constant), and the
noises e, € of two dlstlnct trials are uncorrelated.



The function f is not always known accurately

Linear model y = f(x)78 + .

Error-in-variables Models

m Instead of observing y = f(x)76 + ¢, the
experimenter measures

y=f(x+n)"6+e¢,
where 7 is an unknown noise.

m Model studied in [Konstantinou & Dette, 2015], for the
case of ML estimation and LS estimation.



The function f is not always known accurately

Linear model y = f(x)78 + «.

The assumed model is Nonlinear
my=9(x,0)+¢

m Standard approach: local optimal design. The model
is linearized around 6y, and we compute an optimal
design for the linear model

y=1f(x)70+¢

where f(x) := Vg(x, 6y)

m But wrong choice of 8, leads to an error in the
regressor function f.



The function f is not always known accurately

Linear model y = f(x)70 + .

Design for computer experiments with a GP surogate.

m y = n(x) + ¢, where n(x) is the realization of a
Gaussian process with a known semidefinite
covariance kernel K(-,-).

m We can reduce to a linear model by truncating the
Karhunen—Loéve expansion of the kernel

m But in practice, the resulting linear model depends on
the eigenfunctions of K, which must be estimated
using the Nystrom approximation, and estimates of
Kernel hyperparameters.



The function f is not always known accurately

Linear model y = f(x)78 + «.

X-ray based Anatomy Reconstruction with Low
Radiation Exposure [ongoing work with Jentsch & Weiser]

m Goal: estimation of geometry
parameters of the patient’s
anatomy

m Design: there is a “budget” of
exposure to distribute over
diffenret projection angles x € X

m Computing the linearized model
f(x) requires multidimensional
integrals, typically approximated
with quadratures.
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Robust Linear Model

Linear model in vector form

y = A0 + e,
where
Yi f(x1);
f(x
my= v eR", A= _(2) e R™m,
Yn f(xn)"

m E[e] =0, V[e]=o?Diag(w)".

m The matrix A is not known, but assumed to lie in the
ball
A= {Ao+ Al ||A]| <6}
m The unknown parameter 6 is assumed to lie in an
ellipsoid © = {8" 19 < 1}.



Estimators for the robust linear model

m Estimators for the robust linear model have been
proposed in [El Ghaoui & Lebret 1997, Calafiore & El
Ghaoui 2001, Eldar, Ben-Tal & Nemirovski 2005 ]

m Approaches based on Semidefinite Programming
formulations using the S-Lemma

m In this talk, we extend this work
m Goal: simultaneous computation of a robust
estimator, and optimal design weights w

m We obtain robust designs for estimation of 6, and for
prediction of f(x)7@ at unsampled locations x’s.



A robust criterion

Consider the linear estimator

6 = Gy

We introduce a criterion depending on both the
coefficients G and the design weights w € W:

(G, w) = sup

AcA
= Sup
AcA
= Sup
Ac A

= Ssup
AcA

sup E[||6 - 6]?]

6cO

sup E[|G(A0 + €) — 0|]
0cO

sup ||(GA — 8| + o*trace GDiag(w) 'G"
0cO

Amax ((GA ~ NTE(GA - ) 22 HQ,H



The S-lemma



The S-Lemma

S-lemma (homogeneous version) [Yakubovich 71]

Let @i, and Q. be two quadratic forms over R"” and
assume that 3x, € R”: Qi(xo) > 0. Then, TFAE

VX eR", (Qi(x)>0 = Qx(x)>0)

IA>0: Q(x) > \Qi(x),Vx € R".

We can reformulate the S-lemma as follows: Let M;, M5
be symmetric matrices of size n, and let:

v =inf x"Mx
st. x"Myx>0.

vi>0 <<= dA>0: M- M; =0.



Consequence of the S-Lemma

Theorem (Ben-Tal & Nemirovski, 1998)

The linear matrix inequality (with variables M and L)
M+ LAR+RTATLT =0

holds for all A such that ||A|| < ¢ iff

M—)\?R™R L
rzo. (MMEATR LYo



Consequence of the S-Lemma
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Proof.
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Consequence of the S-Lemma
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Consequence of the S-Lemma

M—-X2RTR L
Ly by > =0

M+LAR+RTATLT =0, V|A <6 < 3IA>0: (

Proof.
M+ LAR+RTATLT =0, V|A| <0
— y'(M+LAR+R'ATLT)y >0, V|A] <6, Vy €R"
— y"My +2 ”irlrié(LTy)TA(Ry) >0, VyeR”

<« y'My+2(—5-|L"y||-||Ry[) >0 VyeR"

T H T n
<~ y' My+2 inf Lz>0, VyeR
y-my {z:l|z||<s||RyI} d y

= ((Izl <dliRyll) = (y"My+2y’Lz>0))



Consequence of the S-Lemma

M—X2RTR L
LT Al

M+LAR+RTATLT =0, V|A <6 < 3IA>0: ( =0

M+ LAR+R'ATLT =0, VA <46
— y'(M+LAR+R'ATLT)y >0, V|A| <6, Vy €R"

— yTMy+2|| |n|f (L"y)"A(Ry) >0, VyecR"

> y"My+2(-5-|LTy|-|Ry|]) >0 VyeR”

T H T > n
=Y My+2{z:uzu'2§\myu} y'lz=0 vyeR

< ((lzll <d|Ryl) = (y"My+2y’Lz>0))

= [ (7 ) (520
— (1) (54 (2)29]



SDP formulation for robust designs



SDP formulation

Recall that we want to minimize

n 2
¢(G, W) =SUP  Amax ((GA— /)TZ(GA— I)) 402 Z Hg/H .
AcA —

This is the same as minimizing t + o2u under the
constraints

O )\max((GA ~)TE(GA— /)) <t VAcA

- 21(7:1 llg;ll? < u.

wi




SDP formulation

5 )\max<(GA ~ )TL(GA - /)) <t VAcA

Using a Schur-complement, this can be rewritten as

tl GA- T
((GA—I) ( 21) )zo, VA € A.

With A= Ay + A, we obtain:

((am-n 22" )+(&)209+ (4 )am0an =0
-—— R

M L

which has the desired form to apply the S-lemma for
robust LMIs.



SDP formulation

n lgl?
my - <u

w; —

To handle these constraints with LMIs, we introduce a
variable v; for each summand:

™ llgi|I? 12<wyv, Vie{l,....n
ZHQIH < U = E'VZO: ||g,/n|| >~ WjVj, { ) ; }
i=1 Wi Zi:1vi§u

Then, it is well known that each constraint | g;||? < w;v;
can be reformulated as the equivalent second-order cone

‘( 29; )H < w; + v, or as the LMI
Wi — Vi

. T
( Vi g ) = 0.

constraint




SDP formulation

Putting all together, we obtain the following SDP to
minimize ¢(G, w):

minimize t+o®> v
G:[g17"'7gm]7wa>\>v

((t)\éz)l (GAy — )T o)
s.t. (GAy — 1) y ! G |>=0

0 G’ A
A>0
vi g/ ;
(9/ W,-/)EO’ Vie{l,...,n}
w,v>0

m
ZW,-:1.
i=1



Possible extensions to the SDP model

We can also obtain similar tractable SDPs when
m A varies in a “scaled ball”

A= {A+ D] |SAT| < 5},

for some invertible matrices S € R™"and T € R™™,



Possible extensions to the SDP model

We can also obtain similar tractable SDPs when
m A varies in a “scaled ball”

A= {A+ D] |SAT| < 5},

for some invertible matrices S € R™"”and T € R™"™,
m There is a prior 8 ~ N (0, X), and we minimize

O£(G, w) = sup Eo[||6 — 6]7]
AcA

(integrate over @ instead of taking the worst-case).



Possible extensions to the SDP model

We can also obtain similar tractable SDPs when
m A varies in a “scaled ball”

A= {A;+ A |SAT]| < 6},
for some invertible matrices S € R™"and T € R™™,
m There is a prior 8 ~ N (0, X), and we minimize
®£(G, w) = sup Eo.[||6 — 0|7
AcA

(integrate over @ instead of taking the worst-case).

m We want to predict n(x) = f(x)76 over X, we search
a linear predictor of the form 7j(x) = f,(x)" Gy, and
we minimize

®,(G w)=sup sup [ E[n(x) —A(x)[’] du(x)
AcA 0cO JxeX



Preliminary results



Error-in-Variables Model

We consider an Error-In-Variable models for polynomial
regression.
m X =[—1,1], discretized with n = 51 points.

m We assume the observed function is a polynomial of
degree 4, so m = 5;

m As basis functions we take the first Legendre
polynomials: P(x) = 3> . 6,Li(x), i.e.,

fo(X) = [L1 (X), LQ(X), ceey I_5(X)]T.

m When the experimenter wants to observe P(x),
he/she gets a (noisy) observation of P(x + n) instead,
where 1 ~ N(0,0.032).

m We generate a true 6§ ~ N(0, /)



Optimal designs

0.10

0.08

L Ui
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Left: Bayesian A—optimal design, computed with prior

0~ N(0,/)

Right: Robust design, for © = {8 ¢ R™| |0 < 1}
(i.e., X = /) and robustness level § = 0.1.



Comparisons of designs

m We run tests with N; = 10 randomly generated
polynomials.

m For each, we generate N, = 100 observartion vector
y for randomly generated offsets of the observation
location x; = x; + n;.

m We compute an estimate of 6:

m For the Bayesian A—optimal design, with LS
estimation ignoring the x;—offsets.

m For the Bayesian A—optimal design, with a robust
estimator [El Ghaoui & Lebret]

m For the robust design, with the robust linear estimator
0 = Gy.



Comparisons of designs

Box plots of squared estimation error

distribution of errors
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Estimation vs. prediction
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Comparisons of designs

Box plots of integrated squared prediction error

distribution of integrated squared prediction error
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Conclusion & Perspectives

m Tools of robust optimal control used to compute
robust optimal designs

TO DO:
m Study influence of robustness level §

m Can we formulate an equivalence theorem for the
robust criterion, in particular for the case where X is
not discretized?

m Analytical computation of robust design measure in
simple cases

m Real-world applications (e.g. X-ray imaging)
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