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Why do we randomize?

Cornfield, “Principles of Research,” Journal of Chronic Diseases, 1959.

1. It controls the probability that the treated and control groups
differ more than a calculable amount in their exposure to disease,
in immune history, or with respect to any other variable, known
or unknown to the experimenter, that may have a bearing on the
outcome of the trial. This calculable difference tends to zero as
the size of the two groups increase.

2. It makes possible, at the end of the trial, the answer to the
question “In how many experiments could a difference of this mag-
nitude have arisen by chance alone if the treatment truly has no
effect?” It may seem mysterious that a mathematician could ac-
tually predict the course of future experiments. All you have to
do is compute what would happen if a given set of numbers were
randomly allocated in all possible ways between the two groups.
Randomization allows this.



Why do we randomize?

: The first property of randomization is that it promotes
comparability among the study groups. Such comparability can only be
attempted in observational studies by adjusting for or matching on known
covariates, with no guarantee or assurance, even asymptotically, of control
for other covariates. Randomization, however, extends a high probability
of comparability with respect to unknown important covariates as well.

Despite the fact that consistent, replicated observational studies can also
lead us to determine causality, there may always be questions as to whether
we have controlled for all factors relating to incidence and prognosis of a
disease. The randomized clinical trial allows this control, and hence
represents the highest standard of evidence among biomedical studies.



Why do we randomize?

Point 2: The act of randomization provides a probabilistic basis for an
inference from the observed results when considered in reference to all
possible results. This randomization approach to inference is very different
from the usual testing of unknown parameters arising from an independent
and identically distributed sample from a known distribution. This is not
taught in many biostatistical /statistical departments, and is the focus of

this talk.
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Why do we randomize?

| would add a . It provides a measure of unpredictability to the
treatment assignment process. This unpredictability protects from certain
biases that may enter the trial intentionally, unintentionally, consciously, or

subconsciously.
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Randomization as a Basis for Inference

o Cornfield’s second great property of randomization is that it provides
a basis for inference that is assumption free and relies only on the way
in which the subjects were randomized.

@ The early clinical trialists were aware of the importance of
randomization-based inference, but had limited computer resources to
implement it. Nowadays, we can run a randomization test (or
“re-randomization test”) in seconds, just by modifying the program
used to generate the initial sequence.

o Unfortunately, students are not generally taught randomization tests,
or even told that the usual population model does not apply to
clinical trials.

@ The absence of randomization-based inference from modern analyses
is the principal reason that randomization merits only a sentence or
two in medical journals.



The Population Model

Population Model

Invoked Model

Patient Population

Unspecified

Population A Population B
Y ~ G(y|0a) Y ~ G(yl|0s)
Sample Sample
at Random at Random
3 3
na patients ng patients

Yaj ~ G(y|0a)

Ygj ~ G(y|0s)
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The Randomization Model

As stated by Lachin (1988, p. 296):

The invocation of a population model for the analysis of a clinical
trial becomes a matter of faith that is based upon assumptions
that are inherently untestable.

Fortunately, the use of randomization provides the basis for an
assumption-free statistical test of the equality of the treatments among
the n patients actually enrolled and studied. These are known as
randomization tests.
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Randomization Tests

The null hypothesis of a randomization test is that the assignment of
treatment A versus B had no effect on the responses of the n patients
randomized in the study. This randomization null hypothesis is very
different from a null hypothesis under a population model, which is
typically based on the equality of parameters from known distributions.
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Randomization Tests

The essential feature of a randomization test is that, under the
randomization null hypothesis, the set of observed responses is assumed to
be a set of deterministic values that are unaffected by treatment. That is,
under the null, each patient’s observed response is what would have been
observed regardless of whether treatment A or B had been assigned. Then
the observed difference between the treatment groups depends only on the
way in which the n patients were randomized.



Randomization Tests

One then selects an appropriate measure of the treatment group
difference, or the treatment effect, which is used as the test statistic. The
test statistic is then computed for all possible permutations of the
randomization sequence. One then sums the probabilities of those
randomization sequences whose test statistic values are at least as extreme
as what was observed. This total is then the probability of obtaining a
result at least as extreme as the one that was observed, which, by
definition, is precisely the p-value of the test.



Randomization Tests

The key components of the validity of randomization-based inference is
the randomization null hypothesis and the probability distribution induced
by the randomization procedure itself. Standard population-based ideas
such as the likelihood are replaced with the reference set induced by the
randomization procedure: all possible sequences and their associate
probabilities. Unlike in permutation testing, there is no assumption that
each sequence is equiprobable, and, in fact, we must use the actual
probabilities for the test to be valid.



Nonequiprobable Randomization Procedures

Examples of nonequiprobable randomization procedures:

(*]

Permuted block design filling blocks using the truncated binomial
design;

Permuted block designs where block sizes are randomly selected;
Restricted randomization procedures such as Efron's biased coin
design, Wei's urn design, Soares and Wu's big stick design;
Response-adaptive randomization, where treatment assignment
probabilities are selected according to previous patient’s responses;
Covariate-adaptive randomization, where treatment assignment

probabilities are selected according to the degree of balance on certain
known covariates.
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Nonequiprobable Randomization Procedures

Table 1: Four Treatment Assignments under Random Allocation Rule (RAR) and
Truncated Binomial Design (TBD)

Randomization Sequence Data Permutation Probability

X1, X2, X3, X4 A B Prar  PtBD
AABB X1, X2 X3, X4 1/6 1/4
ABAB X1, X3 X2, X4 1/6 1/8
ABBA X1, X4 X, X3 1/6 1/8
BAAB X2, X3 X1, X4 1/6 1/8
BABA X0, X4 X1, X3 1/6 1/8
BBAA X3, X4 X1, X2 1/6 1/4
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Nonequiprobable Randomization Procedures

Efron’s (1971) biased coin design: Gives a higher probability p > 1/2 of
assigning the treatment that has the fewest assignments thus far. Let

D;_1 be the difference in A and B numbers after j — 1 patients have been
randomized. Here

P(T;=1|Djy) = 1/2, if Dj_y=0,
p, if DJ'_1 <0,
= 1—p, |if Dj_l > 0.

Efron suggested p = 2/3 might be a reasonable value (without
justification).
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Randomization Tests

Under the randomization null hypothesis treatments and responses are
independent and all of these techniques can be analyzed using the same
randomization-based inference techniques with respect to the correct
reference set.

Note that, unlike in inference based on random sampling, | am completely
unconcerned about the choice of test statistic, as long as it compares
responses across treatment groups. | can use the difference of means or
proportions, or a linear rank test. The advantage of a linear rank test is
that it includes the Wilcoxon test, logrank test, and logrank test with
censoring as special cases. | am also not concerned with the distribution of
the chosen test, except with respect to the reference set. ( Try telling that
to students!)



What the Pioneers Thought

What did the Greats of Statistics think about the concept of
randomization as a basis for inference? We begin with our hero:

Armitage (1954):
The customary test for an observed difference between two fatality
rates is based on an enumeration of the probabilities, on the initial
hypothesis that the two treatments do not differ in their effects, of
all the various results that would occur if the trial were repeated

indefinitely....
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What the Pioneers Thought

Efron noted in his 1971 paper that his biased coin design induces a

nonequiprobable reference set, and so typical permutation tests do not

apply:
The biased coin designs do not give the same conditional distribu-
tion as [complete randomization] and so (6.1) [the usual permu-
tation testing formulation] does not apply directly. Theoretically
we could redefine the rejection region of any permutation test to
give level o with respect to the distribution [induced] under [the
biased coin design], but this is hard work.



What the Pioneers Thought

Cox (1982):

While the final analysis may not be based explicitly on the ran-
domization distribution, it is necessary that there should be some
broad correspondence with randomization theory.... It is now pos-
sible to test the null hypothesis as follows. Choose a suitable test
statistic, such as the difference of means. Compare a suitable
test statistic with the distribution induced by exact randomization
probabilities.
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What the Pioneers Thought

The main concern by Efron and Wei was the actual computation of these
tests for large samples. In the 1970s and 1980s computing resources would
not allow exact enumeration or Monte Carlo approximations, and so the
focus became asymptotic distributions. This is no longer relevant.

Armitage had another concern: how to incorporate a random stopping
time into the reference set. This was a remarkable observation in 1954.

Cox’s concern was that not all sequences in the reference set give very
much information, and he suggested reducing the reference set to include
only those sequences that contain close to the same numbers assigned to
each treatment in the observed sequence. This led to a flurry of
conditional limit theorems for randomization tests. We know how to do
this pretty easily now using Monte Carlo procedures.



“The ABBA Example”

Table 2: Unconditional and conditional reference sets for computation of the
linear rank test from complete randomization. ABBA is the observed sequence.

Unconditional (Q, = 16) Conditional (Q¢; = 6)

Sequence (/) Pr(L=1) S Sequence (/) Pr(L = 1) S

AAAA 1/16 0.0 AABB 1/6 —2.0

AAAB 1/16 —1.5 ABAB 1/6 0.0

AABA 1/16 —05 ABBA 1/6 1.0

AABB 1/16 —2.0 BAAB 1/6 ~-1.0

ABAA 1/16 1.5 BABA 1/6 0.0

ABAB 1/16 0.0 BBAA 1/6 2.0

ABBA 1/16 1.0

ABBB 1/16 —05

BAAA 1/16 0.5

BAAB 1/16 —1.0

BABA 1/16 0.0

BABB 1/16 —-1.5

BBAA 1/16 2.0

BBAB 1/16 0.5

BBBA 1/16 1.5

BBBB 1/16 0.0
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“The ABBA Example”

Suppose the observed sequence is ABBA and the patient outcomes were
Y1 =3, Yo=1, Y3=4, Y4 =5. Then the observed Wilcoxon rank-sum
test statistics is 1.0. The one-sided p-values are p, = 4/16 and p. = 2/6.
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“The ABBA Example”

Table 3: Unconditional and conditional reference sets for computation of the
linear rank test from Wei's urn design.

Unconditional (Q, = 16) Conditional (Q¢; = 6)

Sequence (/) Pr(L=1) S, Sequence (/) Pr(L = 1) S

AAAA 0 0.0 AABB 0 —2.0

AAAB 0 —1.5 ABAB 1/4 0.0

AABA 0 —0.5 ABBA 1/4 1.0

AABB 0 —2.0 BAAB 1/4 —1.0

ABAA 1/12 1.5 BABA 1/4 0.0

ABAB 1/6 0.0 BBAA 0 2.0

ABBA 1/6 1.0

ABBB 1/12 —05

BAAA 1/12 0.5

BAAB 1/6 —1.0

BABA 1/6 0.0

BABB 1/12 —1.5

BBAA 0 2.0

BBAB 0 0.5

BBBA 0 1.5

BBBB 0 0.0
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“The ABBA Example”

Now the sequences are not equiprobable. Here we compute
pu=1/12+1/6+0+0=1/4and p. =1/4+0=1/4.
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Monte Carlo Randomization Test or “Re-Randomization
Test”

For a set of observed responses xi, ..., x, and the treatment assignments
used in the trial t1, ..., t,, generated by a randomization procedure ¢;, we
compute a test statistic, which can be based on any treatment effect
difference, and call it S,ps.. Now we generate L randomization sequences
using Monte Carlo simulation. For each of these sequences, a new test
statistic, S;,/ =1, ..., L, is computed from xi, ..., X,. The two-sided Monte
Carlo p-value estimator is then defined as

L
R _1 1(1S1] = |Sobs.
Py = Zlfl (| IL| | b. |) (1)

For restricted randomization, the key component of this computation is
that disparate probabilities of sequences will be depicted by the frequency
of duplicate sequences sampled with replacement.
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How Large Does L Have to Be?

Whether or not S; is extreme is distributed as Bernoulli with underlying
probability p,, and hence p, is unbiased with

A u 1 - Fu
MSE(p,) = p(Lp)

Then establishing a bound MSE(p,) < € implies that L > 1/4¢. For
e = 0.0001, we have L > 2500 (Zhang and Rosenberger (2011)).

The value of € may not be small enough to estimate very small p-values
accurately. Plamadeala and Rosenberger (2012) suggest finding L that
ensures P(|p, — pu| < 0.1p,) = 0.99, for instance. It follows that

L ~ (2.576/0.1)?(1 — p,)/pu- Thus, to estimate a p-value as large as 0.04
with an error of 10% with 0.99 probability, the Monte Carlo sample size
must be L = 15,924, If a smaller p-value is expected, L will be larger.

In any event, generating 20,000 randomization sequences takes only
seconds.



Cox’s Conditional Test

Cox recommended that we include in the reference set only those
sequences that have the same number of treatment assignments to each
arm as was observed. The naive approach would be to generate M >> L
sequences and keep only those that satisfy Ng = na ops., where M is large
enough so that L is sufficient. This is prohibitively expensive
computationally.

W. F. Rosenberger



Cox’s Conditional Test

Plamadeala and Rosenberger (2012) show how to do this for any restricted
randomization procedure by generating sequences directly from the
conditional reference set. Let ¢;j(mj_1) = P(T; = 1|Na(j — 1) = m;_1) be
a randomization procedure. Then we generate sequences using the new
randomization procedure

o) P Nan) = nalNAG) = m))
S P (NA(n) = nalNaG — 1) = mj_1)’

1<j<n,

P (Na(n) = na|T; = 1)

2P (Na(n) = na) J=1

In some cases, the conditional probabilities in this formula are hard to
compute. This reduces the computational compexity down to the same
level as for the unconditional reference set (i.e., generate L sequences).



Error Rates

Simulation of type | error rate and power can be done by replicating
clinical trial outcome data M times, and determining the proportion of the
M trials in which p < «, where « is pre-specified. Outcome data can be
generated from any homogeneous model under the null hypothesis, or
under a different model for each treatment for the alternative hypothesis.
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Error Rates

o By its construction, type | error rates are always preserved, as the
p-value will be uniformly distributed over the randomization
distribution under Hp, unless the study is biased resulting in
incomparable groups with respect to a covariate.

o (Except for small samples due to discreteness.)

@ Hence our friends in Vienna (Martin, Franz, Peter) should like
randomization tests.

o What about power? One of the great aspects of randomization tests
is that they tend to preserve power when the parametric assumptions
of population-based tests are violated.

o However, power will depend a great deal on the particular
randomization procedure used.



Error Rates

Model (1) Model (2)
Randomization t-test Randomization t-test
Procedure Size Power Size Power Size Power Size Power
CR 0.05 0.87 0.05 0.93 0.05 0.57 0.05 0.60
RAR 0.04 0.93 0.04 0.93 0.05 0.61 0.04 0.60
TBD 0.05 0.93 0.05 0.93 0.05 0.35 0.18 0.57
Smith (p=1) 0.05 0.91 0.05 0.93 0.05 0.66 0.02 0.62
BCD 0.04 0.92 0.05 0.93 0.05 0.78 0.01 0.64
PBD 0.05 0.93 0.04 0.93 0.05 0.88 0.00 0.65
RBD 0.05 0.93 0.04 0.93 0.05 0.90 0.00 0.65
BSD 0.05 0.93 0.05 0.93 0.05 0.83 0.00 0.61




Linear time trend

——CR ——RAR 18D =———UD01 =———BCD =——PBD =———RBD =———BSD

Figure 1. Power of the randomization test (difference of means) under a linear
time trend. Hy: Y ~ N(0,1) + (4i/n —2);

Hy : treatment A is N(A, 1) + (4i/n — 2). Each simulation is based on 10,000
tests, n=50, L=15,000.
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Linear time trend

Figure 2: Power of the randomization test (Wilcoxon test) under a linear time
trend. Hy: Y ~ N(0,1) + (4i/n—2); Ha : treatment A is N(A,1) + (4i/n — 2).
Each simulation is based on 10,000 tests, n=>50, L=15,000.
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Exponential

delta

——CR =——RAR TBD ====UD0] ====BCD ====PBD ====RBD ====BSD

Figure 3: Power of the randomization test (difference of means) under
exponential response. Hy : Y ~ exp(1); Ha : treatment A is exp(A + 1). Each
simulation is based on 10,000 tests, n=>50, L=15,000.
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Exponential

delta

——CR =——RAR TBD ====UD0] ==—==BCDs ====PBD ====RBD =——BSD

Figure 4: Power of the randomization test (Wilcoxon test) under exponential
response. Hy : Y ~ exp(1); Ha : treatment A is exp(A + 1). Each simulation is
based on 10,000 tests, n=>50, L=15,000.
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Difference in means statistic

——m2 —---m4 ——m=8 ——m12 ——m=16 —— m=20

Figure 5: Simulated power curves of the randomization tests under linear time
trend for permuted block designs with different block size m. Each simulation is
based on 10,000 tests, n=>50, L=15,000.
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Simple rank statistic

Figure 6: Simulated power curves of the randomization tests under linear time
trend for permuted block designs with different block size m. Each simulation is
based on 10,000 tests, n=>50, L=15,000.
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Summary

(*]

Randomization has become a rote exercise that is nearly ignored in
practice.

Its basis for inference has been cited since the dawn of clinical trials
as one of the key advantages of its use.

Researchers in past decades have not been able to compute
randomization tests due to computational limitations.

The Monte Carlo formulation makes them available in seconds.

@ Randomization-based inference can be used for virtually any primary

outcome analysis encountered in clinical trials.

Power in randomization-based inference is a property of the
randomization distribution rather than the distribution of the test
statistic.

RandomizeR, created by Diane Uschner, is a new R package that
computes randomization tests as well as properties of randomization
procedures. It can revolutionize the design and analysis phase of the
clinical trials.



Randomization Matters
Thank you!
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