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Stepwise Uncertainty Reduction

Introduction
Th

y Reduction

The framework : automotive pollution control

V : Functional input

Black-box - g(x,V)

X : Control

g : DxF — R
(xv) = gxv)

where D C RP is a compact and F a functional space.
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Stepwise Uncertainty Reduction

The framework : automotive pollution control

V : Functional input

Black-box - g(x,V)

X : Control

g : DxF — R
(xv) = g(xv)
where D C RP is a compact and F a functional space.
Probabilistic description of uncertainty : V is a random variable valued in F.

For a fixed s € R, define

s = {xe€Dst g(x,V)<s almost surely},
r, = {xeDst Plg(x,V)<s) > 1—a},
r- = {xeDs.t f(x)=Elg(x,V)] <s} :=Ff(T),where T = (—o0,s].

[ Aim : estimate ['*, the excursion set of f below t.
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Stepwise Uncertainty Reduction

Introduction
The:

Step = Unc y Reduction
Application

The framework

Model : g : D x F — R with D C R? and F a functional space.

Objective : estimate [ C R? from n evaluations of function
f() = E[g(7 V)]v fn = (f(Xl), f(X2), ceey f(xn))

@ each evaluation f(x) requires the estimation of E[g(x, V)],

e V is known through & realizations v',...v",

@ each evaluation g(x,v) is costful.
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Stepwise Uncertainty Reduction

An analytical example (1/5)

Let g: D x F — R defined as
g(x,V) = [0.1 cos(x1 max Vi) sin(x2).(x14x2 min V;)?|. /(30+ Vt)%dt. max V;
t t t

with x = (x1,x2) € D C R? and V = (V;, t > 0) a BM with constant drift
equal to 2.

20 25

00 05 10 15

M ={xe[1.5,5] x [3.5,5] : f(x) <12}
= {x €[15,5] x [35,5] : E[g(x,V)] <12}

e e L
15 20 25 30 35 40 45 50
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Stepwise Uncertainty Reduction

Introduction
The

Step = Unc y Reduction
Application

Bayesian Approach / Kriging*

f is seen as a realization of a Gaussian Process (Zy)xep with prior mean m and
covariance kernel k.

™ is a realization of I := {x € D : Z(x) < s}.

Let X, = (x',...,x"). Given the evaluations f, = f(&,), the posterior field
Z|\Z(X,) = f, follows a Gaussian distribution with mean and covariance kernel :

mpy(x) = m(x) + k(x, Xn)k(Xn, Xn) l(f,, m(‘\',,))
kn(x,y) = k(x,y) — k(x, Xn)k(Xn, Xn) 1/<(‘I’,7.y)

4. Clément CHEVALIER (2013). < Fast uncertainty reduction strategies relying on Gaussian
process models >.
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Stepwise Uncertainty Reduction

An analytical example (2/5)

Let us consider :
@ priors on the Gaussian process : constant mean function, 5/2 Matern
covariance kernel ;
o initial DoE X, = (x',...,x"), n =9 (black triangles).

Excursion set realization

S
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Stepwise Uncertainty Reduction

How to summarize the probability distribution of ?

What are, for random sets, the notions of
@ expectation,

@ deviation.

Remark : let u be a Borel measure on D. Then,

E(u() )= / B (x € Fu(x)

with
Poxel)=P(Z(x)<s )-
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Stepwise Uncertainty Reduction

Theory of random sets, Vorob’ev quantiles®°

The conditional coverage function of T is defined as

prix€D—Py(xel)=P(Z(x)<s | Z(X,) =f,) €[0,1].

Under our Gaussian framework : Coverage probability function

50

mp(X) —t
po(x) = o L), “
v/ kn(x, x)
46
with ¢ the Gaussian cumulative
44
distribution function.

42

For any « € [0, 1], let us define

40

Qo = {X eD : pn(X) > ()}'

38

36

5. llya MoLcuaNov (2006). Theory of random sets.
6. O Yu VOROB'EV (1984). Srednemernoje modelirovanie (mean-measure:modelling).
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Theory of random sets, Vorob’ev Expectation

The Vorob'ev Expectation of I is the set (,+ such that

Qo) = En (1(I)) = E ()| Z(X5) = fa)-

Vorobev Expectation (green set)

A
|
i A

s

|

RN

45 50
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Stepwise Uncertainty Reduction

Vorob’ev deviation

B[ Qo )] = En (01 Q5;) + 1i(Qu; 1)

g

with B, = E[. | Z(X,) = f,].

R+ [ (1= prl(a)

Qux

c
*
“n
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Stepwise Uncertainty Reduction

Vorob’ev deviation

E, [1(@u; AT)) = En [l 1 Q5;) + 1i(Qu; M)

= ‘ pn(x),u(dx)—ﬁ—/ (1 = pn(x))p(dx)

JQc, JQ.

n n

with B, = E[. | Z(X,) = f,].

The Vorob'ev expectation Q is the minimizer, among all closed subsets
Q satisfying u(Q) = En[u(T)], of E,[u(QATI)].

Infill strategy : sampling strategy to choose new simulation points of f in order
to reduce the Vorob'ev deviation. J
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Stepwise Uncertainty Reduction o S

Stepwise Uncertainty Reduction
Application

Stepwise Uncertainty Reduction (SUR strategy)

Uncertainty function : Vorob’ev deviation
Hzncert: En[M(Q”:Ar)]

= / (Pn(x)ﬂ{Pn(XKa,’f} +(1- Pn(X))]l{pn(x>>a:}> p(dx)
D

Stepwise Uncertainty Reduction’

find the best next evaluation point x™"! that optimally reduces the expected

uncertainty H,+1 on the future estimate, i.e.,

7. Julien BECT et al. (2012). < Sequential design of computer experiments for the estimation of
a probability of failure >.
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Stepwise Uncertainty Reduction

An analytical example (3/5)
(left) Vorob'ev deviation
(right) boundary for the true I'* (red line) , estimation of I'* (green set)

Vorob'ev Deviation

On that application, the evaluations of f are computed analytically.

Our second objective is to include in the study the estimation of f(x)

from a low number of evaluations g(x,v/), j=1,..., N.
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Modeling Functional Uncertainties

Application

An analytical example (4/5)
M={xeb, f(x) <t} , where f(x) = E[g(x, V)]

FIGURE — A finite sample of k realizations of V

n

We aim at estimating [g(x, V)] at points x',...,x

Functional data reduction issue for robust inversion
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Al

Igorithm
Application

Crude scenario approach

The uncertainty of the functional variable V is represented by a subset of M
curves v', ..., v" (randomly chosen among the initial sample of curves). Then
we draw randomly with replacement N curves w, ..., w" in {vh ... ,VM}.

*={xeD, f(x)= E[g(x, V)] < s}

~{xeD, f(x)~ Nngw < s}

17/27
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Algorithm
Application

Functional Principal Components
Functional PCA is a statistical method for investigating the dominant modes of
variation of functional data.

Let 7 be a finite and closed interval of R. Assume F C L2(T).

Then, vi,...,v, can be viewed as independent realizations of a stochastic
process V with unknown mean function E[V/(t)] = pv(t) and covariance
function Cov (V(s), V(t)) = Gu(s, t).

Then, if Gy is continuous on T X T, it is well known that there exists an

orthogonal expansion of Gy (in the L? sense) in terms of eigenfunctions ¢
with associated eigenvalues A« (arranged in non increasing order), that is,

Gu(s,t) = Y Mow(s)pu(t) -
k>1
The random function V/(t), t € T can be decomposed into an orthogonal
expansion
V(t) = i)+ Y vV Amdu(t)
k>1

with 7, uncorrelated standardized random variables.
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Igorithm
Application

A truncation argument V/(t) = uv(t) + Z vV Ao (t).
k=1

Probability density estimation for the vector 7 = (71, ..., 7m)"
(non) parametric estimation.

Then, by sampling the vector 7, we get :
M ={xeD, f(x)=E[gx,V)] <s}

~{xeD, f(x)~ %Zg(x,n/') <s).

— Truecuve
=~ Approximation | m = 20

BMtime)
0
|

00
time ()

C. Prieur Functional data reduction issue for robust inversion
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Algorithm
Application

A sequential hybrid methodology ®

First Step : the adaptive selection of representative curves v', ..., v among
the initial sample of curves
o Let v!,...,v" the initial sample of realizations of V.
@ We project the initial sample on the first m components in the functional
PCA : (ék)k=1,.... = 1",...,n" Kk points in R™.
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¥ T T T T T T T T T T T
[ 50 100 150 200 -15 -10 -5 o 5 10 15
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8. Mohamed Reda EL AMRI et al. (2018). < Data-driven stochastic inversion under functional

uncertainties >.
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Modeling Functional Uncertainties A sequential hybrid methodology

Algorithm
Application

o We sequentially construct a space filling design in R” by picking points in
{n,...,n"}.

o At each selected point 77 (on the right), we select the corresponding curve
(on the left).

curves Coefficients
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@ The points 77 are chosen sequentially, with a min dist criterion in R".

curves Coefficients
~ 4 o
oo B
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Crude scenario approach
Modeling based on Functional Principal Components Analysis

Modeling Functional Uncertainties A seq ential hybrid methodology

Algorithm
Application

o We stop with N points n*,...,n" in R” and the N corresponding curves
v',...,v" by considering a stopping criterion based on the the stability in

the estimation of E[g(x, V)].

curves Coefficients

Coeff_1
0
|
oo
o
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Algorithm
Application

Second Step : the estimation of E[g(x, V)] with a weighted sum
@ The computation of the weights is based on the Voronoi diagram.
M"={xeDbD, f(x)=E[g(x,V)] < s}
N i
i X, Vv
~{xeD, f(x):%ﬁs}.

Zifl Wi

curves Coefficients

T T T
0 50 100 150 200
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curves

o1

curves

0 50 10 150 200 B s 0 s W
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Modeling Functional Uncertainties

Global algorithm

Algorithm
1: Create an initial design of experiments (Doe) at n points in the control space X
212
3: while Stopping criterion not met (SUR) do
4:  Zp41 < Using sampling criterion 7,
5. while Stopping criterion not met (Expectation Estimation) do

6: Create design D; and weight calculus w; using (1)
7 test «— stopping criterion
8: le1+1

9:  end while
10:  Update Doe
11: n<n+l
12: end while
13: end

Stopping criterion are based on the stability of the estimation of E[g(x, V)]
(hybrid weighted scenario approach) and on the stability of the Vorob'ev
deviation (SUR strategy).

21/27
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Modeling Functional Uncertainties

Analytical example (5/5)

Vorob_ev deviation measure of symmetrc diference (¥)

—e— Tanantol
— Fea
= Wscenario

F1GURE — For Fpca and W.scenario, the truncation argument m = 7 is chosen to
explain 97% of the variance of V.
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Modeling Functional Uncertainties A sequential hybrid methodolog
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Application

Test Case IFPEN : Selective Catalytic Reduction

( bTEmp
5: feoler | Bures oo
| bg. Controled SCR 7 x
| byox X1, X2, =NHg=
Driving Cycle

V : functionalinput

@ Thresholds :
Q@ NOY™ < 80 mg.km~1
Q@ NHF?* < 30 ppm
o Objects of interest :
@ {(x1,x2,...) : Epv)[NOZ"] < 80 mg.km='}
Q {(X11X27 ) : IE(B,V)[I\IHIQ:;ﬂaX] <30 ppm}

o Sensitivity Analysis : the driving cycle V is the most influential variable
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Crude scenario approach
Modeling based on Functional Principal Components Analysis
Modeling Functional Uncertainties A et (it e e

Appllcatlon

IFPEN test case :

o v!, ..., v'% random driving cycles.

[Rvsre——

o NH5™ function of x; and x;, D = [0,0.6]°
= {x=(x1,x2) € D : E[NHF™(x,V)] < s}.

The model is expensive to evaluate (chemical kinetic model).

IFPEN test case, iteration 1, initial DoE : n = 9 black triangles
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Algorithm
Application

Estimated set (green) : Iteration 0 Nbre of curves for expectation estimation

" VAN W
y
‘ :
X2 03 "
5§ S
b Y
ot 0 10 20 £l “ 0
00 Stopping Criterion : L0 = 4, epsilon = 5e-3
s 8
.
i
B8

teraton
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Conclusion and perspectives

Conclusion

Robust Inversion Problem :

o Robustness measure : expectation ;
o Sequential strategy SUR.

o With functional Uncertainty :

o Hybrid sequential strategy based on functional PCA, a space filling strategy
and a weighted scenario approach.

@ Robustness measure : high probability, with some potentially small risk «
lo:={xeD : P(g(x,V)<s) > 1—a};

@ SUR strategy to choose both the next x and the next v.

Thanks for your attention !
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