Sequential design of experiments for estimating quantiles of black-box functions

Victor Picheny (INRA), Tatiana Labopin-Richard (IMT, Université Toulouse 3)
CIRM, Lumigny
May 4th, 2018

Outline

(1) Introduction

(2) Sequential design

(3) Computing the sequential criterion

4 Experimental results

Objective: quantile of a "black-box" output

Context: expensive to compute, complex "black-box"

- g non-convex, possibly observed in noise
- no derivatives available
- $2 \leq d \leq 10$

Objective: given a distribution on X, estimate the α-quantile:

$$
q^{\alpha}(g(X))=q^{\alpha}(Y)=F_{Y}^{-1}(\alpha)
$$

Natural idea: simple Monte-Carlo

$$
\left(X_{i}\right)_{i=1, \ldots, n} \longrightarrow\left(Y_{i}\right)_{i=1, \ldots, n} \longrightarrow \hat{q}_{n}:=Y_{(\lfloor n \alpha\rfloor+1)}
$$

with X_{i} 's taken from the law of X and $Y_{(k)}$ the k-th order statistic

To overcome budget constraints: many possibilities Importance / subset sampling, etc.

In this talk: $\mathrm{DoE}+$ metamodel

- $\mathcal{A}_{n}=\left\{\left(\mathbf{x}_{1}, g_{1}\right),\left(\mathbf{x}_{2}, g_{2}\right), \ldots\left(\mathbf{x}_{n}, g_{n}\right)\right\}$
- Metamodel built using \mathcal{A}_{n}
- Quantile estimated using the metamodel
$\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ may not follow $P(X)$

A reasonable error in the metamodel can result in a large error in the quantile...

Outline

(1) Introduction

(2) Sequential design

(3) Computing the sequential criterion

4) Experimental results

GP models

Kriging model: $G \sim \mathcal{G} \mathcal{P}(m(),. k(.,)$.$) conditioned on \mathcal{A}_{n}$

$$
\begin{aligned}
m_{n}(\mathbf{x}) & =\mathbb{E}\left(G(\mathbf{x}) \mid \mathcal{A}_{n}\right) \\
& =c\left(\mathbf{X}_{n}, \mathbf{x}\right)^{T} c\left(\mathbf{X}_{n}, \mathbf{X}_{n}\right)^{-1} \mathbf{g}_{\mathbf{n}}, \\
c_{n}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\operatorname{Cov}\left(G(\mathbf{x}), G\left(\mathbf{x}^{\prime}\right) \mid \mathcal{A}_{n}\right) \\
& =c\left(\mathbf{x}, \mathbf{x}^{\prime}\right)-c\left(\mathbf{X}_{n}, \mathbf{x}\right)^{T} c\left(\mathbf{X}_{n}, \mathbf{X}_{n}\right)^{-1} c\left(\mathbf{X}_{n}, \mathbf{x}^{\prime}\right),
\end{aligned}
$$

where $c\left(\mathbf{X}_{n}, \mathbf{x}\right)=\left[c\left(\mathbf{x}_{1}, \mathbf{x}\right), \ldots, c\left(\mathbf{x}_{n}, \mathbf{x}\right)\right]^{T}, c\left(\mathbf{X}_{n}, \mathbf{X}_{n}\right)=\left[c\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]_{1 \leq i, j \leq n}$ and $\mathbf{g}_{\mathbf{n}}=\left[g_{1}, \ldots, g_{n}\right]$.

Two natural estimators for the quantile

$$
\begin{aligned}
\hat{q}_{n}^{(1)} & =q_{X}\left(\mathbb{E}_{G}\left[G(X) \mid \mathcal{A}_{n}\right]\right)=q_{X}\left(m_{n}(X)\right), \\
\hat{q}_{n}^{(2)} & =\mathbb{E}_{G}\left(q_{X}(G(X)) \mid \mathcal{A}_{n}\right) .
\end{aligned}
$$

with q_{X} quantile w.r.t. the measure on X.

Except on very specific cases of c and $P(X)$: no analytical formula
$\mathbb{E}_{G}\left(q_{X}(G(X)) \mid \mathcal{A}_{n}\right)$ theoretically attractive and robust but...
Double-loop Monte-Carlo: $G+X$: limits applicability
國 Jala, Lévy-Leduc, Moulines, Conil, Wiart (2016), Sequential design of computer experiments for the assessment of fetus exposure to electromagnetic fields, Technometrics

Our choice: $q_{X}\left(m_{n}(X)\right) \Rightarrow$ Monte-Carlo on X only

$$
q_{n}=m_{n}\left(\mathrm{X}_{\mathrm{MC}}\right)_{(\lfloor I \alpha\rfloor+1)}
$$

with $\mathbf{X}_{\mathrm{MC}}=\left(\mathbf{x}_{\mathrm{MC}}^{1}, \ldots, \mathbf{x}_{\mathrm{MC}}^{\prime}\right) \sim X$.Oakley (2004), Estimating percentiles of uncertain computer code outputs, JRSSc

Obviously: q_{n} is biased

- Generally: m_{n} smoother than g
- We need sequential design to make it accurate

Sequential design in a nutshell

Measuring information gain

There are shortcuts to condition GPs on new observations

$$
m_{n+1}(\mathbf{x})=\mathbb{E}\left[G(\mathbf{x}) \mid\left\{\mathcal{A}_{n} \cup\left(\mathbf{x}_{n+1}, g_{n+1}\right)\right\}\right]
$$

$$
m_{n+1}(\mathbf{x})=
$$

$$
\left[c\left(\mathbf{X}_{n}, \mathbf{x}\right)^{T} c\left(\mathbf{x}_{n+1}, \mathbf{x}\right)\right]\left[\begin{array}{cc}
C\left(\mathbf{X}_{n}, \mathbf{X}_{n}\right) & c\left(\mathbf{x}_{n+1}, \mathbf{x}\right) \\
c\left(\mathbf{x}_{n+1}, \mathbf{x}\right)^{T} & c\left(\mathbf{x}_{n+1}, \mathbf{x}_{n+1}\right)
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{g}_{n} \\
g_{n+1}
\end{array}\right]
$$

After simplification:

$$
m_{n+1}(\mathbf{x})=m_{n}(\mathbf{x})+\frac{c_{n}\left(\mathbf{x}_{n+1}, \mathbf{x}\right)}{c_{n}\left(\mathbf{x}_{n+1}, \mathbf{x}_{n+1}\right)}\left(g_{n+1}-m_{n}\left(\mathbf{x}_{n+1}\right)\right)
$$

\Rightarrow The new GP mean is linear in g_{n+1}.

Conditioning on "yet-to-evaluate" observations

$$
\begin{aligned}
M_{n+1}(\mathbf{x}) & =\mathbb{E}\left[G(\mathbf{x}) \mid\left\{\mathcal{A}_{n} \cup\left(\mathbf{x}_{n+1}, G_{n+1}\right)\right\}\right] \\
& =m_{n}(\mathbf{x})+\frac{c_{n}\left(\mathbf{x}_{n+1}, \mathbf{x}\right)}{c_{n}\left(\mathbf{x}_{n+1}, \mathbf{x}_{n+1}\right)}\left(G_{n+1}-m_{n}\left(\mathbf{x}_{n+1}\right)\right)
\end{aligned}
$$

\Rightarrow the GP mean is a random process once we have chosen \mathbf{x}_{n+1} but not evaluated $g\left(\mathbf{x}_{n+1}\right)$.

We can study the impact on the quantile estimator! $q_{X}\left(M_{n+1}\right)$ is random but entirely depends on $\left\{\mathbf{x}_{n+1}, G_{n+1}\right\}$.

Illustration: 15% quantile

Sequential choice for \mathbf{x}_{n+1}

What's reasonable for G_{n+1} ?

$$
G_{n+1} \sim \mathcal{N}\left(m_{n}\left(\mathbf{x}_{n+1}\right), c_{n}\left(\mathbf{x}_{n+1}, \mathbf{x}_{n+1}\right)\right)
$$

Most influential observation $=$ maximizer of the variance of the estimator

$$
\arg \max _{x_{n+1} \in \mathbb{R}^{d}} \operatorname{Var}_{G_{n+1}}\left[q_{X}\left(M_{n+1}\right)\right]
$$

Outline

(1) Introduction

(2) Sequential design

(3) Computing the sequential criterion
(4) Experimental results

An update formula for the quantile

We start with

$$
q_{n}=m_{n}\left(\mathbf{X}_{\mathrm{MC}}\right)_{(\lfloor\not \alpha\rfloor+1)}:=m_{n}\left(\mathbf{x}_{n}^{q}\right)
$$

$\mathrm{x}_{n}^{q}=$ "quantile point".
Future quantile estimator is random:

$$
Q_{n+1}=M_{n+1}\left(\mathbf{X}_{\mathrm{MC}}\right)_{(\lfloor\lfloor\alpha\rfloor+1)}=M_{n+1}\left(\mathbf{x}_{n+1}^{q}\right)
$$

Any $M_{n+1}(\mathbf{x})$ is Gaussian, but \mathbf{x}_{n+1}^{q} (triangles) may change depending on G_{n+1}

An update formula for the quantile

Recall

$$
M_{n+1}(\mathbf{x})=m_{n}(\mathbf{x})+\frac{c_{n}\left(\mathbf{x}_{n+1}, \mathbf{x}\right)}{c_{n}\left(\mathbf{x}_{n+1}, \mathbf{x}_{n+1}\right)}\left(G_{n+1}-m_{n}\left(\mathbf{x}_{n+1}\right)\right)
$$

Observe now that:

$$
\forall \mathbf{x}_{i} \in \mathbf{X}_{\mathrm{MC}}, \quad m_{n+1}\left(\mathbf{x}_{i}\right)=a_{i}+b_{i} z
$$

- All values depend linearly on $z=G_{n+1}$
- The $(\lfloor/ \alpha\rfloor+1)$ smallest value of $m_{n+1}\left(\mathbf{X}_{\mathrm{MC}}\right)$ is driven by z :

$$
\begin{array}{ccc}
\mathbb{R} & \rightarrow & \mathbf{X}_{\mathrm{MC}} \\
z & \rightarrow & \mathbf{x}_{n+1}^{q}(z)
\end{array}
$$

It amounts to considering a set of straight lines and looking for the $(\lfloor/ \alpha\rfloor+1)$ lowest.

- $\mathrm{x}_{n+1}^{q}(z)$ is constant over intervals of z
- j^{i} index of the quantile point when $z \in B_{i}$ Here: $\mathbf{j}=\{2,3,1,4,3,5\}$ (for B_{1}, \ldots, B_{6})
- Fast algorithms can retrieve all j^{i} 's and B_{i} 's

Using the decomposition B_{1}, \ldots, B_{p} :
The future quantile is: $Q_{n+1}=a_{j^{i}}+b_{j i} Z \quad$ if $Z \in B_{i}$

To compute $\operatorname{Var}\left(Q_{n+1}\right)$: law of total variance

$$
\begin{aligned}
\operatorname{Var}(U) & =\sum_{i=1}^{p} \operatorname{Var}\left(U \mid E_{i}\right) \mathbb{P}\left(E_{i}\right)+\sum_{i=1}^{p} \mathbb{E}\left(U \mid E_{i}\right)^{2}\left(1-\mathbb{P}\left(E_{i}\right)\right) \mathbb{P}\left(E_{i}\right) \\
& -2 \sum_{i=2}^{p} \sum_{j=1}^{i-1} \mathbb{E}\left(U \mid E_{i}\right) \mathbb{P}\left(E_{i}\right) \mathbb{E}\left(U \mid E_{j}\right) \mathbb{P}\left(E_{j}\right) .
\end{aligned}
$$

Here: $\left(U \mid E_{i}\right)=a_{j i}+b_{j i} Z$ and $E_{i}=Z \in B_{i}$.

Three types of quantities

- $\mathbb{P}\left(I_{i} \leq Z \leq I_{i+1}\right)$,
- $\operatorname{Var}\left(Z^{\prime} \mid I_{i}<Z^{\prime}<I_{i+1}\right)$,
- $\mathbb{E}\left(Z^{\prime} \mid I_{i}<Z^{\prime}<I_{i+1}\right)$.
\Rightarrow Tallis formula (moments of a truncaded Gaussian).

Conditionally on \mathcal{A}_{n} and on the choice of $\mathbf{x}_{n+1}\left(\right.$ provided $\left.s_{n}\left(\mathbf{x}_{n+1}\right) \neq 0\right)$

$$
\begin{aligned}
& J_{n}^{\operatorname{Var}}\left(\mathbf{x}_{n+1}\right)=\sum_{i=1}^{L}\left[c_{n}\left(\mathbf{x}_{n+1}^{q}\left(B_{i}\right), \mathbf{x}_{n+1}\right)\right]^{2} V\left(s_{n}\left(\mathbf{x}_{n+1}\right), I_{i+1}, I_{i}\right) P_{i} \\
& +\sum_{i=1}^{L}\left[m_{n}\left(\mathbf{x}_{n+1}^{q}\left(B_{i}\right)-c_{n}\left(\mathbf{x}_{n+1}^{q}\left(B_{i}\right), \mathbf{x}_{n+1}\right) E\left(s_{n}\left(\mathbf{x}_{n+1}\right), I_{i+1}, l_{i}\right)\right]^{2}\left(1-P_{i}\right) P_{i}\right. \\
& -2 \sum_{i=2}^{L} \sum_{j=1}^{i-1}\left[m_{n}\left(\mathbf{x}_{n+1}^{q}\left(B_{i}\right)-c_{n}\left(\mathbf{x}_{n+1}^{q}\left(B_{i}\right), \mathbf{x}_{n+1}\right) E\left(s_{n}\left(\mathbf{x}_{n+1}\right), l_{i+1}, I_{i}\right)\right] P_{i}\right. \\
& \quad\left[m_{n}\left(\mathbf{x}_{n+1}^{q}\left(B_{i}\right)-c_{n}\left(\mathbf{x}_{n+1}^{q}\left(B_{i}\right), \mathbf{x}_{n+1}\right) E\left(s_{n}\left(\mathbf{x}_{n+1}\right), l_{j+1}, I_{j}\right)\right] P_{j}\right.
\end{aligned}
$$

where:

- $B_{i}=\left[I_{i}, I_{i+1}\right]$,
- $P_{i}=\Phi\left(s_{n}\left(\mathbf{x}_{n+1}\right) I_{i+1}\right)-\Phi\left(s_{n}\left(\mathbf{x}_{n+1}\right) l_{i}\right)$,
- $E\left(s_{n}\left(\mathbf{x}_{n+1}\right), l_{i+1}, l_{i}\right)=\frac{1}{s_{n}\left(\mathbf{x}_{n+1}\right)}\left(\frac{\phi\left(s_{n}\left(\mathbf{x}_{n+1}\right) l_{i+1}\right)-\phi\left(s_{n}\left(\mathbf{x}_{n+1}\right) l_{i}\right)}{\Phi\left(s_{n}\left(\mathbf{x}_{n+1}\right) l_{i+1}\right)-\Phi\left(s_{n}\left(\mathbf{x}_{n+1}\right) l_{i}\right)}\right)$, and
- $V\left(s_{n}\left(\mathbf{x}_{n+1}\right), l_{i+1}, l_{i}\right)=\frac{1}{s_{n}\left(\mathbf{x}_{n+1}\right)^{2}}\left[1+\frac{s_{n}\left(\mathbf{x}_{n+1}\right) \phi\left(l_{i+1}\right)-s_{n}\left(\mathbf{x}_{n+1}\right) \phi\left(l_{i}\right)}{\Phi\left(l_{i+1}\right)-\Phi\left(l_{i}\right)}-\left(\frac{\phi\left(l_{i+1}\right)-\phi\left(l_{i}\right)}{\Phi\left(l_{i+1}\right)-\Phi\left(l_{i}\right)}\right)^{2}\right]$.

Summary of this part

- We choose a large \mathbf{X}_{MC}
- Given a potential \mathbf{x}_{n+1} :
- We compute a_{j} and $b_{j}\left(\forall 1 \leq j \leq n_{M C}\right)$ using GP equations
- We decompose the variation of $G_{n+1}=Z$ in $\left\{B_{1}, \ldots, B_{p}\right\}$ (using an appropriate algorithm)

- We compute $\operatorname{Var}\left(Q_{n+1}\right)$ using the analytical formula.
- $\mathbf{x}_{n+1}=\arg \max _{\mathbb{X}} \operatorname{Var}\left(Q_{n+1}\right)$ (using a global optimizer).

Outline

(1) Introduction

(2) Sequential design
(3) Computing the sequential criterion
4) Experimental results

Numerical setup

2D problem - "Branin" function

$$
X_{1}, X_{2} \sim \mathcal{U}[0,1]
$$

4D problem - "Hartman" function
$g(\mathbf{x})=\sum_{i=1}^{4} C_{i} \exp \left(-\sum_{j=1}^{4} a_{j i}\left(x_{j}-p_{j i}\right)^{2}\right), \mathbf{X} \sim \mathcal{N}\left(\frac{1}{2}, \Sigma\right)$

Comparison

- Random search (!): sequential space-filling design
- Oakley two-step approach (same flavour, but not sequential)

2D problem, $7+15$ observations, 85% quantile

$4 D$ problem $-30+60$ observations

Concluding comments

Today's trick

- Quantile estimator based on GP mean
- Choice of the design that maximizes the estimator variation
... opposite of Julien's talk?

Further steps

- Alternative metamodels?
- Alternative objectives? (optimization: correlated knowledge gradient)

Want to know more?
T. Labopin-Richard, V. Picheny (2018), Sequential design of experiments for estimating quantiles of black-box functions, Statistica Sinica

