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Introduction

Objective: quantile of a “black-box” output

Context: expensive to compute, complex “black-box”

X ∈ Rd Black-box g

g non-convex, possibly observed in noise

no derivatives available

2 ≤ d ≤ 10

Objective: given a distribution on X , estimate the α−quantile:

qα(g(X )) = qα(Y ) = F−1
Y (α)
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Introduction

Natural idea: simple Monte-Carlo

(Xi )i=1,...,n −→ (Yi )i=1,...,n −→ q̂n := Y(bnαc+1)

with Xi ’s taken from the law of X and Y(k) the k-th order statistic

To overcome budget constraints: many possibilities

Importance / subset sampling, etc.

In this talk: DoE + metamodel

An = {(x1, g1), (x2, g2), . . . (xn, gn)}
Metamodel built using An

Quantile estimated using the metamodel

x1, . . . , xn may not follow P(X )
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Introduction

A reasonable error in the metamodel can result in a large error in the
quantile...
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Sequential design

GP models

Kriging model: G ∼ GP (m(.), k(., .)) conditioned on An

mn(x) = E(G(x)|An)

= c(Xn, x)T c(Xn,Xn)−1gn,

cn(x, x′) = Cov
(
G(x),G(x′)|An

)
= c(x, x′)− c(Xn, x)T c(Xn,Xn)−1c(Xn, x

′),

where c(Xn, x) = [c(x1, x), . . . , c(xn, x)]T , c(Xn,Xn) = [c(xi , xj)]1≤i,j≤n and
gn = [g1, . . . , gn].
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Sequential design

Two natural estimators for the quantile

q̂
(1)
n = qX (EG [G (X )|An]) = qX (mn(X )),

q̂
(2)
n = EG (qX (G (X ))|An) .

with qX quantile w.r.t. the measure on X .
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Except on very specific cases of c and P(X ): no analytical formula
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Sequential design

EG (qX (G (X ))|An) theoretically attractive and robust but...

Double-loop Monte-Carlo: G + X : limits applicability

Jala, Lévy-Leduc, Moulines, Conil, Wiart (2016), Sequential design of computer
experiments for the assessment of fetus exposure to electromagnetic fields,
Technometrics

Our choice: qX (mn(X )) ⇒ Monte-Carlo on X only

qn = mn(XMC)(blαc+1).

with XMC = (x1
MC, . . . , x

l
MC) ∼ X .

Oakley (2004), Estimating percentiles of uncertain computer code outputs, JRSSc

Obviously: qn is biased

Generally: mn smoother than g

We need sequential design to make it accurate
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Sequential design

Sequential design in a nutshell

Initial design of

experiments
x1, . . . , xn

Black-box evaluation(s) g(xn)

Surrogate building mn(.), cn(.)
n← n + 1

Acquisition function

maximization
xn+1 = arg max J(x)
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Sequential design

Measuring information gain

There are shortcuts to condition GPs on new observations

mn+1(x) = E [G (x)|{An ∪ (xn+1, gn+1)}]

mn+1(x) =[
c(Xn, x)T c(xn+1, x)

] [ C (Xn,Xn) c(xn+1, x)
c(xn+1, x)T c(xn+1, xn+1)

]−1 [
gn
gn+1

]
After simplification:

mn+1(x) = mn(x) +
cn(xn+1, x)

cn(xn+1, xn+1)
(gn+1 −mn(xn+1))

⇒ The new GP mean is linear in gn+1.
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Sequential design

Conditioning on “yet-to-evaluate” observations

Mn+1(x) = E [G (x)|{An ∪ (xn+1,Gn+1)}]

= mn(x) +
cn(xn+1, x)

cn(xn+1, xn+1)
(Gn+1 −mn(xn+1))

⇒ the GP mean is a random process once we have chosen xn+1 but not
evaluated g(xn+1).

We can study the impact on the quantile estimator!

qX (Mn+1) is random but entirely depends on {xn+1,Gn+1}.
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Sequential design

Illustration: 15% quantile
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Sequential design

Sequential choice for xn+1

What’s reasonable for Gn+1?

Gn+1 ∼ N (mn(xn+1), cn(xn+1, xn+1))

Most influential observation = maximizer of the variance of the estimator

arg max
xn+1∈Rd

VarGn+1 [qX (Mn+1)]
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Computing the sequential criterion

An update formula for the quantile

We start with
qn = mn(XMC)(blαc+1) := mn(xqn)

xqn= “quantile point”.
Future quantile estimator is random:

Qn+1 = Mn+1(XMC)(blαc+1) = Mn+1(xqn+1)

Any Mn+1(x) is Gaussian, but
xqn+1 (triangles) may change
depending on Gn+1
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Computing the sequential criterion

An update formula for the quantile

Recall

Mn+1(x) = mn(x) +
cn(xn+1, x)

cn(xn+1, xn+1)
(Gn+1 −mn(xn+1))

Observe now that:

∀xi ∈ XMC, mn+1(xi ) = ai + biz

All values depend linearly on z = Gn+1

The (blαc+ 1) smallest value of mn+1(XMC) is driven by z :

R → XMC

z → xqn+1(z)

It amounts to considering a set of straight lines and looking for the
(blαc+ 1) lowest.
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Computing the sequential criterion
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−
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−
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xqn+1(z) is constant over intervals of z

j i index of the quantile point when z ∈ Bi

Here: j = {2, 3, 1, 4, 3, 5} (for B1, . . . ,B6)

Fast algorithms can retrieve all j i ’s and Bi ’s
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Computing the sequential criterion

Using the decomposition B1, . . . ,Bp:

The future quantile is: Qn+1 = aj i + bj iZ if Z ∈ Bi

To compute Var(Qn+1): law of total variance

Var(U) =

p∑
i=1

Var(U | Ei )P(Ei ) +

p∑
i=1

E(U | Ei )
2(1− P(Ei ))P(Ei )

− 2

p∑
i=2

i−1∑
j=1

E(U | Ei )P(Ei )E(U | Ej)P(Ej) .

Here: (U | Ei ) = aj i + bj iZ and Ei = Z ∈ Bi .

Three types of quantities

P(Ii ≤ Z ≤ Ii+1),

Var (Z ′ | Ii < Z ′ < Ii+1),

E (Z ′ | Ii < Z ′ < Ii+1).

⇒ Tallis formula (moments of a truncaded Gaussian).
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Computing the sequential criterion

Conditionally on An and on the choice of xn+1 (provided sn(xn+1) 6= 0)

JVar
n (xn+1) =

L∑
i=1

[
cn(xqn+1(Bi ), xn+1)

]2
V (sn(xn+1), Ii+1, Ii )Pi

+
L∑

i=1

[
mn(xqn+1(Bi )− cn(xqn+1(Bi ), xn+1)E(sn(xn+1), Ii+1, Ii )

]2
(1− Pi )Pi

− 2
L∑

i=2

i−1∑
j=1

[
mn(xqn+1(Bi )− cn(xqn+1(Bi ), xn+1)E(sn(xn+1), Ii+1, Ii )

]
Pi[

mn(xqn+1(Bi )− cn(xqn+1(Bi ), xn+1)E(sn(xn+1), Ij+1, Ij)
]
Pj

where:

Bi = [Ii , Ii+1],

Pi = Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii ),

E(sn(xn+1), Ii+1, Ii ) = 1
sn(xn+1)

(
φ(sn(xn+1)Ii+1)−φ(sn(xn+1)Ii )

Φ(sn(xn+1)Ii+1)−Φ(sn(xn+1)Ii )

)
, and

V (sn(xn+1), Ii+1, Ii ) = 1
sn(xn+1)2

[
1 +

sn(xn+1)φ(Ii+1)−sn(xn+1)φ(Ii )

Φ(Ii+1)−Φ(Ii )
−
(
φ(Ii+1)−φ(Ii )

Φ(Ii+1)−Φ(Ii )

)2
]
.
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Computing the sequential criterion

Summary of this part

We choose a large XMC

Given a potential xn+1:

We compute aj and bj (∀1 ≤ j ≤ nMC ) using GP equations
We decompose the variation of Gn+1 = Z in {B1, . . . ,Bp}
(using an appropriate algorithm)
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We compute Var (Qn+1) using the analytical formula.

xn+1 = arg maxX Var (Qn+1) (using a global optimizer).
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Experimental results

Outline

1 Introduction

2 Sequential design

3 Computing the sequential criterion

4 Experimental results
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Experimental results

Numerical setup

2D problem - “Branin” function

X1,X2 ∼ U [0, 1]

4D problem - “Hartman” function

g(x) =
∑4

i=1 Ci exp
(
−
∑4

j=1 aji (xj − pji )
2
)

, X ∼ N
(

1
2 ,Σ

)
Comparison

Random search (!): sequential space-filling design

Oakley two-step approach (same flavour, but not sequential)
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Experimental results

2D problem, 7 + 15 observations, 85% quantile
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Experimental results

4D problem - 30 + 60 observations
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Experimental results

Concluding comments

Today’s trick

Quantile estimator based on GP mean

Choice of the design that maximizes the estimator variation

. . . opposite of Julien’s talk?

Further steps

Alternative metamodels?

Alternative objectives? (optimization: correlated knowledge gradient)

Want to know more?

T. Labopin-Richard, V. Picheny (2018), Sequential design of experiments for estimating
quantiles of black-box functions, Statistica Sinica
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