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Introduction

Objective: quantile of a “black-box" output

Context: expensive to compute, complex “black-box”

X € R —{ Black-box F— &

@ g non-convex, possibly observed in noise
@ no derivatives available
02<d<10

Objective: given a distribution on X, estimate the a—quantile:

g*(g(X)) = ¢*(Y) = Fy ' (a)
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Introduction

Natural idea: simple Monte-Carlo

(Xi)izl,,..,n — (Yi)izl,...,n — an = Y(|_naJ—|—1)

with X;'s taken from the law of X and Y(,) the k-th order statistic

To overcome budget constraints: many possibilities

Importance / subset sampling, etc.

In this talk: DoE 4 metamodel
° A" = {(x17 gl)? (Xz,gg), s (xf‘h gn)}
o Metamodel built using A,
@ Quantile estimated using the metamodel

X1,...,X, may not follow P(X)
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A reasonable error in the metamodel can result in a large error in the

quantile...

y(x)
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Sequential design

GP models

Kriging model: G ~ GP (m(.), k(.,.)) conditioned on A,

ma(x) = E(G(x)|An)
= C(x"7X)TC(X"7Xn)71gn7
an(x,x") = Cov(G(x), G(x)[An)

= C(va,) - C(Xﬂvx)TC(X"vX")ilc(xnvxl)v

where ¢(X,, x) = [¢(x1,X%),. .., c(x,,,x)]T, c(Xn, Xn) = [e(xi, %j)]1<i,j<n and
gn = [g1,.- -, &
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Sequential design

Two natural estimators for the quantile

@ = ax (Ec [G(X)A4]) = ax(ma(X)),
g7 = Ee (ax(G(X))An).

with gx quantile w.r.t. the measure on X.

y(x)

Except on very specific cases of ¢ and P(X): no analytical formula
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Sequential design

E¢ (gx(G(X))|An) theoretically attractive and robust but...
Double-loop Monte-Carlo: G 4+ X: limits applicability
ﬁ Jala, Lévy-Leduc, Moulines, Conil, Wiart (2016), Sequential design of computer

experiments for the assessment of fetus exposure to electromagnetic fields,
Technometrics

Our choice: gx(m,(X)) = Monte-Carlo on X only

dn = mn(XMC)(LlaJ—&-l)'
with Xpc = (XI{/IC’ - 7X{\/IC) ~ X.

ﬁ Oakley (2004), Estimating percentiles of uncertain computer code outputs, JRSSc

Obviously: g, is biased
o Generally: m, smoother than g

@ We need sequential design to make it accurate
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Sequential design

Sequential design in a nutshell

n<—n+1

Initial design of

experiments

1
—>{ Black-box evaluation(s) ‘
l

|

Surrogate building ‘

1

Acquisition function

maximization
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Sequential design

Measuring information gain

There are shortcuts to condition GPs on new observations
mp1(x) = E[G(X){AnU (Xnt1,8n+1)}]

mn+1(x) =

[c(X,,,x)Tc(x,,H,x)][ C(Xn, Xp) c(Xnt1,X) ]_1[ gn ]

C(Xn+1> X)T C(xn+1> Xn+1) 8n+1

After simplification:

Mpy1(x) = mp(x) +

Cn(fo-lvx)
—7. = 3 \8n+l — Mp(Xpt1
Cn(Xn+1,Xn+1)( n+ n( n+ ))

= The new GP mean is linear in gp41.
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Sequential design

Conditioning on “yet-to-evaluate” observations

E[G(x)|{An U (Xn+1, Gri1)}]
Cn(Xnt15 Xnt1)

Mn+1(x)

= my(x) + (Gr+1 — Ma(Xn+1))

= the GP mean is a random process once we have chosen x,11 but not
evaluated g(Xpt1).

We can study the impact on the quantile estimator!
gx(Mp41) is random but entirely depends on {x,11, Gy1+1}- J
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Sequential design

lllustration: 15% quantile

Xn+1 =0.97 Xn+1 =0.5
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Sequential design

Sequential choice for x, 1

What's reasonable for G417
Gnt1 ~ N (Mn(Xn+1), €n(Xn+1, Xn+1)) )
Most influential observation = maximizer of the variance of the estimator
arg max Varg, ., [qx(Mny1)]
Xn+1€ d
v
Xnv1=0.97 X1 =05
ER | 2 Ve
A Qo A Qo
:ng | . /\\ %\
1 S K@:ﬂ '''''
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Computing the sequential criterion

An update formula for the quantile

We start with

dn = Ma(XMC)(1a)+1) = Ma(x7])
xp= “quantile point”.
Future quantile estimator is random:

Qnt1 = Mn+1(XMC)(|_IaJ+1) = Mn+1(xz+1)

— Mg

1 o y(Xna)
o Uy

Any Mp1(x) is Gaussian, but 1
x; ., (triangles) may change ]
depending on G, 1
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Computing the sequential criterion

An update formula for the quantile

Recall

Cn(xn-‘rl ; X)

Mp11(x) = mp(x) + Gny1 — mp(xp
)= )+ (6 m(en)

Observe now that:

Vx; € Xmc,  Mpt1(xi) = aj + bz

@ All values depend linearly on z = Gp11

@ The ([/a] + 1) smallest value of m,11(Xmc) is driven by z:
R — Xwmc
z = xp.4(2)

It amounts to considering a set of straight lines and looking for the
([ + 1) lowest.
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Computing the sequential criterion

z

q - -
® x,.1(z) is constant over intervals of z

@ j' index of the quantile point when z € B;
Here: j ={2,3,1,4,3,5} (for By,...,Bs)

o Fast algorithms can retrieve all j’'s and B;'s
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Computing the sequential criterion

Using the decomposition By, ..., By:
The future quantile is: Qui1 = a;i +b;Z if Z € B,

To compute Var(Qn+1): law of total variance

Var(U) = ZVar(U | E)P(E) + > E(U | E)*(1 - P(E))P(E)

i=1

~23 SR | EYR(E)E(U | E)P(E) -

i=2 j=1

Here: (U|E)=a;i+biZ and Ei=Z € B:.

y
Three types of quantities
® P(l; < Z < 1),
@ Var(Z'| i < Z' < li41),
o E(ZI | I < Z' < /,'+1).
= Tallis formula (moments of a truncaded Gaussian).
4
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Computing the sequential criterion

Conditionally on A, and on the choice of x,+1 (provided s,(xs+1) # 0)

L
I (Xn1) = Z I:Cn(xz+1(Bi)7xn+1):|2 V(sn(Xnt1), liv1, ) Pi
i=1
L 2
+ ) [mn(x1(Br) = ca(x41(Bi), Xns1) E(sn(Xnt1), lis1, )] (1 = P) P;
i—1
Loi-1
-2 Z Z [Ma(x]1(Bi) — ca(X1(Bi), Xns1) E(sn(Xnt1), liv1, )] Pi
i=2 j=1
[m"(xZJrl(Bi) - C"(Xz+1(Bi)7 Xn+1)E(5n(xn+1)a Ij+1, IJ)] Pj
where:
@ Bi = [l lit1],
@ P; = ®(sp(xns1)liv1) — P(sn(xns1)1),
_ 1 P(sn(xnt1)lix1)—P(sn(xnr1)1i)
@ E(sn(xn+1), liv1, i) = S nr1) (¢(sn(xn:1)l,:i)7®(sn(x,:ri)/;)) » and
1 sn(ne1)B(ie1)=sn(ns)$(h) _ ( DUipn)=a(h) 2
® Vlsn(xns1): liva, i) = 55y {1 el — (Shu=0h) } '
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Computing the sequential criterion

Summary of this part

@ We choose a large Xumc
@ Given a potential x,41:
o We compute a; and b; (V1 < j < npc) using GP equations
o We decompose the variation of G,11 = Z in {Bi,...,Bp}
(using an appropriate algorithm)

1 i§é§§i
] S

-5 o 5

o We compute Var (Q,+1) using the analytical formula.

® X1 = arg maxx Var (Qn41) (using a global optimizer).
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Experimental results
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Experimental results

Numerical setup

2D problem - “Branin” function

\ 0

‘f' X1, Xo ~ U0, 1]

4D problem - “Hartman” function

g(x) = Sty Grexp (= Sty 2 (g — pi)’). X~ NV (3.5)

Comparison
@ Random search (!): sequential space-filling design

e Oakley two-step approach (same flavour, but not sequential)
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Experimental results

2D problem, 7 + 15 observations, 85% quantile

Initial iteration 8

1.0

08

04

Quantile
%0
I

15
Iteration
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Experimental results

4D problem - 30 + 60 observations
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Experimental results

Concluding comments

Today's trick
@ Quantile estimator based on GP mean
@ Choice of the design that maximizes the estimator variation

... opposite of Julien's talk?

Further steps

@ Alternative metamodels?

@ Alternative objectives? (optimization: correlated knowledge gradient)

Want to know more?

@ T. Labopin-Richard, V. Picheny (2018), Sequential design of experiments for estimating
quantiles of black-box functions, Statistica Sinica
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