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What is a copula function?
and what is it good for?

Definition (Copula)

Let I = [0,1]. A two-dimensional copula (or 2-copula) is a bivariate function
C : I× I−→ I with the following properties:

1 for every u, v ∈ I

C(u,0) = 0, C(u,1) = u, C(0,v) = 0, C(1,v) = v ; (1)

2 for every u1, v1, u2, v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2,

C(u2,v2)−C(u2,v1)−C(u1,v2) +C(u1,v1)≥ 0. (2)
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Sklar’s Theorem
bivariate case

Theorem (Sklar’s Theorem)

Let FY1Y2 be a joint distribution function with marginals FY1 and FY2 . Then there
exists a 2-copula C such that

FY1Y2(y1,y2) = C(FY1(y1),FY2(y2)) (3)

for all reals y1, y2.
If FY1 and FY2 are continuous, then C is unique.

Conversely, if C is a 2-copula and FY1 and FY2 are distribution functions, then
the function FY1Y2 given by (3) is a joint distribution with marginals FY1 and FY2 .
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A regression model
based on copulas

Let us consider a vector xT = (x1, . . . ,xr ) ∈ X of control variables, where
X⊂ Rr is a compact set.
The result of the observations is the vector:

y(x) = (y1(x), , . . . ,ym(x)),

with
E[Y(x)] = η(x,β ) = (η1(x,β ), . . . ,ηm(x,β )),

where β = (β1, . . . ,βk ) is a certain unknown parameter vector to be estimated
and ηi are known functions.

In our examples we focus on the case m = 2.

Define cY(y(x,β ),α) the joint probability density function of the random vector
Y, where α = (α1, . . . ,αl ) are unknown parameters.
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Scatterplots of typical copulas
from the internet
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Used copula functions
connect through Kendall’s τ2

1 Product Copula, which represents the independence case:

C(u1,u2) = u1u2,

with τ2 = 0.
2 Clayton Copula:

Cα (u1,u2) =
[

max
(
u−α

1 + u−α

2 −1, 0
)]− 1

α ,

with α ∈ (0,+∞) and τ2 = α

α+2 .
3 Gumbel Copula:

Cα (u1,u2) = exp
(
−
[
(− lnu1)α + (− lnu2)α

] 1
α
)
,

with α ∈ [1,+∞) and τ2 = α−1
α

.
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The approach
completing the model

Remember
according to Sklar’s theorem the joint probability density function is the density
of the copula function such that

FY1,Y2(y1,y2;α) =
∫

cY(y(x,β ),α)dy =

= C(FY1(y1),FY2(y2);α)

For r independent observations at x1, . . . ,xr , the corresponding Information
matrix is

M(ξ ,β ,α) =
r

∑
i=1

wiJ(xi ,β ,α)
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The Fisher information
for all parameters

Definition

For a single observation the matrix J(x,β ,α), a (k + l)× (k + l) matrix defined
as follows

J(x,β ,α) =

(
Jββ (x) Jβα (x)

JT
βα

(x) Jαα (x)

)
(4)

where the matrix Jββ (x) is the (k ×k) matrix with the (i , j)th element defined
as

E
(
− ∂ 2

∂βi∂βj
log cY(y(x,β ),α)

)
=

= E

((
∂

∂β
log cY(y(x,β ),α)

)(
∂

∂β
log cY(y(x,β ),α)

)T
) (5)

and so are also the matrices Jβα (x) and Jαα (x), respectively.
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Optimal design
basics

Design ξ =

{
x1 x2 . . . xn
w1 w2 . . . wn

}
,

where
r
∑

i=1
wi = 1.

Aim
We are concerned with finding ξ ∗(β ,α) such that maximizes some scalar func-
tion φ(M(ξ ,β ,α)).

D-optimality
For now we consider the function φ(M) = log detM, i.e. D-optimality.
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Design theory
Kiefer and Wolfowitz type, cf. Heise and Myers, 1996

Theorem (Equivalence Theorem: D-criterion)

For a localized parameter vector (β̄ , ᾱ), the following properties are
equivalent:

1 ξ ∗ is D-optimal;
2 tr [M(ξ ∗, β̄ , ᾱ)−1J(x , β̄ , ᾱ)]≤ (k + l), ∀x ∈ X;
3 ξ ∗ minimize max

x∈X
tr [M(ξ ∗, β̄ , ᾱ)−1J(x , β̄ , ᾱ)], over all ξ ∈ Ξ.

The function d(x ,ξ ∗) = tr [M(ξ ∗, β̄ , ᾱ)−1J(x , β̄ , ᾱ)] is the sensitivity function
for the D-criterion.
Two designs ξ , ξ ∗ can be compared by the following ratio (D-Efficiency):

(
|M(ξ ,β ,α)|
|M(ξ ∗,β ,α)|

)1/(k+l)

.
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Design theory
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Another criterion
for parameter subsets

Ds-optimality
Another well known criterion is the Ds-criterion, i.e., the criterion φs(M) =
log det(M11−M12M−1

22 MT
12), if M is nonsingular and where

M =

(
M11 M12
MT

12 M22

)
,

with M11 is the (s×s) minor related to the estimated parameters.

Definition

For the comparison of designs we define Ds-Efficiency of the design ξ with
respect to the design ξ ∗ as the ratio

(
|M11(ξ , γ̄)−M12(ξ , γ̄)M−1

22 (ξ , γ̄)MT
12(ξ , γ̄)|

|M11(ξ ∗, γ̄)−M12(ξ ∗, γ̄)M−1
22 (ξ ∗, γ̄)MT

12(ξ ∗, γ̄)|

)1/s

.
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Equivalence theorem
Kiefer and Wolfowitz type (DS-optimality)

Theorem (Equivalence Theorem: DS-criterion)

For a localized parameter vector (γ̄), the following properties are equivalent:
1 ξ ∗ is Ds-optimal;
2 let us call AT = (Is 0), then ∀x ∈ X

tr [M(ξ
∗, γ̄)−1A(AT M(ξ

∗, γ̄)−1A)−1AT M(ξ
∗, γ̄)−1m(x , γ̄)]≤ s;

3 over all ξ ∈ Ξ, ξ ∗ minimize

max
x∈X

tr [M(ξ
∗, γ̄)−1A(AT M(ξ

∗, γ̄)−1A)−1AT M(ξ
∗, γ̄)−1m(x , γ̄)].
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Robust Ds- and DA-optimality
(a pseudo-Bayesian approach)

Objective function:

Ψ(ξ ;B,A,γ) =
∫
B

log det[AT {M(ξ ,γ)}−1A]−1 dF (γ) , (6)

where B ⊂ Rr is the space of possible parameter values and F (γ) is a proper
prior distribution function for γ.

Definition

For the comparison of designs we define robust Ds-Efficiency of the design ξ

with respect to the design ξ ∗ as the ratio( ∫
B log det[M11(ξ ,γ)−M12(ξ ,γ)M−1

22 (ξ ,γ)MT
12(ξ , γ̃)]dF (γ)∫

B log det[M11(ξ ∗,γ)−M12(ξ ∗,γ)M−1
22 (ξ ∗,γ)MT

12(ξ ∗,γ)]dF (γ)

)1/s

.
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Equivalence theorem
Kiefer and Wolfowitz type ( robust DA-optimality)

Theorem (Equivalence Theorem: robust DA-criterion)

The following properties are equivalent:
1 ξ ∗ is robust DA-optimal;
2 for every x ∈ X, the next inequality holds:∫

B
tr [M(ξ

∗,γ)−1A(AT M(ξ
∗,γ)−1A)−1AT M(ξ

∗,γ)−1m(x,γ)]dF (γ)≤ s;

3 over all ξ ∈ Ξ, the design ξ ∗ minimizes the function

max
x∈X

∫
B

tr [M(ξ
∗,γ)−1A(AT M(ξ

∗,γ)−1A)−1AT M(ξ
∗,γ)−1m(x,γ)]dF (γ).
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A classical example
from Fedorov, 1971

The model
Let us consider two random variables Y1 and Y2 such that:

E [y1(x)] = β0 + β1x + β2x2; E [y2(x)] = β3x + β4x3 + β5x4

for each observation x , 0≤ x ≤ 1. In the classical formulation (Fedorov, 1971),
Y1 and Y2 are independent with Gaussian margins.

Our investigations
How do different dependence structures affect the optimal designs?

The joint distribution is, then

FY(y1,y2) = C(Φ(y1−η1(x ,β )),Φ(y2−η2(x ,β ));α)

where C is respectively say the Gumbel, Clayton and Product copula.
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Plots
from Perrone and Müller 2016
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Plots
Ds-optimal (Clayton, τ = 0.9) from Perrone, Rappold and Müller 2017
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Blocked experiments
of size two

Blocks of size two appear naturally in science, technology and biology.

Examples

Twin studies, see Valle et al. (2018);
Body parts (arms, eyes, ears, etc.), see David & Kempton (1996);
Microarrays, see Bailey (2007).
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Material testing
6 blocks of size 2

 

 

4 Experimental set-up 

The material samples were exposed to a high enthalpy flow generated by an arc jet 
heater. They weare inserted in pairs in a wedge configuration in series by means of a 
revolving carousel. The dwell time each sample pair can be held in the flow can be 
specified. Figure 4 shows the experimental set-up. 

 

Figure 4 Arc jet experimental set-up 

Note there are 6 struts on the carousel, each holding a wedge of two material 
samples. There are an additional 2 strut stations. One is empty to permit the arc jet to 
start, and the second holds a dwell calorimeter on a strut and a swept calorimeter on 
a sub-strut. Both these monitor arc jet flow conditions. Figure 5 gives a labelled view 
of the arc jet test station components. 

 

Figure 5 Arc jet components 

Figure 6 shows a view of the relative strut positions. The view has the direction of 
flow into the page. Note the model positioning system (MPS) rotates the carousel of 
samples in an anticlockwise direction with strut location numbering down from 8 to 1. 

 

 

 

Figure 6 Relative strut positioning 

The output from the thermocouples are sampled at a rate of 1000 samples per 
second. A typical insertion time is 7 seconds. Thus 7000 temperature measurements 
make up a time series. The start and end of each insertion time is given by a timing 
pulse captured with the data. Figure 7 and Figure 7 show the form of the timing pulse, 
R-POS. Figure 7 shows two pulses; the time between the pulses represents the 
insertion time for a sample. Figure 7 is an expanded view of a single pulse and is 
used to identify start and end points of a sample. 

 

Figure 7 Timing pulse R-POS                                   

 

Figure 8 Expanded view of a single pulse 

A typical three time series set is shown in Figure 9. These measurements were 
obtained using the same material type and arc jet run conditions. A variation between 
each series can be seen. It is this variation that is of interest, since it represents the 

Figure: Arc jet carousel, struts and “wedges” (left) and schematic (right). In addition to
the six wedges for holding material samples, the carousel had two further wedges
used for temperature measurement.
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But first a toy example
motivated by the approach of [Woods and van de Ven(2011)]

Setting

Poisson regression model with log link, predictor β0 + β1x + β2x2;
Gumbel and Clayton copula, values for Kendall’s τ coincide at the levels
τ2 = 1/3,2/3;
parameter space [−1,1]× [4,5]× [0.5,1.5]

OD from an estimating equation approach

ξ
? =

{
(.03,1) (1, .60) (−.40, .78)
.355 .310 .335

}
,

Werner G. Müller, joint work with Dave Woods (JKU) Copula-based robust optimal block designs Marseille, May 2nd 2018 20 / 25



But first a toy example
motivated by the approach of [Woods and van de Ven(2011)]

Setting

Poisson regression model with log link, predictor β0 + β1x + β2x2;
Gumbel and Clayton copula, values for Kendall’s τ coincide at the levels
τ2 = 1/3,2/3;
parameter space [−1,1]× [4,5]× [0.5,1.5]

OD from an estimating equation approach

ξ
? =

{
(.03,1) (1, .60) (−.40, .78)
.355 .310 .335

}
,

Werner G. Müller, joint work with Dave Woods (JKU) Copula-based robust optimal block designs Marseille, May 2nd 2018 20 / 25



Optimal designs for the toy example
rows: Clayton and Gumbel copula; columns levels τ2 = 1/3,2/3
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Material testing
continued

Setting

Marginal model

Yij ∼ Bernoulli(pij ); log
pij

1−pij
= β0 +

5

∑
k=1

βixijk ,

where Yij is the binary response from the i th unit in the j th block
(i = 1,2; j = 1, . . . ,n), pij is the associated probability of success, xijk is an
indicator variable taking the value 1 if the i th unit in the j th block was
assigned treatment k (k = 1, . . . ,5) and 0 otherwise.
β0 is the logit for the reference material, with βk being the difference in
expected response, on the logit scale, between the reference material
and the k th novel material or treatment.
Gumbel and Clayton copula, values for Kendall’s τ coincide at the levels
τ2 = 0,0.01,0.1,0.33;
localized solutions (not quasi-Bayesian yet!)
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Optimal designs for the real example
rows: Clayton and Gumbel copula; columns levels τ2 = 0,0.33; β = {0,0,0,0,0,0}.
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Optimal designs for the real example
rows: Clayton and Gumbel copula; columns levels τ2 = 0.01,0.1; β = {0,−1,2,−3,4,−5}.
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Conclusions and next steps

Conclusions
Copulas can be useful tools to construct flexible models in order to:

separate interblock dependence from marginal behaviour;
separate asymmetry;
investigate goodness-of-fit.

Further steps

Other criteria (particularly for model discrimination);
Apply other design strategies like multi-stage design procedures;
Generalize to m > 2 with applications in spatial statistics (hydrology, etc.)
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