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What is a copula function?

and what is it good for?

Definition (Copula)

Let I =[0,1]. A two-dimensional copula (or 2-copula) is a bivariate function
C: I x I — I with the following properties:

@ foreveryu,vel
C(u,0)=0, C(u,1)=u, C(0,v) =0, C(1,v) =v; (1)
@ for every uy, vq, U, Vo €T such that uy < us and vq < vy,

C(uz,v2) — C(uz,v1) — C(uq,v2) +C(u,v4) >0 (2)

JXU

JOHANNES KEPLER
uuuuuu SITY LINZ

Werner G. Miller, joint work with Dave Woods (JKU)

Marseille, May 2 2018 2/25



Sklar’s Theorem

bivariate case

Theorem (Sklar’s Theorem)

LetFy,y, be a joint distribution function with marginals Fy, and Fy,. Then there
exists a 2-copula C such that

Fy,v,(y1,¥2) = C(Fy,(¥1), Fy,(¥2)) ()

for all reals yy, yo.
If Fy, and Fy, are continuous, then C is unique.

vy
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Sklar’s Theorem

bivariate case

Theorem (Sklar’s Theorem)

LetFy,y, be a joint distribution function with marginals Fy, and Fy,. Then there
exists a 2-copula C such that

Fy,v,(y1,¥2) = C(Fy,(¥1), Fy,(¥2)) ()
for all reals yy, yo.

If Fy, and Fy, are continuous, then C is unique.

Conversely, if C is a 2-copula and Fy, and Fy, are distribution functions, then
the function Fy, y, given by (3) is a joint distribution with marginals Fy, and Fy,.
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A regression model

based on copulas

Let us consider a vector x” = (x1,-..,X) € X of control variables, where
X C R" is a compact set.

The result of the observations is the vector:

y(X) = (y1 (X)n---v}’m(x)),
with
E[Y(X)] = n(x’ﬁ) - (771 (X7B)7"'anm(x7ﬁ))v

where 8 = (B41,...,Bx) is a certain unknown parameter vector to be estimated
and n; are known functions.

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Werner G. Miller, joint work with Dave Woods (JKU)

Marseille, May 29 2018 4/25



A regression model

based on copulas

Let us consider a vector x” = (x1,-..,X) € X of control variables, where
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The result of the observations is the vector:
y(X) = (y1 (X), PERE 7}’m(x)),
with
E[Y(X)] = n(x’ﬁ) = (771 (X,ﬁ), .- 'anm(xvﬁ))a

where 8 = (B41,...,Bx) is a certain unknown parameter vector to be estimated
and n; are known functions.

In our examples we focus on the case m = 2. J
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A regression model

based on copulas

Let us consider a vector x” = (x1,-..,X) € X of control variables, where
X C R" is a compact set.

The result of the observations is the vector:
y(X) = (y1 (X), PERE 7}’m(x)),
with
E[Y(X)] = n(x’ﬁ) = (771 (X,ﬁ), .- 'anm(xvﬁ))a

where B = (B41,...,Bx) is a certain unknown parameter vector to be estimated
and n; are known functions.

In our examples we focus on the case m= 2. ]

Define cy(y(x, ), o) the joint probability density function of the random vector
Y, where o = (04,..., ) are unknown parameters. J¥U
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Scatterplots of typical copulas

from the internet
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Used copula functions

connect through Kendall’s 7,

@ Product Copula, which represents the independence case:
C(u1,U2) = U1 U,

with 7 =0.
@ Clayton Copula:

1

Co(Uq,Up) = [max (u; *+uy *—1,0)] ¥,
with o € (0,+c0) and 72 = 5%5.
@ Gumbel Copula:

Ca(ur,Up) = exp (— [(—Inus)*+(—In uz)a]%)’
With @€ [1,+) and 7 = . J¥U
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The approach

completing the model

Remember

according to Sklar’s theorem the joint probability density function is the density
of the copula function such that

Fy, v,(y1,y2; @) /Cv X,f),a)dy =

= C(Fy,(»1), Fy,(ye); @)
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The approach

completing the model

Remember

according to Sklar’s theorem the joint probability density function is the density
of the copula function such that

Fy, v,(y1,Y2; ) /Cv X,f),a)dy =

= C(Fy,(»1), Fy,(ye); @)

For r independent observations at xy,..., xr, the corresponding Information
matrix is

M(EB.0) = Y- wid(x, B. )
. JXU

JOHANNES KEPLER
nnnnnnnnnnnnn

Werner G. Miller, joint work with Dave Woods (JKU)

Marseille, May 2 2018 7/25



The Fisher information

for all parameters

Definition
For a single observation the matrix J(x, 8, a), a (k+/) x (k+ /) matrix defined
as follows s (X) Jaux)
X X
J(x,B, @) ( l%ﬁ(x chZ( X) ) (4)

where the matrix Jgg(X) is the (k x k) matrix with the (/,/)th element defined

as
82
E <—W|09 cy(y(x,ﬁ),a)) =

_E ((%log or(y(x.5).0) ) 3509 ov(y(x.B).0) T)

and so are also the matrices Jg,(X) and Juq(X), respectively.

(®)
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Optimal design

basics

Design 3

I
—

X1 Xo ... Xp
wi Wo ... wp |’

,
where ¥ w;=1.
i=1
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Optimal design

basics

Design £

I
—

X1 Xo ... Xp
wi Wo ... wp |’

,
where ¥ w;=1.
i=1

Aim
We are concerned with finding £*(B, ) such that maximizes some scalar func-

tion ¢(M(E, B, o).
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Optimal design

basics

Design £

I
—

X1 Xo ... Xp
wi Wo ... wp |’

.
where ¥ w;=1.
i=1
Aim
We are concerned with finding £*(B, ¢) such that maximizes some scalar func-

tion ¢(M(E, B, o).

v

D-optimality
For now we consider the function ¢(M) = logdet M, i.e. D-optimality.

v
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Design theory

Kiefer and Wolfowitz type, cf. Heise and Myers, 1996

Theorem (Equivalence Theorem: D-criterion)

For a localized parameter vector (B, &), the following properties are
equivalent:

@ &+ is D-optimal;

Q tr[M(&*,B,a) "J(x,B,d)] < (k+1), ¥x € X;

Q & minimize max tr [M(E*,B, &) "J(x,B,a)], overall & c =.
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Design theory

Kiefer and Wolfowitz type, cf. Heise and Myers, 1996

Theorem (Equivalence Theorem: D-criterion)

For a localized parameter vector (3, &), the following properties are
equivalent:

@ &+ is D-optimal;

Q tr[M(&*,B,a) "J(x,B,d)] < (k+1), ¥x € X;

Q & minimize max r [M(E*,B, &) "J(x,B,a)], overall & € =

The function d(x,&*) = tr [M(£*,B,a&)'J(x, B, &)] is the sensitivity function
for the D-criterion.

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Werner G. Miiller, joint work with Dave Woods (JKU) Marseille, May 2nd 2018 10/25



Design theory

Kiefer and Wolfowitz type, cf. Heise and Myers, 1996

Theorem (Equivalence Theorem: D-criterion)

For a localized parameter vector (B, &), the following properties are
equivalent:

@ &+ is D-optimal;

Q tr[M(&*,B,a) "J(x,B,d)] < (k+1), ¥x € X;

Q & minimize max tr [M(E*,B, &) "J(x,B,a)], overall & c =.

The function d(x,&*) = tr [M(£*,B,a&)'J(x, B, &)] is the sensitivity function
for the D-criterion.
Two designs &, £* can be compared by the following ratio (D-Efficiency):
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Another criterion

for parameter subsets

Ds-optimality

Another well known criterion is the Ds-criterion, i.e., the criterion ¢s(M) =
log det(Mi1 — Mi2M,, MY,), if M is nonsingular and where

M1 Mz )
M= ,
<’V’17£ Moo

with My is the (s x s) minor related to the estimated parameters.
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Another criterion

for parameter subsets

Ds-optimality

Another well known criterion is the Ds-criterion, i.e., the criterion ¢s(M) =
log det(Mi1 — Mi2M,, MY,), if M is nonsingular and where

My My )
M= ,
<’V’17é Moo

with My is the (s x s) minor related to the estimated parameters.

Definition

For the comparison of designs we define Ds-Efficiency of the design & with
respect to the design £* as the ratio

( (M1 (£.9) ~ Mia(&, DMz (&, DIME(E.7) )”s.
M1 (&)~ Mha(&" DM (6" DIME(E",7)

.
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Equivalence theorem

Kiefer and Wolfowitz type (Dg-optimality)

Theorem (Equivalence Theorem: Dg-criterion)

For a localized parameter vector (¥), the following properties are equivalent:
@ &+ is Ds-optimal;
Q letus call AT = (Is0), then Vx € X

tr [M(E",7) TAATM(E", 1) A TTATM(E", 7) T m(x, D)) < s;
Q overallé € =, £* minimize

max tr [M(&",7) " AATM(E",7) ' A) T ATM(E", 7) " m(x. 7).
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Robust Ds- and D4-optimality

(a pseudo-Bayesian approach)

Objective function:

V(EBAY) = [ logdet{AT(M(E.1)} A7 dF (). ©®)

where B C R’ is the space of possible parameter values and F(y) is a proper
prior distribution function for y.
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Robust Ds- and Dj-optimality

(a pseudo-Bayesian approach)

Objective function:

V(EBAY) = [ logdet{AT(M(E.1)} A7 dF (). ©®)

where B C R’ is the space of possible parameter values and F(y) is a proper
prior distribution function for y.

Definition

For the comparison of designs we define robust Ds-Efficiency of the design &
with respect to the design £* as the ratio

( i log detlMy1 (£, 7) ~ Mia(&,7)Myg! (&, )M (€, DIAF () )” .
i logdet M1 (&) — Mia(&*, 7)Mog (€7, NM(E* 1] 4F(2)
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Equivalence theorem

Kiefer and Wolfowitz type ( robust D-optimality)

Theorem (Equivalence Theorem: robust Dx-criterion)

The following properties are equivalent:
@ &* is robust Dy-optimal;
@ for every x € X, the next inequality holds:

/93 tr [M(E,7) TAATM(E", y) A TTATM(E" )T m(x, )] dF (1) < s;
Q overall&é € =, the design &* minimizes the function

ma%/ tr [M(E,7) TAATM(E",y) " A)TTATM(E" y) T m(x, )] dF (7).
Xe B
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A classical example

from Fedorov, 1971

The model
Let us consider two random variables Y7 and Y5 such that:

Ely1(x)] = Bo+ B1 X + ox®; Elya(x)] = Bax + Bax®+ Bsx*

for each observation x, 0 < x < 1. In the classical formulation (Fedorov, 1971),
Y: and Y> are independent with Gaussian margins.

v
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A classical example

from Fedorov, 1971

The model
Let us consider two random variables Y; and Y> such that:

Ely1(x)] = Bo+ B1 X + ox®; Elya(x)] = Bax + Bax®+ Bsx*

for each observation x, 0 < x < 1. In the classical formulation (Fedorov, 1971),
Y: and Y> are independent with Gaussian margins.

v

Our investigations

How do different dependence structures affect the optimal designs?
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A classical example

from Fedorov, 1971

The model
Let us consider two random variables Y; and Ys such that:

Ely1(x)] = Bo+ B1 X + ox®; Elya(x)] = Bax + Bax®+ Bsx*

for each observation x, 0 < x < 1. In the classical formulation (Fedorov, 1971),
Y: and Y> are independent with Gaussian margins.

v

Our investigations
How do different dependence structures affect the optimal designs?

The joint distribution is, then

Fy(y1,y2) = C(®(y1 —m(x,B)), ®(y2 — m2(x,B)); @) JvU

where C is respectively say the Gumbel, Clayton and Product copula. s
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Plots

from Perrone and Muller 2016

{Product Copula}
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Plots

Ds-optimal (Clayton, T = 0.9) from Perrone, Rappold and Mdller 2017
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Blocked experiments

of size two

Blocks of size two appear naturally in science, technology and biology.
Examples

@ Twin studies, see Valle et al. (2018);

@ Body parts (arms, eyes, ears, etc.), see David & Kempton (1996);
@ Microarrays, see Bailey (2007).
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Material testing

6 blocks of size 2

MPS rotation
direction

Figure: Arc jet carousel, struts and “wedges” (left) and schematic (right). In addition to
the six wedges for holding material samples, the carousel had two further wedges
used for temperature measurement.
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But first a toy example

motivated by the approach of [Woods and van de Ven(2011)]

Setting

@ Poisson regression model with log link, predictor By + B1 X + Bax?;

@ Gumbel and Clayton copula, values for Kendall’s 7 coincide at the levels
7 =1/3,2/3;

@ parameter space [—1,1] x [4,5] x [0.5,1.5]

F i
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But first a toy example

motivated by the approach of [Woods and van de Ven(2011)]

Setting

@ Poisson regression model with log link, predictor By + B1 X + Bax?;

@ Gumbel and Clayton copula, values for Kendall’s 7 coincide at the levels
7 =1/3,2/3;
@ parameter space [—1,1] x [4,5] x [0.5,1.5]

OD from an estimating equation approach

+_ f (03,1) (1,.60) (—.40,.78)
5:{ 355 310 335 }

4
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Optimal designs for the toy example

rows: Clayton and Gumbel copula; columns levels 7, =1/3,2/3

g g g g
210 =
; ! | ! | : ! | ! |
10 05 o0 o5 10 10 05 o0 o5 10
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240 =
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N N
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Material testing

continued

Setting

@ Marginal model

Yjj ~ Bernoulli(pj;); log 1 =Po+ Z BiXi ,

where Y;; is the binary response from the ith unit in the jth block
(i=1,2;j=1,...,n), p; is the associated probability of success, xji is an
indicator variable taking the value 1 if the ith unit in the jth block was
assigned treatment k (k =1,...,5) and 0 otherwise.

@ [ is the logit for the reference material, with B being the difference in
expected response, on the logit scale, between the reference material
and the kth novel material or treatment.

@ Gumbel and Clayton copula, values for Kendall’s t coincide at the levels
7 =0,0.01,0.1,0.33;

@ localized solutions (not quasi-Bayesian yet!)
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Optimal designs for the real example

rows: Clayton and Gumbel copula; columns levels 7, = 0,0.33; f = {0,0,0,0,0,0}.

drex2
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Optimal designs for the real example

rows: Clayton and Gumbel copula; columns levels 7, =0.01,0.1; B = {0,-1,2,-3,4,-5}.
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Conclusions and next steps

Conclusions

Copulas can be useful tools to construct flexible models in order to:
@ separate interblock dependence from marginal behaviour;
@ separate asymmetry;
@ investigate goodness-of-fit.
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Conclusions and next steps

Conclusions

Copulas can be useful tools to construct flexible models in order to:
@ separate interblock dependence from marginal behaviour;
@ separate asymmetry;
@ investigate goodness-of-fit.

Further steps

@ Other criteria (particularly for model discrimination);
@ Apply other design strategies like multi-stage design procedures;
@ Generalize to m > 2 with applications in spatial statistics (hydrology, etc.)

W

JOHANNES KEPLER

UNIVERSITY LINZ

Werner G. Miller, joint work with Dave Woods (JKU)

Marseille, May 219 2018 25/25



Selected references

ﬁ Bailey, R. A. (2007), Designs for two-colour microarray experiments, Journal
of the Royal Statistical Society: Series C (Applied Statistics), 56, 365—-394.

ﬁ V. V. Fedorov. The design of experiments in the multiresponse case. Theory
of Probability and its Applications, vol XVI, (1971), Nr.2.

M. A. Heise and R. H. Myers. Optimal Design for Bivariate Logistic
Regression. Biometrics, 52(2):613—-624 (1996).

E. Perrone and W. G. Mller . Optimal Designs for Copula Models., Statistics
50(4):917-929 (2016).

E. Perrone, A. Rappold, W.G. Muller. Ds-optimality in Copula Models, Statistical
Methods & Applications, online (2016).

) = & =

Woods, D. C. and van de Ven, P. (2011), Blocked Designs for Experiments
With Correlated Non-Normal Response, Technometrics, 53, 173—182.

JXU

JOHANNES KEPLER
z

Thanks for the attention!



	Generalities on copulas
	Definition
	Sklar's Theorem

	Introducing a design problem
	The model
	The approach
	D- and Ds-optimality: Equivalence Theorems

	Examples and applications
	A classical example

	Blocked experiments
	Toy Example
	Conclusions

