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Motivation

Use of interim analyses:
 Stop early for futility/efficacy
 Change sample size
 Change randomization, inclusion criteria…
 … but requires data for good decisions

Patients

TimeIA End of enrollment
End of study

w2 w4 w8



Motivation

Part of any study protocol in drug development: Schedule of activities

 Primary endpoint: Change from baseline in endpoint Y at week X.
 Data used for primary analysis: Endpoint at „week X – Baseline“
 Data at visits prior to week X: Frequently not utilized in primary analysis

V0 (Baseline) V1 (2w) V2 (4w) V3 (8w) V4 (12w) V5 (24w)

Clinical evaluation X X X X X X

Blood pressure X X X X X X

Urinanalysis X X X X X

PRO X X X X X



Dose Finding in Drug Development

 Typical approach: 

– Compare each studied dose to placebo

– … and finally find a reason to go with the highest safe dose.

 However, modelling seems to become slowly more popular

z=2.07 z=2.61
Arms Reject

2 z>1.96

3 z>2.21

4 z>2.35

5 z>2.44

6 z>2.51

Pairwise comparisons:
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Longitudinal response modelling & DR modelling

Sharing of information through stat. models:

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽𝑖𝑖 , 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖, where

– 𝜂𝜂: Longitudinal dose-response model

– 𝑑𝑑𝑖𝑖: Dose assigned to patient i

– 𝛽𝛽𝑖𝑖: Parameter vector for patient i

– 𝑡𝑡𝑖𝑖𝑖𝑖: Time of j-th assessment in patient i

– 𝜖𝜖𝑖𝑖𝑖𝑖: error term

 Information is drawn from a model
 Model will bias analysis
 Error not fully controlled
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Longitudinal response modelling & DR modelling

… continued: Modelling may increase error probability
 Confirmatory decision making (confirm): 

– Decision of not using modelling: understandable (at least for primary analysis)

 Exploratory decision making (learn):

– Decision of not using modelling: 

 Tools are available to easily support modelling (e.g. from France, Andy or Sergei).

 Interim decision making: 

– Optimal timing of interim analysis severly depends on the amount of available information

– Longitudinal modelling is of high interest to increase the information content.

– Interim decisions may be made based on „exploratory“ techniques, while not invalidating the
study (if properly actions taken into account)
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Longitudinal dose response modelling

 … Finally starting
 Let: 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽𝑖𝑖 , 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖, where

– 𝜂𝜂: Longitudinal dose-response model

– 𝑑𝑑𝑖𝑖: Dose assigned to patient i

– 𝛽𝛽𝑖𝑖: Parameter vector for patient i

– 𝑡𝑡𝑖𝑖𝑖𝑖: Time of j-th assessment in patient i

– 𝜖𝜖𝑖𝑖𝑖𝑖: error term

Aim: Pick in an interim analysis the „correct“ dose for Phase III testing
 Problem: 

– At timing of interim analysis, not all patients will have reached endpoint…
– … but we want to use their data anyway to support the decision making.
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Longitudinal modelling approach

mODa contribution from Dragalin (2013): 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽 + 𝑏𝑏𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 𝛾𝛾(𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃)

– 𝜂𝜂: Standard dose-response model with fixed parameters.

– 𝑑𝑑𝑖𝑖: Dose assigned to patient i

– 𝑏𝑏𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜏𝜏2): Individual intercept for patient i (one per patient)

– 𝜖𝜖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜖𝜖2): error term (one per observation / m per patient)

– 𝑡𝑡𝑖𝑖𝑖𝑖: Time of j-th assessment in patient i

– 𝛾𝛾(𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃): „Longitudinal correction “

Difference between both models: 

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽 + 𝑏𝑏𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 𝛾𝛾 𝑡𝑡𝑖𝑖𝑖𝑖 , 𝜃𝜃 ~𝑁𝑁 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽 𝛾𝛾 𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃 , 𝛾𝛾 𝑡𝑡𝑖𝑖𝑖𝑖 , 𝜃𝜃 2 𝜎𝜎𝜏𝜏2 + 𝜎𝜎𝜖𝜖2

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽𝑖𝑖 , 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖~? ? ?

Dragalin (2013), Fu and Manner (2010)
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Longitudinal modelling approach

Longitudinal correction term 𝛾𝛾 𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃 = 1−exp(𝑡𝑡𝑖𝑖𝑖𝑖𝜃𝜃)
1−exp(𝑇𝑇𝜃𝜃)

Correction over time depending on 𝜃𝜃 Correction over time depending on mean

𝜂𝜂 = 1
𝜃𝜃 = −0.1𝜃𝜃 = −0.5

𝜃𝜃 = −1
𝜃𝜃 = −2

𝜂𝜂 = 2/3

𝜂𝜂 = 1/3

𝜂𝜂 =0
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Longitudinal modelling approach

Longitudinal correction term 𝛾𝛾 𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃 =
1−exp(𝑡𝑡𝑖𝑖𝑖𝑖𝜃𝜃)
1−exp(𝑇𝑇𝜃𝜃)

 Implications:
– At 𝑡𝑡𝑖𝑖𝑖𝑖=0: 𝛾𝛾 0,𝜃𝜃 = 0 -> response and variance = 0

– At 𝑡𝑡𝑖𝑖𝑖𝑖=T: 𝛾𝛾 𝑇𝑇,𝜃𝜃 = 1 ->

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽 + 𝑏𝑏𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 𝛾𝛾 𝑇𝑇,𝜃𝜃 ~𝑁𝑁 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽 ,𝜎𝜎𝜏𝜏2 + 𝜎𝜎𝜖𝜖2

 𝑌𝑌𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖 = 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽 + 𝑏𝑏𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖~𝑁𝑁 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽 ,𝜎𝜎𝜖𝜖2

– In general:

 𝛤𝛤 ≔ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝛾𝛾 𝑡𝑡𝑖𝑖𝑖,𝜃𝜃 , … , 𝛾𝛾 𝑇𝑇,𝜃𝜃 ), 𝟏𝟏 ≔ (1, … , 1)

 𝛴𝛴 = 𝜎𝜎𝜖𝜖2𝛤𝛤 𝛤𝛤+ 𝜎𝜎𝜏𝜏2𝛤𝛤𝟏𝟏𝟏𝟏𝑻𝑻𝛤𝛤

 𝜇𝜇 = 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽 𝛤𝛤𝟏𝟏𝑇𝑇

 𝑌𝑌𝑖𝑖~𝑁𝑁 𝜇𝜇,𝛴𝛴 = 𝑁𝑁 𝜇𝜇 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖;𝛽𝛽,𝜃𝜃 ,𝛴𝛴(𝜃𝜃,𝜎𝜎𝜖𝜖2,𝜎𝜎𝜏𝜏2 )
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Model / Parameters

Model: 𝑌𝑌𝑖𝑖~𝑁𝑁 𝜇𝜇,𝛴𝛴 = 𝑁𝑁 𝜇𝜇 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖;𝛽𝛽, 𝜃𝜃 ,𝛴𝛴(𝜃𝜃,𝜎𝜎𝜖𝜖2,𝜎𝜎𝜏𝜏2 )
 Observations between individuals independent i=1,…,N
 Unknown parameters: 𝛽𝛽,𝜃𝜃,𝜎𝜎𝜖𝜖2,𝜎𝜎𝜏𝜏2

 Fisher information for one observation (𝑌𝑌𝑖𝑖 ∈ ℝ𝑚𝑚; 𝜗𝜗 ≔ (𝛽𝛽,𝜃𝜃, 𝜎𝜎𝜖𝜖2,𝜎𝜎𝜏𝜏2)):

𝑀𝑀𝑖𝑖;𝜗𝜗𝑘𝑘𝜗𝜗𝑙𝑙(𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖) =
𝜕𝜕𝜇𝜇 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖;𝛽𝛽,𝜃𝜃

𝜕𝜕𝜗𝜗𝑘𝑘
𝛴𝛴(𝜃𝜃,𝜎𝜎𝜖𝜖2,𝜎𝜎𝜏𝜏2)−1

𝜕𝜕𝜇𝜇 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖;𝛽𝛽, 𝜃𝜃
𝜕𝜕𝜗𝜗𝑙𝑙

+
1
2
𝑡𝑡𝑡𝑡 𝛴𝛴−1

𝜕𝜕𝛴𝛴
𝜕𝜕𝜗𝜗𝑘𝑘

𝛴𝛴−1
𝜕𝜕𝛴𝛴

𝜕𝜕𝜗𝜗𝑙𝑙

 Structure of information matrix: 

 𝑀𝑀𝑖𝑖 =
𝐴𝐴 𝐵𝐵 0
𝐵𝐵𝑇𝑇 𝐶𝐶 𝐷𝐷
0 𝐷𝐷𝑇𝑇 𝐸𝐸

, 𝐴𝐴 depends on 𝑑𝑑𝑖𝑖; 𝐵𝐵 and 𝐶𝐶 on 𝑑𝑑𝑖𝑖 and 𝑡𝑡𝑖𝑖; 𝐷𝐷 on 𝑡𝑡𝑖𝑖

Magnus and Neudecker (1988)
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Design

 Design parameters:

– Dose levels 𝑑𝑑𝑖𝑖
– Assessment times 𝑡𝑡𝑖𝑖,𝑗𝑗, j=1,…,m

 Total information:𝑀𝑀𝑝𝑝 ≔ ∑𝑖𝑖=1𝑁𝑁 𝑀𝑀𝑖𝑖 (𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖)

 Approximate population design: 

 ζ ≔
𝑑𝑑1 𝑑𝑑2 𝑑𝑑3

(𝑡𝑡11,…,𝑡𝑡1𝑚𝑚1) (𝑡𝑡21,…,𝑡𝑡2𝑚𝑚2) (𝑡𝑡31,…,𝑡𝑡3𝑚𝑚3)
𝑤𝑤1 𝑤𝑤2 𝑤𝑤3

… 𝑑𝑑𝐺𝐺−1 𝑑𝑑𝐺𝐺
… (𝑡𝑡(𝐺𝐺−1)1,…,𝑡𝑡1𝑚𝑚(𝐺𝐺−1)) (𝑡𝑡𝐺𝐺1,…,𝑡𝑡1𝑚𝑚𝐺𝐺)
… 𝑤𝑤(𝐺𝐺−1) 𝑤𝑤𝐺𝐺

 Total information: 𝑀𝑀𝑝𝑝 ≔ ∑𝑖𝑖=1𝐺𝐺 𝑤𝑤𝑖𝑖𝑀𝑀𝑖𝑖 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖 , ∑𝑖𝑖=1
𝐺𝐺 𝑤𝑤𝑖𝑖 = 1
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Design criterion

 Target: 
– Estimate primary endpoint as good as possible, i.e.: 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽

– Requires good estimates of 𝛽𝛽

– „Longitudinal model“𝛾𝛾 𝑡𝑡𝑖𝑖𝑗𝑗 ,𝜃𝜃 is not of interest

– … some information required anyway for accurate interim insight in 𝛽𝛽

 Design criterion:

– DS optimality: Φ𝑆𝑆 = det 𝑆𝑆𝑀𝑀𝑝𝑝
−1𝑆𝑆𝑇𝑇 1/𝑞𝑞, with 𝑆𝑆 a matrix targeting components for 𝛽𝛽 ∈ ℝ𝑞𝑞

 Equivalence theorem:
– Design is DS-optimal, if: 

– 𝑡𝑡𝑡𝑡 𝑆𝑆𝑀𝑀𝑝𝑝
−1𝑆𝑆𝑇𝑇 −1𝑆𝑆𝑀𝑀𝑝𝑝

−1𝑀𝑀𝑖𝑖 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖 𝑀𝑀𝑝𝑝
−1𝑆𝑆𝑇𝑇 ≤ 𝑞𝑞 for all 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖 in the design set

 Equivalence theorem can be directly used for algorithmic design optimization

Atkinson et al. (2014)
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Example

Linear dose-response model:
 𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽 = 𝛽𝛽0 + 𝛽𝛽1𝑑𝑑, admissible doses: d=0, 1, 2, …, 10
 Each individual may be allocated to just one dose
 Endpoint: w24, assessment possible at: w2,w4,w8,w12,w16

 𝛾𝛾 𝑡𝑡𝑖𝑖𝑖𝑖 ,𝜃𝜃 =
1−exp(𝑡𝑡𝑖𝑖𝑖𝑖𝜃𝜃)
1−exp(𝑇𝑇𝑇𝑇)

, ∆𝑗𝑗= 𝑇𝑇𝑒𝑒𝜃𝜃𝑇𝑇

1−𝑒𝑒𝜃𝜃𝜃𝜃
−

𝑡𝑡𝑗𝑗𝑒𝑒
𝜃𝜃𝑡𝑡𝑗𝑗

1−𝑒𝑒𝜃𝜃𝑡𝑡𝑗𝑗

Individual information matrix:

 𝑀𝑀𝑖𝑖,𝛽𝛽 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖 = 𝑚𝑚
𝜎𝜎𝜖𝜖2+𝑚𝑚𝜎𝜎𝜏𝜏2

1 𝑑𝑑𝑖𝑖
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖2

, 𝑀𝑀𝑖𝑖,𝛽𝛽𝜃𝜃 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖 =
∑𝑗𝑗=1
𝑚𝑚 ∆𝑗𝑗

𝜎𝜎𝜖𝜖2+𝑚𝑚𝜎𝜎𝜏𝜏2
1 𝑑𝑑𝑖𝑖
𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖2

𝛽𝛽0
𝛽𝛽1

 𝑀𝑀𝑖𝑖,𝜃𝜃 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖 =
∑𝑗𝑗=1
𝑚𝑚 ∆𝑗𝑗

2

𝜎𝜎𝜖𝜖2
𝜂𝜂 𝑑𝑑𝑖𝑖 ,𝛽𝛽 2 + ⋯ −⋯

To make long story short: FIM depends even in linear model on 𝛽𝛽0,𝛽𝛽1,𝜃𝜃 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∆𝑗𝑗),𝜎𝜎𝜖𝜖2,𝜎𝜎𝜏𝜏2

 Designs possibly just locally optimal
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Example

 If allowed to, optimal design will pick all visits
 Optimal allocation in this case:
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Cost functions

Increased complexity: individual measurements come also with some costs
 Consider instead cost efficient design, i.e. introduce:
 𝐶𝐶 ζ = (𝑐𝑐1 + 𝑐𝑐2 ∑𝑗𝑗=1𝐺𝐺 𝑤𝑤𝑗𝑗𝑚𝑚𝑗𝑗)
 Fixed cost for individual: 𝑐𝑐1
 Fixed cost per visit 𝑐𝑐2

Cost normalized information matrix:
𝑀𝑀𝑝𝑝(ζ)
𝐶𝐶 ζ

≔
∑𝑖𝑖=1𝐺𝐺 𝑤𝑤𝑖𝑖𝑀𝑀𝑖𝑖 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖

𝐶𝐶 ζ
= �

𝑖𝑖=1

𝐺𝐺

𝑤𝑤𝑖𝑖
𝑐𝑐1 + 𝑐𝑐2𝑚𝑚𝑖𝑖
𝐶𝐶 ζ

𝑀𝑀𝑖𝑖 𝑑𝑑𝑖𝑖, 𝑡𝑡𝑖𝑖
𝑐𝑐1 + 𝑐𝑐2𝑚𝑚𝑖𝑖

 Note: 

 ∑𝑖𝑖=1𝐺𝐺 𝑤𝑤𝑖𝑖
𝑐𝑐1+𝑐𝑐2𝑚𝑚𝑖𝑖
𝐶𝐶 ζ

= 1
𝐶𝐶 ζ

∑𝑖𝑖=1𝐺𝐺 𝑤𝑤𝑖𝑖(𝑐𝑐1+𝑐𝑐2𝑚𝑚𝑖𝑖) = 1
𝐶𝐶 ζ

(𝑐𝑐1 + 𝑐𝑐2 ∑𝑖𝑖=1𝐺𝐺 𝑤𝑤𝑖𝑖𝑚𝑚𝑖𝑖) = 1

Dragalin and Fedorov (2006)
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Cost functions

Optimality criterion:
Φ𝐶𝐶;𝑆𝑆 = det𝐶𝐶 ζ 𝑆𝑆 (𝑀𝑀𝑝𝑝

−1)𝑆𝑆𝑇𝑇 1/𝑞𝑞 → 𝑚𝑚𝑚𝑚𝑚𝑚
 Equivalence theorem:

– Design is optimal, if: 

– 𝑡𝑡𝑡𝑡 𝑆𝑆𝑀𝑀𝑝𝑝
−1𝑆𝑆𝑇𝑇 −1𝑆𝑆𝑀𝑀𝑝𝑝

−1𝑀𝑀𝑖𝑖 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖 𝑀𝑀𝑝𝑝
−1𝑆𝑆𝑇𝑇 𝐶𝐶 ζ

𝑐𝑐1+𝑐𝑐2𝑚𝑚𝑖𝑖
≤ 𝑞𝑞 for all 𝑑𝑑𝑖𝑖 , 𝑡𝑡𝑖𝑖 in the design set

 Standard design optimization algorithms may be utilized

– Resulting optimal weights: �𝑤𝑤𝑖𝑖∗=𝑤𝑤𝑖𝑖∗
𝑐𝑐1+𝑐𝑐2𝑚𝑚𝑖𝑖
𝐶𝐶 ζ

– Actual design weights deduced from �𝑤𝑤𝑖𝑖∗

Dragalin and Fedorov (2006)
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Example

 Depending on the costs for measurements, number of visits will be restricted
 Consider here: costs for individual=1

m Colour

1 Black

2 Grey

3 Red

4 Green

5 Cyan

6 Blue
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Summary / Conclusions / Outlook

 The heteroscedasticity has an influence on the design
 In the considered model, the impact on efficiency seems to be small
 However, the model is likely not the model typically to be used

For logistical constraints:
 Restriction to one visit schedule more likely to be relevant
 Inclusion of recruitment assumptions in design optimization to:

– Optimization of visits for maximum information at interim could be handled similarily

Thank you for your attention!
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