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Biostatistic Modelling, Clinical Investigation and Pharmacometrics in Infectious Diseases

BIPID

• Clinical pharmacology = PK + PD + Disease Models

• Pharmacometrics: science of quantitative clinical    
pharmacology

– Analysis of longitudinal data in clinical trials and cohorts

– Model Informed Drug Discovery and Development

– Main statistical tool: Non-Linear Mixed Effect Models (NLMEM)

Pharmacometrics

Data generated
during clinical trials 

& patient care

Rational drug
development & 

treatment

Knowledge extraction

Pharmacometricians

Dose Concentration EffectsPharmacokinetics Pharmacodynamics

Design



From PopPKPD to MID3

• Population pharmacokinetics /pharmacodynamics 

(Pop PKPD)

• Nonlinear mixed effect models (NONMEM, NLMEM)

• Modelling and Simulation (M&S)

• Pharmacometrics (PMX)

• Model Based Drug Development (MBDD)

• Model Informed Drug Development (MIDD)

• Model Informed Drug Discovery and Development 

(MID3)
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Population PKPD: the beginning 

• Continuous variables

• Short time scale 

• Exploratory studies 

• Early phases in drug development

 Mainly learning
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Pharmacometrics now

• Clinical end points

• Longer time scale

• Pivotal/confirming phases

Discrete variables and time to event

• Disease progression

• Results use for prediction / simulation & 

statistical inference

• Extrapolation 

• Planning / Design evaluation

• Clinical trial simulation

• Testing, Decision making…

 More attention to model building /                

estimation / uncertainties in inference 7
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Evaluation of designs in NLMEM by 

clinical trial simulation 
• Several published studies

• Hashimoto & Sheiner, J Pharmacokin Biopharm, 1991

• Jonsson, Wade & Karlsson, J Pharmacokin Biopharm, 1996 

• …

• Evaluation of with respect to
• number of patients (N), number of samples per patient (n)

• sampling times

• number of occasions per patient, number of samples per occasion

• Main limitation
• very time consuming 

• only limited number of designs evaluated
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Evaluation of designs in NLMEM by 

clinical trial simulation 
• Several published studies

• Hashimoto & Sheiner, J Pharmacokin Biopharm, 1991

• Jonsson, Wade & Karlsson, J Pharmacokin Biopharm, 1996 

• …

• Evaluation of with respect to
• number of patients (N), number of samples per patient (n)

• sampling times

• number of occasions per patient, number of samples per occasion

• Main limitation
• very time consuming 

• only limited number of designs evaluated

 Approach for design evaluation without simulation  

based on Fisher Information matrix (FIM)



Population Optimum Design of  

Experiments
• Multidisciplinary group: PODE

• initiated by Barbara Bogacka & France Mentré in 2006

• discuss theory of optimum experimental design in NLMEM and their 

application in drug development

• www.maths.qmul.ac.uk/~bb/PODE/PODE2017.html

• One day workshop 
• May 2006: London, University of London  (B. Bogacka)

 September 2017: Basel, Novartis  100 participants



Population Optimum Design of  

Experiments
• Multidisciplinary group: PODE

• initiated by Barbara Bogacka & France Mentré in 2006

• discuss theory of optimum experimental design in NLMEM and their 

application in drug development

• www.maths.qmul.ac.uk/~bb/PODE/PODE2017.html

• One day workshop 
• May 2006: London, University of London  (B. Bogacka)

 September 2017: Basel, Novartis  100 participants

• Distribution list: PopDesign
• organised by S. Duffull since 2007

• to register: http://lists.otago.ac.nz/listinfo/popdesign

• to send an email: popdesign@lists.otago.ac.nz

• any questions/comments on design in NLMEM and software tools

• answers by all members of PoDe
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New method for computing FIM in 

NLMEM with discrete data

• Analytical expression for FIM in NLMEM (in current design 

software programs)

• first order linearisation of model (FO) 

• limitations in case of complex nonlinear models and/or large 

variability

• FIM for discrete longitudinal data

• Methods based on approximations 

(Ogungbenro & Aarons. J Pharmacokinet Pharmacodyn, 2011 ; Waite

& Woods, Biometrika, 2015)
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• Design evaluation requires knowledge on model and parameters

- Local optimal design: given a model and a priori values for population 

parameter D-optimal design

• Alternative: Robust designs

- Take into account uncertainty on parameters (ED-optimal design)

- Over a set of candidate models (model averaging as in MCP-MOD)

• FIM computed using MC-HMC in R-package MXFIM calling RStan

Model averaging for robust designs
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Design and model

• ℳ= Fisher information matrix (FIM)

• Ξ = {N,ξ} = population design 

• N = number of individuals, ξ = elementary design

• M candidate models (m = 1,…,M)

• 𝑤𝑚 = weight quantifying prior belief between models 

σ𝑚=1
𝑀 𝑤𝑚 = 1

• 𝑦𝑖 = vector of observations for individual i

𝑝 𝑦𝑖 𝑏𝑖 = ℎ𝑚 𝑦𝑖, ξ, 𝑔 μ𝑚, 𝑏𝑖, 𝑧𝑖, 𝛽𝑚
- μ𝑚 fixed effects, 𝑏𝑖 random effects ~ 𝑁 (0, Ω𝑚)

- 𝑧𝑖 covariates, 𝛽𝑚 covariate effects

• N patients (i = 1,…,N): 𝑦𝑖 𝑏 are assumed independent

• 𝜓𝑚 = population parameters vector of length 𝑃𝑚
(μ𝑚, Ω𝑚 ,𝛽𝑚)
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FIM and optimality criteria

ℳ 𝜓𝑚, Ξ = 𝑁 ×ℳ 𝜓𝑚, ξ

ℳ 𝜓𝑚, ξ = 𝐸𝑦
𝜕 log 𝐿 𝑦, 𝜓𝑚

𝜕𝜓𝑚

𝜕 log 𝐿 𝑦, 𝜓𝑚

𝜕𝜓𝑚

𝑇

𝐿 𝑦, 𝜓𝑚 = 𝑝׬ 𝑦 𝑏, 𝜓𝑚 𝑝(𝑏|𝜓𝑚) ⅆ𝑏

Two integrals to compute: 

w.r.t y (using MC) and w.r.t b (using HMC)
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FIM and optimality criteria

ℳ 𝜓𝑚, Ξ = 𝑁 ×ℳ 𝜓𝑚, ξ

ℳ 𝜓𝑚, ξ = 𝐸𝑦
𝜕 log 𝐿 𝑦, 𝜓𝑚

𝜕𝜓𝑚

𝜕 log 𝐿 𝑦, 𝜓𝑚

𝜕𝜓𝑚

𝑇

𝐿 𝑦, 𝜓𝑚 = 𝑝׬ 𝑦 𝑏, 𝜓𝑚 𝑝(𝑏|𝜓𝑚) ⅆ𝑏

Two integrals to compute: 

w.r.t y (using MC) and w.r.t b (using HMC)

D-optimality for model m

ΦD,m Ξ = 𝐷𝑒𝑡(ℳ ψ𝑚, Ξ )
1
𝑃
𝑚

Compound D-optimality (Atkinson & Bogacka, 1997)

ΦCD Ξ = ෑ

𝑚=1

𝑀

ΦD,m 𝛯 𝑤
𝑚



Example of repeated count data

• Daily count of events that we want to prevent

• Poisson model for repeated count response data for each patient

• 𝑃 y = k b =
λk e−λ

k!

• Each patient observed at 3 dose levels (one placebo) during x days

• Several candidate models for the link between log(λ) and dose 

• λ: mean number of events / day in a patient

2
1



Five models of effect of dose on decreasing

Poisson parameter

2
2
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Design optimisation

Methods

Constraints

Number of subjects N = 60

Number of days n = 10 days / dose

Number of doses 3 doses / patients

Choice of doses d1= 0  (placebo)  fixed

d2, d3 optimized from 0.1 to 1

(step 0.1, no replication)

Combinatorial

Optimization

Evaluation of FIM for 

all possible designs

For each model

Over 5 models

5000 MC

200 HMC 

D-optimality

Compound D-optimality (averaging for 

uncertainty on model, wm =1/5)
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ξM2=(0,0.9,1) ξM3=(0,0.9,1)

ξM4=(0,0.2,1) ξM5=(0,0.5,1)

Results: D-optimal design for each model

ξM1=(0,0.4,0.5)

1. Full Imax

2. Linear

3. Log-Linear

4. Imax

5. Quadratic
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M1

Full Imax

M2

Linear

M3

Log-Linear

M4

Imax

M5

Quadratic

ξM1=(0,0.4,0.5) 100% 61% 69% 50% 28% 

ξM2=(0,0.9,1) 87% 100% 100% 31% 67%

ξM3=(0,0.9,1) 87% 100% 100% 31% 67%

ξM4=(0,0.2,1) 88% 86% 85% 100% 86%

ξM5=(0,0.5,1) 95% 90% 92% 70% 100%

Results: loss of efficiency if wrong model  
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2
8

M1

Full Imax

M2

Linear

M3

Log-Linear

M4

Imax

M5

Quadratic

ξM1=(0,0.4,0.5) 100% 61% 69% 50% 28% 

ξM2=(0,0.9,1) 87% 100% 100% 31% 67%

ξM3=(0,0.9,1) 87% 100% 100% 31% 67%

ξM4=(0,0.2,1) 88% 86% 85% 100% 86%

ξM5=(0,0.5,1) 95% 90% 92% 70% 100%

Results: loss of efficiency if wrong model  

Optimal design over 5 models

ξall=(0,0.3,1)

ξall=(0,0.3,1) 94% 88% 89% 80% 93% Efficiency greater than

80% for all models



• 𝑃 = probability of  1

• Logistic random effect models

• Several candidate models for the link between 𝒍𝒐𝒈𝒊𝒕(𝑷) and time

• Treatment effect on ‘slope’ parameter

Example of repeated binary data:

designing an RCT trial

2
9



Four candidate models (placebo + drug effect)

3
0

1. Linear

2. Log-Linear

3. Quadratic

4. Exponential

𝑙𝑜𝑔𝑖𝑡(𝑃) = θ1 + θ2(1 + 𝛽 × 1𝑇)𝑡

𝑙𝑜𝑔𝑖𝑡 𝑃 = θ1 + θ2(1 + 𝛽 × 1𝑇)𝑡² 𝑙𝑜𝑔𝑖𝑡 𝑃 = θ1 + θ2(1 + 𝛽 × 1𝑇) exp θ3𝑡 − 1

𝑙𝑜𝑔𝑖𝑡(𝑃) = θ1 + θ2 1 + 𝛽 × 1𝑇 log(𝑡 + 1)

𝑙𝑜𝑔𝑖𝑡(𝑃)

𝑙𝑜𝑔𝑖𝑡(𝑃)
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Design optimisation

Methods

Constraints

Number of subjects 𝑁 = 100 (50 per treatment group)

Number of samples 𝑛 = 4 per individual

(from 0 to 12 months)

Sampling times  𝑡1 = 0, 𝑡4 = 12 months (fixed)

 𝑡2 and 𝑡3 optimized from 1 to 11 

months no replication)

Combinatorial

Optimization
Evaluation of FIM for 

all possible designs

For each model

Over 4 models

5000 MC

200 HMC 

D-optimality

Compound D-optimality (averaging

for uncertainty on models, wm =1/4)
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ξM2=(0,1,8,12)

ξM3=(0,4,5,12) ξM4=(0,6,11,12)

Results: D-optimal design for each model

ξM1=(0,2,11,12)

1. Linear

2. Log-Linear

3. Quadratic

4. Exponential
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ξM2=(0,1,8,12)

ξM3=(0,4,5,12) ξM4=(0,6,11,12)

Results: D-optimal design for each model

ξM1=(0,2,11,12)

1. Linear

2. Log-Linear

3. Quadratic

4. Exponential
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M1

Linear

M2

Log-Linear

M3

Quadratic

M4

Exponential

ξM1=(0,2,11,12) 100% 90% 81% 71% 

ξM2=(0,1,8,11) 93% 100% 88% 79% 

ξM3=(0,4,5,11) 92% 84% 100% 65%

ξM4=(0,6,11,12) 83% 80% 96% 100% 

Results: loss of efficiency if wrong model  
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M1

Linear

M2

Log-Linear

M3

Quadratic

M4

Exponential

ξM1=(0,2,11,12) 100% 90% 81% 71% 

ξM2=(0,1,8,11) 93% 100% 88% 79% 

ξM3=(0,4,5,11) 92% 84% 100% 65%

ξM4=(0,6,11,12) 83% 80% 96% 100% 

Results: loss of efficiency if wrong model  

Optimal design over 4 models

ξall=(0, 5,11,12)
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M1

Linear

M2

Log-Linear

M3

Quadratic

M4

Exponential

ξM1=(0,2,11,12) 100% 90% 81% 71% 

ξM2=(0,1,8,11) 93% 100% 88% 79% 

ξM3=(0,4,5,11) 92% 84% 100% 65%

ξM4=(0,6,11,12) 83% 80% 96% 100% 

Results: loss of efficiency if wrong model  

Optimal design over 4 models

ξall=(0, 5,11,12)

ξall=(0,5,11,12) 86% 81% 99% 96% Efficiency greater than

80% for all models
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ξequi-spaced=(0,4,8,12)

NSNaverage (ξequi-spaced) = 358

Results: NSN for average power of 90% smaller
with optimal design

ξall=(0,5,11,12)

NSNaverage (ξall) = 274



Discussion

• MC-HMC method for computation of FIM without linearization enables 

applications to design optimization for NLMEM with discrete data

• Extension of this method to propose robust optimal designs accounting 

for uncertainty w.r.t. models (and parameters)

• Computationally challenging

3
8



Discussion

• MC-HMC method for computation of FIM without linearization enables 

applications to design optimization for NLMEM with discrete data

• Extension of this method to propose robust optimal designs accounting 

for uncertainty w.r.t. models (and parameters)

• Computationally challenging

Perspectives

• Replacement of MC by more efficient approach: quasi-random 

sampling 

• Application to continuous data, to other type of discrete data and to 

multivariate models

• Optimization algorithm (PSO?)

• Different elementary design across patients

• Adaptive designs

3
9



Future of optimal design in PMX….

4
0

• Ongoing work by statisticians & pharmacometricians

• Model based adaptive designs (MBAOD)  



MBAOD prototype in R (Andrew Hooker, Uppsala University)

4
1



MBAOD prototype in R (Andrew Hooker, Uppsala University)

4
2

• Pierrillas, Fouliard, Chenel, Hooker, Friberg, Karlsson (2018). 

Model-based adaptive optimal design (MBAOD) improves 

combination dose finding designs: an example in oncology. AAPS J. 

20(2):39.

• Ryeznik, Sverdlov, Hooker (2018). Adaptive optimal designs for 

dose-finding studies with time-to-event outcomes. AAPS J. 20(1):24. 

• Dumont, Chenel, Mentré (2016). Two-stage adaptive designs in 

nonlinear mixed effects models: application to pharmacokinetics in 

children. Communications in Statistics - Simulation and 

Computation, 45: 1511

• Lestini, Dumont, Mentré (2015). Influence of the size of cohorts in 

adaptive design for nonlinear mixed effects models: an evaluation by 

simulation for a pharmacokinetic and pharmacodynamic model for a 

biomarker in oncology. Pharm Res. 32:3159
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• Ongoing work by statisticians & pharmacometricians

• Model based adaptive designs  

• Fisher matrix for repeated discrete/count data and TTE

• Model averaging for designing and analysing experiments 

• Design and identifiability of complex models

• Bayesian design

• ...

Future of optimal design in PMX….
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• Ongoing work by statisticians & pharmacometricians

• Model based adaptive designs  

• Fisher matrix for repeated discrete/count data and TTE

• Model averaging for designing and analysing experiments 

• Design and identifiability of complex models

• Bayesian design

• ...

 More collaboration between pharmacometricians and 

statisticians / computer scientists

Future of optimal design in PMX….



• SxP: Special Interest Group created in 2016

 Promote collaboration between Statisticians and Pharmacometricians

• to enable each discipline to learn and grow from the other 

• to develop innovative approaches to model informed drug 
development

• Steering Committee (new one since 2018)

• Co-chairs: Bret Musser (Regeneron) & France  Mentré (U Paris Diderot & INSERM)

• Fred Balch (U Utah), Rob Bies (U Buffalo), Kevin Dykstra (qPhametra), Manolis

Efthymios (EMA), Jonathan French (Metrum), Lena Friberg (U Uppsala), Vijay Ivaturi

(U Maryland), Jose Pinheiro (J&J), Dionne Price (FDA), Gary Rosner (Johns Hopkins), 

Matt Rotelli (Merck), Mike Smith (Pfizer), Jing Su (Merck), Stacey Tannenbaum

(Astellas Pharma), Neelima Thaneer (BMS), Jingtao Wu (Takeda), Yaning Wang 

(FDA)

• ISoP board liason: Siv Jonsson (U Uppsala)

• Membership open to everyone http://community.amstat.org/sxp/home

4
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Optimal design: 
just nerdy or useful?

Session Chairs:

Elodie Plan (Pharmetheus)

Steve Duffull (University of Otago)

American Conference on 
Pharmacometrics

October 15 – 18, 2017
Fort Lauderdale, FL



Mathematics

Statistics

Pharmacology

New best 
practice 

Computer Sci.

Innovation Focusing Adoption Dissemination

“The nerdy part 
made simple”

S Ueckert
(Uppsala U)

“Optimal design 
with 

pharmacometric
models”
J Nyberg

(Pharmetheus)

“Challenges within 
Industry?”
M Chenel
(Servier)

Panel discussion
F Mentré (Paris Diderot U)

A Hooker (Uppsala U)
T Waterhouse (Lilly)

Y Wang (FDA)

“Pharmacometric innovation funnel”
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Optimal design: challenges within industry?

Talk of Marylore Chenel at ACOP October 17, 2 017

• Study design is essential to collect informative data during drug discovery 

and development (EFPIA MID3, CPT:PSP 2016)

• Non informative studies represent cost and time loss

• Non informative studies are non ethical: optimal design approaches 

are not limited to vulnerable patients and should be applied for any study 

involving animals, volunteers and patients


