



nserm

ersité

# **OPTIMAL DESIGNS FOR TRIALS** WITH DISCRETE LONGITUDINAL DATA ANALYZED BY NONLINEAR MIXED EFFECT MODELS EROT

France Mentré, Florence Loingeville, Jeremy Seurat, Thu Thuy Nguyen

NIVERSITY PARIS DIDEROT - INSERM - UMR 1137 OSTATISTICAL MODELLING AND RICS

**CIRM – May 2018** 

## Outline

- 1. Design in pharmacometrics (PMX)
- 2. PODE
- 3. New method to compute FIM for discrete repeated data with model averaging
- 4. Two examples: count and binary repeated data
- 5. Conclusion



#### Biostatistic Modelling, Clinical Investigation and Pharmacometrics in Infectious Diseases

## Pharmacometrics

Effects

**Pharmacodynamics** 

• Clinical pharmacology = PK + PD + Disease Models

Pharmacokinetics Concentration

• Pharmacometrics: science of quantitative clinical pharmacology



- Analysis of longitudinal data in clinical trials and cohorts
- Model Informed Drug Discovery and Development
- Main statistical tool: Non-Linear Mixed Effect Models (NLMEM)

## From PopPKPD to MID3

- Population pharmacokinetics /pharmacodynamics (Pop PKPD)
- Nonlinear mixed effect models (NONMEM, NLMEM)
- Modelling and Simulation (M&S)
- Pharmacometrics (PMX)
- Model Based Drug Development (MBDD)
- Model Informed Drug Development (MIDD)
- Model Informed Drug Discovery and Development (MID3)

#### WHITE PAPER

# Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation

EFPIA MID3 Workgroup: SF Marshall<sup>1</sup>\*, R Burghaus<sup>2</sup>, V Cosson<sup>3</sup>, SYA Cheung<sup>4</sup>, M Chenel<sup>5</sup>, O DellaPasqua<sup>6</sup>, N Frey<sup>3</sup>, B Hamrén<sup>7</sup>, L Harnisch<sup>1</sup>, F Ivanow<sup>8</sup>, T Kerbusch<sup>9</sup>, J Lippert<sup>2</sup>, PA Milligan<sup>1</sup>, S Rohou<sup>10</sup>, A Staab<sup>11</sup>, JL Steimer<sup>12</sup>, C Tornøe<sup>13</sup> and SAG Visser<sup>14</sup>



## **Population PKPD: the beginning**

- Continuous variables
- Short time scale
- Exploratory studies
- Early phases in drug development



## **Pharmacometrics now**

## Clinical end points

- Longer time scale
- Pivotal/confirming phases
- Discrete variables and time to event
- Disease progression
- Results use for prediction / simulation & statistical inference
  - Extrapolation
  - Planning / Design evaluation
  - Clinical trial simulation
  - Testing, Decision making...

More attention to model building / estimation / uncertainties in inference

# **Evaluation of designs in NLMEM by clinical trial simulation**

- Several published studies
  - Hashimoto & Sheiner, J Pharmacokin Biopharm, 1991
  - Jonsson, Wade & Karlsson, *J Pharmacokin Biopharm*, 1996

• ...

- Evaluation of with respect to
  - number of patients (N), number of samples per patient (n)
  - sampling times
  - number of occasions per patient, number of samples per occasion
- Main limitation
  - very time consuming
  - only limited number of designs evaluated

# **Evaluation of designs in NLMEM by clinical trial simulation**

- Several published studies
  - Hashimoto & Sheiner, J Pharmacokin Biopharm, 1991
  - Jonsson, Wade & Karlsson, *J Pharmacokin Biopharm*, 1996

• ...

- Evaluation of with respect to
  - number of patients (N), number of samples per patient (n)
  - sampling times
  - number of occasions per patient, number of samples per occasion
- Main limitation
  - very time consuming
  - only limited number of designs evaluated

Approach for design evaluation without simulation based on Fisher Information matrix (FIM)

# **Population Optimum Design of Experiments**

- Multidisciplinary group: PODE
  - initiated by Barbara Bogacka & France Mentré in 2006
  - discuss theory of optimum experimental design in NLMEM and their application in drug development
  - www.maths.qmul.ac.uk/~bb/PODE/PODE2017.html
- One day workshop
  - May 2006: London, University of London (B. Bogacka)
  - > September 2017: Basel, Novartis  $\rightarrow$  100 participants



# **Population Optimum Design of Experiments**

- Multidisciplinary group: PODE
  - initiated by Barbara Bogacka & France Mentré in 2006
  - discuss theory of optimum experimental design in NLMEM and their application in drug development
  - www.maths.qmul.ac.uk/~bb/PODE/PODE2017.html
- One day workshop
  - May 2006: London, University of London (B. Bogacka)
  - > September 2017: Basel, Novartis  $\rightarrow$  100 participants
- Distribution list: PopDesign
  - organised by S. Duffull since 2007
  - to register: http://lists.otago.ac.nz/listinfo/popdesign
  - to send an email: popdesign@lists.otago.ac.nz
  - any questions/comments on design in NLMEM and software tools
  - answers by all members of PoDe











# New method for computing FIM in NLMEM with discrete data

- Analytical expression for FIM in NLMEM (in current design software programs)
  - first order linearisation of model (FO)
  - limitations in case of complex nonlinear models and/or large variability

#### FIM for discrete longitudinal data

Methods based on approximations

(Ogungbenro & Aarons. *J Pharmacokinet Pharmacodyn*, 2011 ; Waite & Woods, *Biometrika*, 2015)

# New method for computing FIM in NLMEM with discrete data

- Analytical expression for FIM in NLMEM (in current design software programs)
  - first order linearisation of model (FO)
  - limitations in case of complex nonlinear models and/or large variability

#### FIM for discrete longitudinal data

Methods based on approximations

(Ogungbenro & Aarons. *J Pharmacokinet Pharmacodyn*, 2011 ; Waite & Woods, *Biometrika*, 2015)

New approaches for computation of FIM without linearisation

- Monte Carlo Adaptive Gaussian Quadrature (MC-AGQ) (Ueckert & Mentré, Comput Stat Data Anal, 2017)
- Monte Carlo Hamiltonian Monte Carlo (MC-HMC) (Riviere, Ueckert & Mentré, *Biostatistics*, 2016)

EU FP7/HEALTH





Integrated DEsign and AnaLysis of small population group trials



# New method for computing FIM in NLMEM with discrete data



A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature

Sebastian Ueckert\*, France Mentré

*Biostatistics* (2016), **17**, 4, *pp*. 737–750 doi:10.1093/biostatistics/kxw020 Advance Access publication on May 10, 2016

#### An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models

MARIE-KARELLE RIVIERE\*, SEBASTIAN UECKERT, FRANCE MENTRÉ

INSERM, IAME, UMR 1137, F-75018 Paris, France and Univ Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France

marie-karelle.riviere@inserm.fr



CrossMark

### **Model averaging for robust designs**

- Design evaluation requires knowledge on model and parameters
  - Local optimal design: given a model and a priori values for population parameter → D-optimal design
- Alternative: Robust designs
  - Take into account uncertainty on parameters (ED-optimal design)
  - Over a set of candidate models (model averaging as in MCP-MOD)
- FIM computed using MC-HMC in R-package MXFIM calling RStan



## **Design and model**

- $\mathcal{M}$  = Fisher information matrix (FIM)
- $\Xi = \{N, \xi\}$  = population design
  - N = number of individuals,  $\xi$  = elementary design
- M candidate models (m = 1, ..., M)
  - $w_m$  = weight quantifying prior belief between models  $\sum_{m=1}^{M} w_m = 1$
- $y_i$  = vector of observations for individual i

 $p(y_i|b_i) = h_m(y_i, \xi, g(\mu_m, b_i, z_i, \beta_m))$ 

- $\mu_m$  fixed effects,  $b_i$  random effects ~  $N(0, \Omega_m)$
- $z_i$  covariates,  $\beta_m$  covariate effects
- N patients (i = 1,...,N):  $(y_i|b)$  are assumed independent
- $\psi_m$  = population parameters vector of length  $P_m$ ( $\mu_m$ ,  $\Omega_m$ ,  $\beta_m$ )

#### **FIM and optimality criteria**

$$\mathcal{M}(\boldsymbol{\psi}_{m}, \boldsymbol{\Xi}) = N \times \mathcal{M}(\boldsymbol{\psi}_{m}, \boldsymbol{\xi})$$
$$\mathcal{M}(\boldsymbol{\psi}_{m}, \boldsymbol{\xi}) = E_{y} \left( \frac{\partial \log(L(y, \boldsymbol{\psi}_{m}))}{\partial \boldsymbol{\psi}_{m}} \frac{\partial \log(L(y, \boldsymbol{\psi}_{m}))}{\partial \boldsymbol{\psi}_{m}}^{T} \right)$$
$$L(y, \boldsymbol{\psi}_{m}) = \int p(y|b, \boldsymbol{\psi}_{m}) p(b|\boldsymbol{\psi}_{m}) \, db$$

Two integrals to compute:

w.r.t y (using MC) and w.r.t b (using HMC)

#### **FIM and optimality criteria**

$$\mathcal{M}(\boldsymbol{\psi}_{m}, \boldsymbol{\Xi}) = N \times \mathcal{M}(\boldsymbol{\psi}_{m}, \boldsymbol{\xi})$$
$$\mathcal{M}(\boldsymbol{\psi}_{m}, \boldsymbol{\xi}) = E_{y} \left( \frac{\partial \log(L(y, \boldsymbol{\psi}_{m}))}{\partial \boldsymbol{\psi}_{m}} \frac{\partial \log(L(y, \boldsymbol{\psi}_{m}))^{T}}{\partial \boldsymbol{\psi}_{m}} \right)$$
$$L(y, \boldsymbol{\psi}_{m}) = \int p(y|b, \boldsymbol{\psi}_{m}) p(b|\boldsymbol{\psi}_{m}) \, db$$

Two integrals to compute:

w.r.t y (using MC) and w.r.t b (using HMC)

→ D-optimality for model m  $\Phi_{D,m}(\Xi) = Det(\mathcal{M}(\psi_m, \Xi))^{\frac{1}{P_m}}$ 

→ Compound D-optimality (Atkinson & Bogacka, 1997)  $\Phi_{\rm CD}(\Xi) = \prod^{M} \Phi_{\rm D,m}(\Xi)^{w_{m}}$ 

m=1

## **Example of repeated count data**

- Daily count of events that we want to prevent
- Poisson model for repeated count response data for each patient

$$P(y = k|b) = \frac{\lambda^k e^{-\lambda}}{k!}$$

• Each patient observed at 3 dose levels (one placebo) during x days



- Several candidate models for the link between  $log(\lambda)$  and dose
- $\lambda$ : mean number of events / day in a patient





### Five models of effect of dose on decreasing Poisson parameter



$$\theta_p = \mu_p exp(b_p); \, b_p \sim \mathcal{N}(0, \omega_p^2)$$

22

#### **Design optimisation**

| Methods                       |                                            |                                                                                                    |  |  |
|-------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
|                               | Number of subjects                         | N = 60                                                                                             |  |  |
|                               | Number of days                             | n = 10 days / dose                                                                                 |  |  |
| Constraints                   | Number of doses                            | 3 doses / patients                                                                                 |  |  |
|                               | Choice of doses                            | $d_1$ = 0 (placebo) → fixed<br>$d_2$ , $d_3$ optimized from 0.1 to 1<br>(step 0.1, no replication) |  |  |
|                               |                                            |                                                                                                    |  |  |
| Combinatorial<br>Optimization | Evaluation of FIM for all possible designs | 5000 MC<br>200 HMC                                                                                 |  |  |
|                               | For each model                             | D-optimality                                                                                       |  |  |
|                               | Over 5 models                              | Compound D-optimality (averaging for uncertainty on model, $w_m = 1/5$ )                           |  |  |

#### **Results: D-optimal design for each model**



ξ<sub>M2</sub>=(0,**0.9,1**)

- 1. Full Imax
- 2. Linear
- 3. Log-Linear
- 4. Imax
- 5. Quadratic

#### **Results: D-optimal design for each model**



|                              | M1<br>Full Imax | M2<br>Linear | M3<br>Log-Linear | M4<br>Imax | M5<br>Quadratic |
|------------------------------|-----------------|--------------|------------------|------------|-----------------|
| ξ <sub>M1</sub> =(0,0.4,0.5) | 100%            | 61%          | 69%              | 50%        | 28%             |
| ξ <sub>M2</sub> =(0,0.9,1)   | 87%             | 100%         | 100%             | 31%        | 67%             |
| ξ <sub>M3</sub> =(0,0.9,1)   | 87%             | 100%         | 100%             | 31%        | 67%             |
| ξ <sub>M4</sub> =(0,0.2,1)   | 88%             | 86%          | 85%              | 100%       | 86%             |
| ξ <sub>M5</sub> =(0,0.5,1)   | 95%             | 90%          | 92%              | 70%        | 100%            |

|                              | M1<br>Full Imax | M2<br>Linear | M3<br>Log-Linear | M4<br>Imax | M5<br>Quadratic |
|------------------------------|-----------------|--------------|------------------|------------|-----------------|
| ξ <sub>M1</sub> =(0,0.4,0.5) | 100%            | 61%          | 69%              | 50%        | 28%             |
| ξ <sub>M2</sub> =(0,0.9,1)   | 87%             | 100%         | 100%             | 31%        | 67%             |
| ξ <sub>M3</sub> =(0,0.9,1)   | 87%             | 100%         | 100%             | 31%        | 67%             |
| ξ <sub>M4</sub> =(0,0.2,1)   | 88%             | 86%          | 85%              | 100%       | 86%             |
| ξ <sub>M5</sub> =(0,0.5,1)   | 95%             | 90%          | 92%              | 70%        | 100%            |



Optimal design over 5 models  $\xi_{all}=(0,0.3,1)$ 

|                              | M1<br>Full Imax | M2<br>Linear | M3<br>Log-Linear | M4<br>Imax | M5<br>Quadratic |
|------------------------------|-----------------|--------------|------------------|------------|-----------------|
| ξ <sub>M1</sub> =(0,0.4,0.5) | 100%            | 61%          | 69%              | 50%        | 28%             |
| ξ <sub>M2</sub> =(0,0.9,1)   | 87%             | 100%         | 100%             | 31%        | 67%             |
| ξ <sub>M3</sub> =(0,0.9,1)   | 87%             | 100%         | 100%             | 31%        | 67%             |
| ξ <sub>M4</sub> =(0,0.2,1)   | 88%             | 86%          | 85%              | 100%       | 86%             |
| ξ <sub>M5</sub> =(0,0.5,1)   | 95%             | 90%          | 92%              | 70%        | 100%            |
| ξ <sub>all</sub> =(0,0.3,1)  | 94%             | 88%          | 89%              | 80%        | 93%             |

Efficiency greater than 80% for all models



Optimal design over 5 models  $\xi_{all}=(0,0.3,1)$ 

### **Example of repeated binary data:** designing an RCT trial





- P = probability of 1
- Logistic random effect models
- Several candidate models for the link between *logit(P)* and time
- Treatment effect on 'slope' parameter

#### Four candidate models (placebo + drug effect)



#### **Design optimisation**

| Methods                       |                                            |                                                                                                                                                                 |  |  |  |
|-------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Constraints                   | Number of subjects                         | N = 100 (50 per treatment group)                                                                                                                                |  |  |  |
|                               | Number of samples                          | n = 4 per individual<br>(from 0 to 12 months)                                                                                                                   |  |  |  |
|                               | Sampling times                             | <ul> <li>t<sub>1</sub> = 0, t<sub>4</sub> = 12 months (fixed)</li> <li>t<sub>2</sub> and t<sub>3</sub> optimized from 1 to 11 months no replication)</li> </ul> |  |  |  |
| Combinatorial<br>Optimization | Evaluation of FIM for all possible designs | 5000 MC<br>200 HMC                                                                                                                                              |  |  |  |
|                               | For each model                             | D-optimality                                                                                                                                                    |  |  |  |
|                               | Over 4 models                              | Compound D-optimality (averaging for uncertainty on models, $w_m = 1/4$ )                                                                                       |  |  |  |

31

#### **Results: D-optimal design for each model**



1. Linear

- 2. Log-Linear
- 3. Quadratic
- 4. Exponential

#### **Results: D-optimal design for each model**



|                              | M1<br>Linear | M2<br>Log-Linear | M3<br>Quadratic | M4<br>Exponential |
|------------------------------|--------------|------------------|-----------------|-------------------|
| ξ <sub>M1</sub> =(0,2,11,12) | 100%         | 90%              | 81%             | 71%               |
| ξ <sub>M2</sub> =(0,1,8,11)  | 93%          | 100%             | 88%             | 79%               |
| ξ <sub>M3</sub> =(0,4,5,11)  | 92%          | 84%              | 100%            | 65%               |
| ξ <sub>M4</sub> =(0,6,11,12) | 83%          | 80%              | 96%             | 100%              |

|                              | M1<br>Linear | M2<br>Log-Linear | M3<br>Quadratic | M4<br>Exponential |
|------------------------------|--------------|------------------|-----------------|-------------------|
| ξ <sub>M1</sub> =(0,2,11,12) | 100%         | 90%              | 81%             | 71%               |
| ξ <sub>M2</sub> =(0,1,8,11)  | 93%          | 100%             | 88%             | 79%               |
| ξ <sub>M3</sub> =(0,4,5,11)  | 92%          | 84%              | 100%            | 65%               |
| ξ <sub>M4</sub> =(0,6,11,12) | 83%          | 80%              | 96%             | 100%              |



|                               | M1<br>Linear | M2<br>Log-Linear | M3<br>Quadratic | M4<br>Exponential |
|-------------------------------|--------------|------------------|-----------------|-------------------|
| ξ <sub>M1</sub> =(0,2,11,12)  | 100%         | 90%              | 81%             | 71%               |
| ξ <sub>M2</sub> =(0,1,8,11)   | 93%          | 100%             | 88%             | 79%               |
| ξ <sub>M3</sub> =(0,4,5,11)   | 92%          | 84%              | 100%            | 65%               |
| ξ <sub>M4</sub> =(0,6,11,12)  | 83%          | 80%              | 96%             | 100%              |
| ξ <sub>all</sub> =(0,5,11,12) | 86%          | 81%              | 99%             | 96%               |

Efficiency greater than 80% for all models



Optimal design over 4 models  $\xi_{all}=(0, 5, 11, 12)$ 

#### **Results: NSN for average power of 90% smaller with optimal design**



 $NSN_{average} (\xi_{equi-spaced}) = 358$ 

 $NSN_{average} (\xi_{all}) = 274$ 

### **Discussion**

- MC-HMC method for computation of FIM without linearization enables applications to design optimization for NLMEM with discrete data
- Extension of this method to propose robust optimal designs accounting for uncertainty w.r.t. models (and parameters)
- Computationally challenging

### **Discussion**

- MC-HMC method for computation of FIM without linearization enables applications to design optimization for NLMEM with discrete data
- Extension of this method to propose robust optimal designs accounting for uncertainty w.r.t. models (and parameters)
- Computationally challenging

#### Perspectives

- Replacement of MC by more efficient approach: quasi-random sampling
- Application to continuous data, to other type of discrete data and to multivariate models
- Optimization algorithm (PSO?)
- Different elementary design across patients
- Adaptive designs

## Future of optimal design in PMX....

- Ongoing work by statisticians & pharmacometricians
  - Model based adaptive designs (MBAOD)

#### > MBAOD prototype in R (Andrew Hooker, Uppsala University)





#### > MBAOD prototype in R (Andrew Hooker, Uppsala University)



- Pierrillas, Fouliard, Chenel, Hooker, Friberg, Karlsson (2018). Model-based adaptive optimal design (MBAOD) improves combination dose finding designs: an example in oncology. AAPS J. 20(2):39.
- **Ryeznik**, Sverdlov, **Hooker** (2018). Adaptive optimal designs for dose-finding studies with time-to-event outcomes. *AAPS J*. 20(1):24.
- Dumont, Chenel, Mentré (2016). Two-stage adaptive designs in nonlinear mixed effects models: application to pharmacokinetics in children. Communications in Statistics - Simulation and Computation, 45: 1511
- Lestini, Dumont, Mentré (2015). Influence of the size of cohorts in adaptive design for nonlinear mixed effects models: an evaluation by simulation for a pharmacokinetic and pharmacodynamic model for a biomarker in oncology. *Pharm Res.* 32:3159

## Future of optimal design in PMX....

- Ongoing work by statisticians & pharmacometricians
  - Model based adaptive designs
  - Fisher matrix for repeated discrete/count data and TTE
  - Model averaging for designing and analysing experiments
  - Design and identifiability of complex models
  - Bayesian design

## Future of optimal design in PMX....

- Ongoing work by statisticians & pharmacometricians
  - Model based adaptive designs
  - Fisher matrix for repeated discrete/count data and TTE
  - Model averaging for designing and analysing experiments
  - Design and identifiability of complex models
  - Bayesian design
- More collaboration between pharmacometricians and statisticians / computer scientists







- SxP: Special Interest Group created in 2016
- Promote collaboration between Statisticians and Pharmacometricians
  - to enable each discipline to learn and grow from the other
  - to develop innovative approaches to model informed drug development
- Steering Committee (new one since 2018)
  - Co-chairs: Bret Musser (Regeneron) & France Mentré (U Paris Diderot & INSERM)
  - Fred Balch (U Utah), Rob Bies (U Buffalo), Kevin Dykstra (qPhametra), Manolis Efthymios (EMA), Jonathan French (Metrum), Lena Friberg (U Uppsala), Vijay Ivaturi (U Maryland), Jose Pinheiro (J&J), Dionne Price (FDA), Gary Rosner (Johns Hopkins), Matt Rotelli (Merck), Mike Smith (Pfizer), Jing Su (Merck), Stacey Tannenbaum (Astellas Pharma), Neelima Thaneer (BMS), Jingtao Wu (Takeda), Yaning Wang (FDA)
  - ISoP board liason: Siv Jonsson (U Uppsala)
- Membership open to everyone http://community.amstat.org/sxp/home

American Conference on Pharmacometrics October 15 – 18, 2017 Fort Lauderdale, FL

## **Optimal design: just nerdy or useful?**

## Session Chairs: Elodie Plan (Pharmetheus) Steve Duffull (University of Otago)







#### "Pharmacometric innovation funnel" **Mathematics Statistics** New best Innovation Dissemination Focusing Adoption practice Pharmacology Computer Sci. **"Optimal design "The nerdy part** with "Challenges within **Panel discussion** made simple" pharmacometric Industry?" F Mentré (Paris Diderot U) models" **S** Ueckert **M** Chenel A Hooker (Uppsala U) (Uppsala U) **J** Nyberg (Servier) T Waterhouse (Lilly) (Pharmetheus) Y Wang (FDA) MERICAN CONFERENCE

## **Optimal design: challenges within industry?**

Talk of Marylore Chenel at ACOP October 17, 2017



- Study design is essential to collect informative data during drug discovery and development (EFPIA MID3, CPT:PSP 2016)
- Non informative studies represent cost and time loss
- Non informative studies are non ethical: optimal design approaches are not limited to vulnerable patients and should be applied for any study involving animals, volunteers and patients

