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Biostatistic Modelling, Clinical Investigation and Pharmacometrics in Infectious Diseases

Pharmacometrics

Clinical pharmacology = PK + PD + Disease Models

Dose

Pharmacokinetics

P . >
Concentration | pharmacodynamics

Effects

Pharmacometrics: science of quantitative clinical

pharmacology

Data generated
during clinical trials
& patient care

Knowledge extraction

T

Pharmacometricians

\1
Design

— Analysis of longitudinal data in clinical trials and cohorts
— Model Informed Drug Discovery and Development
— Main statistical tool: Non-Linear Mixed Effect Models (NLMEM)

Rational drug
development &
treatment




From PopPKPD to MID3

* Population pharmacokinetics /pharmacodynamics
(Pop PKPD)

* Nonlinear mixed effect models (NONMEM, NLMEM)
* Modelling and Simulation (M&S)
 Pharmacometrics (PMX)

 Model Based Drug Development (MBDD)

* Model Informed Drug Development (MIDD)

 Model Informed Drug Discovery and Development
(MID3)
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Population PKPD: the beginning

« Continuous variables

Short time scale

Exploratory studies
- Early phases in drug development

» Mainly learning




Pharmacometrics now

* Clinical end points
* Longer time scale
* Pivotal/confirming phases
»Discrete variables and time to event
 Disease progression

* Results use for prediction / simulation &
statistical inference
 Extrapolation
 Planning / Design evaluation
* Clinical trial simulation
* Testing, Decision making...

» More attention to model building /
estimation / uncertainties in inference




Evaluation of designs in NLMEM by

clinical trial simulation

« Several published studies

« Hashimoto & Sheiner, J Pharmacokin Biopharm, 1991
« Jonsson, Wade & Karlsson, J Pharmacokin Biopharm, 1996

« Evaluation of with respect to
* number of patients (N), number of samples per patient (n)
« sampling times
« number of occasions per patient, number of samples per occasion

* Main limitation
* very time consuming
 only limited number of designs evaluated




Evaluation of designs in NLMEM by

clinical trial simulation

« Several published studies

« Hashimoto & Sheiner, J Pharmacokin Biopharm, 1991
« Jonsson, Wade & Karlsson, J Pharmacokin Biopharm, 1996

« Evaluation of with respect to

* number of patients (N), number of samples per patient (n)
« sampling times
« number of occasions per patient, number of samples per occasion

* Main limitation
* very time consuming
 only limited number of designs evaluated

» Approach for design evaluation without simulation
based on Fisher Information matrix (FIM)




Population Optimum Design of

Experiments
- Multidisciplinary group: PODE
initiated by Barbara Bogacka & France Mentre in 2006 '”\

discuss theory of optimum experimental design in NLMEM and their
application in drug development

www.maths.gmul.ac.uk/~bb/PODE/PODE2017.html

- One day workshop
- May 2006: London, University of London (B. Bogacka)
» September 2017: Basel, Novartis = 100 participants




Population Optimum Design of

Experiments
- Multidisciplinary group: PODE

initiated by Barbara Bogacka & France Mentrée in 2006 "\

discuss theory of optimum experimental design in NLMEM and their
application in drug development

www.maths.gmul.ac.uk/~bb/PODE/PODE2017.html
- One day workshop

May 2006: London, University of London (B. Bogacka)
» September 2017: Basel, Novartis = 100 participants

- Distribution list: PopDesign
organised by S. Duffull since 2007
to register: http://lists.otago.ac.nz/listinfo/popdesign

to send an email: popdesign@lists.otago.ac.nz
any guestions/comments on design in NLMEM and software tools

answers by all members of PoDe



PODE Meetings in Europe
? |

2008: Univ. of Paris Diderot
? 2009: Pavlov State Medical Univ.

) St Petersburg
2010 beyer ehering phame N weden with PAGE)
L2212 Univ. of Pas Diserot__ x Mondo i 5

Berlin
sandwich (with PAGE)
2014: Roche
? Paiis

Russia
Uppsal :

CH
Basel

g
v

Germany
France

2017: Novartis



PODE Meetings in Europe
?

o

3 2009: Pavlov State Medical Univ.

R St Petersburg
2010 s screnng e\ Pueden it PAGE

t A  Berlin

QWICh (yith PAGE

2014: Roche - sGermar~
&. Paris ¢

? France

2008: Univ. of Paris Diderot = Russia
L )

ppsal

2017: Novartis

Y



New method for computing FIM in
NLMEM with discrete data

* Analytical expression for FIM in NLMEM (in current design
software programs)

* first order linearisation of model (FO)
* limitations in case of complex nonlinear models and/or large
variability

 FIM for discrete longitudinal data

* Methods based on approximations

(Ogungbenro & Aarons. J Pharmacokinet Pharmacodyn, 2011 ; Waite
& Woods, Biometrika, 2015)




New method for computing FIM in
NLMEM with discrete data

* Analytical expression for FIM in NLMEM (in current design
software programs)

* first order linearisation of model (FO)
* limitations in case of complex nonlinear models and/or large
variability

 FIM for discrete longitudinal data

* Methods based on approximations

(Ogungbenro & Aarons. J Pharmacokinet Pharmacodyn, 2011 ; Waite
& Woods, Biometrika, 2015)

» New approaches for computation of FIM without
linearisation

* Monte Carlo - Adaptive Gaussian Quadrature (MC-AGQ) (Ueckert &
Mentré, Comput Stat Data Anal, 2017)

* Monte Carlo — Hamiltonian Monte Carlo (MC-HMC) (Riviere, Ueckert &
Mentré, Biostatistics, 2016)

g . /’}*‘(,:\‘ Integrated DEsign and Analysis
EU FP7 / HEALTH ‘ ' I O p '—3;?‘\*"/ "} of small population group trials




New method for computing FIM in
NLMEM with discrete data

Compurtational Statistics and Data Analysis 111 (2017) 203-219

M
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A new method for evaluation of the Fisher information @Cmmm
matrix for discrete mixed effect models using Monte Carlo

sampling and adaptive Gaussian quadrature

Sebastian Ueckert®, France Mentré

Biostatistics (2016). 17. 4, pp. 737-750
doi:10.1093/biostatistics/kxw020
Advance Access publication on May 10, 2016

An MCMC method for the evaluation of the Fisher
information matrix for non-linear mixed effect models
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Model averaging for robust designs

« Design evaluation requires knowledge on model and parameters

- Local optimal design: given a model and a priori values for population
parameter - D-optimal design

« Alternative: Robust designs

- Take into account uncertainty on parameters (ED-optimal design)
- Over a set of candidate models (model averaging as in MCP-MOD)

 FIM computed using MC-HMC in R-package MXFIM calling RStan

MIXFIM: Evaluation of the FIM in NLMEMs using MCMC

Evaluation and optimization of the Fisher Information Matrix in NonLinear Mixed Effect Models using Markov Chains Monte Carlo for continuous and discrete data.

Version: 1.0

Depends: R (= 3.0.2), rstan (= 2.7.0-1), mvinorm (= 1.0-2), gegplot2 (= 1.0.1)
Published: 2015-08-31

Author: Marie-Karelle Riviere-Jourdan and France Mentre

Maintainer: Marie-Karelle Riviere-Jourdan <eldamjh at gmail.com>

License: GPL-3

Copyright: All files are copyright Institut National de la Sante Et de la Recherche Medicale.
NeedsCompilation: no

CRAN checks: MIXFIM results




« M= Fisher information matrix (FIM)

= = {N, ¢} = population design
* N =number of individuals, £ = elementary design

M candidate models (m = 1,...,M)

* w,, = weight quantifying prior belief between models
Z%=1 Wn = 1

y; = vector of observations for individual i

P()’Jbl) — hm(yi' E' Q(Hm» bi' Zi' :Bm))
1, fixed effects, b, random effects ~ N (0, (1)
z; covariates, ., covariate effects

N patients (/= 1,...,N): (y;|b) are assumed independent
Y,, = population parameters vector of length P,
(s Dy 1B10)




FIM and optimality criteria

MWy E) =N XM, %)

dlog(L(y, ¥, )) dlog(L(y,¥,))"
M(wm»g)25y< Og(al/()ylp )) Og(allgylp ))>

Ly, ¥,) = [p(Ib,,,) p(bl,,) db

Two integrals to compute:
w.r.t y (using MC) and w.r.t b (using HMC)




FIM and optimality criteria

MWy E) =N XM, %)

dlog(L(y,¥,))dlog(L(y,v,))"
M(Ebm»g):Ey( Og(al/()ylp )) Og(allgylp ))>

Ly, ¥,) = [p(Ib,,,) p(bl,,) db

Two integrals to compute:
w.r.t y (using MC) and w.r.t b (using HMC)

—> D-optimality for model m
1
Ppm(E) = Det(M (Y, E))P

- Compound D-optimality (Atkinson & Bogacka, 1997)

M
O, (E) = 1_[ Op 1 (5)
m=1




Example of repeated count data

Daily count of events that we want to prevent

Poisson model for repeated count response data for each patient

k e_}‘

* P(y=k|b) =
« Each patient observed at 3 dose levels (one placebo) during x days

Subject i=1 Subject i=2 Subject i=3 Subject i=4
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Several candidate models for the link between log(A) and dose

A: mean number of events / day in a patient

Integrated DEsign and Analysis
of small population group trials
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Five models of effect of dose on decreasing
Poisson parameter

d
M1: log(2)=64(1 _W) M2: log(2)=64(1—6,d) M3: log(2.)=64(1—8log(d+ 1))
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Design optimisation

Number of subjects N =60

Number of days n = 10 days / dose
Constraints Number of doses 3 doses / patients

Choice of doses d,= 0 (placebo) - fixed

d,, d; optimized from 0.1to 1
(step 0.1, no replication)

Combinatorial Evaluation of FIM for 5000 MC
Optimization  all possible designs 200 HMC

For each model D-optimality

Compound D-optimality (averaging for

Over 5 models uncertainty on model, w,, =1/5)




Results: D-optimal design for each model

o o =
o (o) o

3rd dose

o
~

O
N

0.2 04 0.6 0.8
2nd dose

&m2=(0,0.9,1)

1.0
09
0.8 >
075
06
054

1104

0.3
0.2

howpn e

Full Imax
Linear
Log-Linear
Imax




3rd dose
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Results: D-optimal design for each model
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Results: loss of efficiency if wrong model

M1 M2 M3 M5
Full Imax Linear Log-Linear Quadratic

€,,=(0,0.4,0.5)

&v2>=(0,0.9,1)

&v3=(0,0.9,1)

8ua=(0,0.2,1)

&vs=(0,0.5,1)




Results: loss of efficiency if wrong model
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Results: loss of efficiency if wrong model
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Example of repeated binary data:
designing an RCT trial

Control Treated
1 ] @ 1 ® e o e ¢ ¢
O e @ ¢ ¢ ® o0 0 00 0O-e & e e o ®
0 2_4 6 8 10 12 0 2 _4 6 8 10 12
Time (months) Time (months)

* P = probability of 1

« Logistic random effect models

- Several candidate models for the link between logit(P) and time

* Treatment effect on ‘slope’ parameter



Four candidate models (placebo + drug effect)
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Design optimisation

Number of subjects N = 100 (50 per treatment group)

Number of samples n = 4 per individual
(from O to 12 months)

Sampling times > t; =0, t, =12 months (fixed)
» t, and t; optimized from 1 to 11
months no replication)

Constraints

Combinatorial Evaluation of FIM for 5000 MC
Optimization  all possible designs 200 HMC

For each model D-optimality

Compound D-optimality (averaging

Over 4 models :
for uncertainty on models, w,, =1/4)
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Results: D-optimal design for each model
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Results: D-optimal design for each model
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Results:

loss of efficiency if wrong model

M1
Linear

&1=(0,2,11,12)

M2
Log-Linear

M3
Quadratic

M4
Exponential

&v2=(0,1,8,11)

&vs=(0,4,5,11)

92%

90%

81%

&vs=(0,6,11,12)

83%

88%




Results: loss of efficiency if wrong model
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Results:

loss of efficiency if wrong model
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Results: NSN for average power of 90% smaller

with optimal design
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Discussion

«  MC-HMC method for computation of FIM without linearization enables
applications to design optimization for NLMEM with discrete data

- Extension of this method to propose robust optimal designs accounting
for uncertainty w.r.t. models (and parameters)

« Computationally challenging




Discussion

«  MC-HMC method for computation of FIM without linearization enables
applications to design optimization for NLMEM with discrete data

- Extension of this method to propose robust optimal designs accounting
for uncertainty w.r.t. models (and parameters)

« Computationally challenging

Perspectives
* Replacement of MC by more efficient approach: gquasi-random
sampling
 Application to continuous data, to other type of discrete data and to
multivariate models

» Optimization algorithm (PSO?)
* Different elementary design across patients
* Adaptive designs




Future of optimal design in PMX....

* Ongoing work by statisticians & pharmacometricians
* Model based adaptive designs (MBAOD)




> MBAOD prototype in R (Andrew Hooker, Uppsala University) ‘ 5
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> MBAOD prototype in R (Andrew Hooker, Uppsala University) ‘, )
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 Pierrillas, Fouliard, Chenel, Hooker, Friberg, Karlsson (2018).
Model-based adaptive optimal design (MBAOD) improves
combination dose finding designs: an example in oncology. AAPS J.
20(2):309.

* Ryeznik, Sverdlov, Hooker (2018). Adaptive optimal designs for
dose-finding studies with time-to-event outcomes. AAPS J. 20(1):24.

« Dumont, Chenel, Mentré (2016). Two-stage adaptive designs in
nonlinear mixed effects models: application to pharmacokinetics in
children. Communications in Statistics - Simulation and
Computation, 45: 1511

 Lestini, Dumont, Mentré (2015). Influence of the size of cohorts in
adaptive design for nonlinear mixed effects models: an evaluation by
simulation for a pharmacokinetic and pharmacodynamic model for a
biomarker in oncology. Pharm Res. 32:3159




Future of optimal design in PMX....

* Ongoing work by statisticians & pharmacometricians

* Model based adaptive designs

* Fisher matrix for repeated discrete/count data and TTE

* Model averaging for designing and analysing experiments
* Design and identifiability of complex models

- Bayesian design




Future of optimal design in PMX....

* Ongoing work by statisticians & pharmacometricians

* Model based adaptive designs

* Fisher matrix for repeated discrete/count data and TTE

* Model averaging for designing and analysing experiments
 Design and identifiability of complex models

- Bayesian design

» More collaboration between pharmacometricians and
statisticiang./.computer scientists




‘l. Statistics and Pharmacometrics (1 S O P)

‘N, . of
Promoting the Practice and Profession of Statistics* | n te re St G rO u p (SX P) i’:"“\‘no NAL 500'21;

ARMACOMETR'C

* SXP: Special Interest Group created in 2016

» Promote collaboration between Statisticians and Pharmacometricians
 to enable each discipline to learn and grow from the other

 to develop innovative approaches to model informed drug
development

» Steering Committee (new one since 2018)

« Co-chairs: Bret Musser (Regeneron) & France Mentré (U Paris Diderot & INSERM)

« Fred Balch (U Utah), Rob Bies (U Buffalo), Kevin Dykstra (gPhametra), Manolis
Efthymios (EMA), Jonathan French (Metrum), Lena Friberg (U Uppsala), Vijay Ivaturi
(U Maryland), Jose Pinheiro (J&J), Dionne Price (FDA), Gary Rosner (Johns Hopkins),
Matt Rotelli (Merck), Mike Smith (Pfizer), Jing Su (Merck), Stacey Tannenbaum
(Astellas Pharma), Neelima Thaneer (BMS), Jingtao Wu (Takeda), Yaning Wang
(FDA)

* |SoP board liason: Siv Jonsson (U Uppsala)

* Membership open to everyone http://community.amstat.org/sxp/home




American Conference on
Pharmacometrics
October 15 - 18, 2017
Fort Lauderdale, FL

Optimal design:
just nerdy or useful?

Session Chairs:
Elodie Plan (Pharmetheus)
Steve Duffull (University of Otago)
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Optimal design: challenges within industry?
Talk of Marylore Chenel at ACOP October 17,2 017

e Study design is essential to collect informative data during drug discovery
and development (EFPIA MID3, CPT:PSP 2016)

* Non informative studies represent cost and time loss

 Non informative studies are non ethical: optimal design approaches
are not limited to vulnerable patients and should be applied for any study
Involving animals, volunteers and patients

MF_l is the lower
bound of the
estimation variance
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