Recent Development on Designs for Computer Experiments with Mixed Inputs

C. Devon Lin

Joint work with Yuanzhen He¹ and Fasheng Sun² ¹ Beijing Normal University ² Northeast Normal University

Workshop on Design of Experiments: New Challenges CIRM Marseilles 2018

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivating Example 1

Computational Fluid Dynamics (CFD) Based Computer Experiment

Queens

Data Center Thermal Management @2007 IBM Corporation

C.Devon Lin

イロト イロト イヨト イヨト

Goal: Predict the highest temperature spot with different inputs of configuration variables

Variable	Description	Values
<i>X</i> ₁	CRAC unit 1 flow rate (cfm)	0 7000 8500 10000 11500 13000
<i>X</i> ₂	CRAC unit 2 flow rate (cfm)	0 7000 8500 10000 11500 13000
<i>X</i> ₃	CRAC unit 3 flow rate (cfm)	0 2500 4000 5500
X_4	CRAC unit 4 flow rate (cfm)	0 2500 4000 5500
<i>X</i> ₅	Room temperature (F)	65 67 69 71 73 75
<i>X</i> ₆	Tile distribution (location)	Layout1 Layout2 Layout3
<i>X</i> ₇	Tile percentage open area	(0,1)

Data Center Thermal Management @2007 IBM Corporation

• • • • • • • • • • • •

Motivating Example 2

A fully 3D coupled finite element model is calibrated and verified by successfully modeling the performance of a full-scale embankment constructed on soft soil (Rowe and Liu, 2015).

 Model-based designs (Shewry and Wynn, 1987; Sacks, Welch, Mitchell and Wynn, 1989)

< **∂** > < ∃ >

- Model-based designs (Shewry and Wynn, 1987; Sacks, Welch, Mitchell and Wynn, 1989)
- Space-filling designs (Lin and Tang, 2014)
 - Latin hypercubes and their generalizations
 - Designs based on distances between points (Maximin; Minimax)
 - Uniform designs
 - Others: Lattice points, nets, Sobol' sequences, sparse grids

- Model-based designs (Shewry and Wynn, 1987; Sacks, Welch, Mitchell and Wynn, 1989)
- Space-filling designs (Lin and Tang, 2014)
 - Latin hypercubes and their generalizations
 - Designs based on distances between points (Maximin; Minimax)
 - Uniform designs
 - Others: Lattice points, nets, Sobol' sequences, sparse grids
- Designs with good or guaranteed low-dimensional projection properties (Sun and Tang, 2017; Joseph, Gul and Ba, 2015)

イロト イポト イヨト イヨト

- Model-based designs (Shewry and Wynn, 1987; Sacks, Welch, Mitchell and Wynn, 1989)
- Space-filling designs (Lin and Tang, 2014)
 - Latin hypercubes and their generalizations
 - Designs based on distances between points (Maximin; Minimax)
 - Uniform designs
 - Others: Lattice points, nets, Sobol' sequences, sparse grids
- Designs with good or guaranteed low-dimensional projection properties (Sun and Tang, 2017; Joseph, Gul and Ba, 2015)
- Sequential designs (for optimization, sensitivity analysis, contour estimation, quantile estimation, global fitting)

• • • • • • • • • • • • •

A special Latin hypercube design that can be partitioned into slices of smaller Latin hypercube designs (Qian, 2012)

Sliced Latin Hypercube Designs

- More flexible structures
 - General sliced Latin hypercubes (Xie, Xiong, Qian and Wu, 2013)
 - Bi-directional sliced Latin hypercubes (Zhou, Jin, Qian and Zhou, 2016)
 - Clustered-sliced Latin hypercubes (Huang, Lin, Liu and Yang, 2016)

▲御▶ ▲ 臣▶ ▲ 臣

Sliced Latin Hypercube Designs

- More flexible structures
 - General sliced Latin hypercubes (Xie, Xiong, Qian and Wu, 2013)
 - Bi-directional sliced Latin hypercubes (Zhou, Jin, Qian and Zhou, 2016)
 - Clustered-sliced Latin hypercubes (Huang, Lin, Liu and Yang, 2016)
- Optimal sliced Latin hypercubes (Yin, Liu and Lin, 2014; Hwang, He and Qian, 2016, Yang et al., 2016; Ba, Mayers, and Brenneman, 2015)

< ロ > < (型 > < 注 > < 注

Sliced Latin Hypercube Designs

- More flexible structures
 - General sliced Latin hypercubes (Xie, Xiong, Qian and Wu, 2013)
 - Bi-directional sliced Latin hypercubes (Zhou, Jin, Qian and Zhou, 2016)
 - Clustered-sliced Latin hypercubes (Huang, Lin, Liu and Yang, 2016)
- Optimal sliced Latin hypercubes (Yin, Liu and Lin, 2014; Hwang, He and Qian, 2016, Yang et al., 2016; Ba, Mayers, and Brenneman, 2015)
- Sampling property, central limit theorem, applications (He and Qian, 2016; Zhang and Qian, 2013)

< < >> < </p>

 A sliced Latin hypercube design is used for quantitative factors

▲御▶ ▲ 臣▶ ▲ 臣

- A sliced Latin hypercube design is used for quantitative factors
- A factorial design is used for qualitative factors

▲御▶ ▲ 臣▶ ▲ 臣

- A sliced Latin hypercube design is used for quantitative factors
- A factorial design is used for qualitative factors
- Each slice of a sliced Latin hypercube design corresponds to each level combination of qualitative variables.

0	0	B_1
0	1	B_2
1	0	B_3
1	1	B₄

- A sliced Latin hypercube design is used for quantitative factors
- A factorial design is used for qualitative factors
- Each slice of a sliced Latin hypercube design corresponds to each level combination of qualitative variables.

0	0	B_1
0	1	<i>B</i> ₂
1	0	B_3
1	1	B_4

• Each level combination of qualitative variable is replicated with the same number as the run size of *B_i*.

- A sliced Latin hypercube design is used for quantitative factors
- A factorial design is used for qualitative factors
- Each slice of a sliced Latin hypercube design corresponds to each level combination of qualitative variables.

0	0	B_1
0	1	B ₂
1	0	B_3
1	1	B_4

- Each level combination of qualitative variable is replicated with the same number as the run size of *B_i*.
- It is useful when the number of qualitative factors is small.

 Consider a computer experiment with *q* qualitative factors and *p* quantitative variables. Suppose that the *i*th qualitative factor has *s_i* levels, 1 ≤ *i* ≤ *q*.

< 🖓 > < 🖻 > < 🖻

- Consider a computer experiment with q qualitative factors and p quantitative variables. Suppose that the *i*th qualitative factor has s_i levels, $1 \le i \le q$.
- Let *D*₁ and *D*₂ be the design matrices for qualitative variables and quantitative variables, respectively.

- Consider a computer experiment with q qualitative factors and p quantitative variables. Suppose that the *i*th qualitative factor has s_i levels, $1 \le i \le q$.
- Let *D*₁ and *D*₂ be the design matrices for qualitative variables and quantitative variables, respectively.
- A design $D = (D_1, D_2)$ is called a marginally coupled design if D_2 is a Latin hypercube design and the rows in D_2 corresponding to each level of any factor in D_1 form a small Latin hypercube design. In this work, we focus on using orthogonal arrays for D_1 .

< ロ > < 同 > < 回 > < 回 > < 回 >

(1)

イロト イロト イヨト イヨト

An example of MCD

Figure: Scatter plots of x_1 versus x_2 where rows of D_2 corresponding to levels 0,1,2 of z_i are marked by \times , \circ , and +: (a) the levels of z_1 ; (b) the levels of z_2 .

Orthogonal Array

An orthogonal array *D* of strength *t*, denoted by OA($n, s_1 \cdots s_k, t$), is an $n \times k$ matrix of which the *i*th column has s_i levels $0, \ldots, s_i - 1$ and for every $n \times t$ submatrix of *D*, each of all possible level combinations appears equally often. If not all s_i 's are equal, an orthogonal array is mixed. Otherwise it is called symmetric. (Hedayat, Sloane and Stufken, 1999)

OA(9,3 ⁴ ,2)			$OA(8,2^43^1,2)$						
0	0	0	0		0	0	0	0	0
0	1	1	2		1	1	1	1	0
0	2	2	1		0	0	1	1	1
1	0	1	1		1	1	0	0	1
1	1	2	0		0	1	0	1	2
1	2	0	2		1	0	1	0	2
2	0	2	2		0	1	1	0	3
2	1	0	1		1	0	0	1	3
2	2	1	0						

An $OA(n, s_1^{q_1} \cdots s_k^{q_k}, 2)$ is said to be $(\alpha_1 \times \alpha_2 \times \cdots \times \alpha_k)$ resolvable if for $1 \le j \le k$, its rows can be partitioned into $n/(\alpha_j s_j)$ subarrays $A_1, \ldots, A_{n/(\alpha_j s_j)}$ of $\alpha_j s_j$ rows each such that each of $A_1, \ldots, A_{n/(\alpha_j s_j)}$ is an $OA(\alpha_j s_j, s_1^{q_1} \cdots s_k^{q_k}, 1)$. If $\alpha_1 = \cdots = \alpha_k = 1$, the orthogonal array is called completely resolvable.

Resolvable Orthogonal Arrays

・ 同 ト ・ ヨ ト ・ ヨ

Proposition

Given $D_1 = OA(n, s^q, 2)$, a marginally coupled design exists if and only if D_1 is a completely resolvable orthogonal array.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Given $D_1 = OA(n, s^q, 2)$, a marginally coupled design exists if and only if D_1 is a completely resolvable orthogonal array.

Proposition

Given $D_1 = OA(n, s_1^{q_1} s_2^{q_2}, 2)$ with $s_1 = \alpha_2 s_2$, a marginally coupled design exists if and only if D_1 is a $(1 \times \alpha_2)$ -resolvable orthogonal array that can be expressed as

$$\begin{pmatrix}
A_{11} & A_{12} \\
\vdots & \vdots \\
A_{m1} & A_{m2}
\end{pmatrix}$$
(2)

such that (A_{i1}, A_{i2}) is an $OA(s_1, s_1^{q_1} s_2^{q_2}, 1)$, where $m = n/s_1$, and for $1 \le i \le m$, the A_{i2} is completely resolvable.

Jeens

Define a matrix \tilde{D}_2 , let

$$\tilde{D}_{2,ij} = \left\lfloor \frac{D_{2,ij}}{s} \right\rfloor,\tag{3}$$

where $D_{2,ij}$ and $\tilde{D}_{2,ij}$ are the (i,j)th entry of D_2 and \tilde{D}_2 , and $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x.

Define a matrix \tilde{D}_2 , let

$$\tilde{D}_{2,ij} = \left\lfloor \frac{D_{2,ij}}{s} \right\rfloor,\tag{3}$$

where $D_{2,ij}$ and $\tilde{D}_{2,ij}$ are the (i,j)th entry of D_2 and \tilde{D}_2 , and $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x.

Proposition

Given D_1 is an OA(n, q, s, 2), D_2 is an LHD(n, p) and \tilde{D}_2 is defined via (3), then (D_1, D_2) is a marginally coupled design if and only if for j = 1, ..., p, (D_1, \tilde{d}_j) is an MOA($n, s^q(n/s), 2$), where \tilde{d}_j is the jth column of \tilde{D}_2 .

Maximum Number q of Columns

Lemma

(Suen, 1989) If a resolvable $OA(n, s^q, 2)$ can be partitioned into r $OA(n/r, s^q, 1)$'s, then $q \le (n-r)/(s-1)$.

く ロ ト く 同 ト く ヨ ト く ヨ

Maximum Number q of Columns

Lemma

(Suen, 1989) If a resolvable $OA(n, s^q, 2)$ can be partitioned into $r OA(n/r, s^q, 1)$'s, then $q \le (n-r)/(s-1)$.

Corollary

Let q* be the maximum value of q such that a marginally coupled design $D = (D_1, D_2)$ with $D_1 = OA(n, s^q, 2)$ exists. We have $q^* \le n/s$.

• Deng, Hung and Lin (2015)

(4間) (4 注) (4 注)

Deng, Hung and Lin (2015)

• s-level orthogonal arrays of λs^2 runs

- Deng, Hung and Lin (2015)
 - s-level orthogonal arrays of λs^2 runs
 - Mixed orthogonal arrays

- Deng, Hung and Lin (2015)
 - s-level orthogonal arrays of λs^2 runs
 - Mixed orthogonal arrays
- He, Lin and Sun (2017)

- Deng, Hung and Lin (2015)
 - s-level orthogonal arrays of λs^2 runs
 - Mixed orthogonal arrays
- He, Lin and Sun (2017)
 - Low dimensional uniformity

- Deng, Hung and Lin (2015)
 - s-level orthogonal arrays of λs^2 runs
 - Mixed orthogonal arrays
- He, Lin and Sun (2017)
 - Low dimensional uniformity
 - Non-cascading D₂'s

<**A**₽ > < ∃ > <

Deng, Hung and Lin (2015)

- s-level orthogonal arrays of λs^2 runs
- Mixed orthogonal arrays
- He, Lin and Sun (2017)
 - Low dimensional uniformity
 - Non-cascading D₂'s
- He, Lin, Sun and Lv (2017)

Deng, Hung and Lin (2015)

- s-level orthogonal arrays of λs^2 runs
- Mixed orthogonal arrays
- He, Lin and Sun (2017)
 - Low dimensional uniformity
 - Non-cascading D₂'s
- He, Lin, Sun and Lv (2017)
 - Two-level qualitative factors using subspace theory
- He, Lin and Sun (2018)

Deng, Hung and Lin (2015)

- s-level orthogonal arrays of λs^2 runs
- Mixed orthogonal arrays
- He, Lin and Sun (2017)
 - Low dimensional uniformity
 - Non-cascading D₂'s
- He, Lin, Sun and Lv (2017)
 - Two-level qualitative factors using subspace theory
- He, Lin and Sun (2018)
 - s-level qualitative factors using subspace theory

• Let *S_u* consist of *s*-level column vectors of length *u*. All of its column vectors form a space of dimension *u*.

- Let *S_u* consist of *s*-level column vectors of length *u*. All of its column vectors form a space of dimension *u*.
- For a nonzero element $\mathbf{x} \in S_u$, define

$$O(\mathbf{x}) = \{ \mathbf{y} \in S_u \mid \mathbf{y}^T \mathbf{x} = \mathbf{0} \}.$$
(4)

It can be seen that $O(\mathbf{x})$ is a (u-1)-dimensional subspace of S_u .

Suppose we choose q + p vectors $z_1, ..., z_q, x_1, ..., x_p$ from S_u , such that z_i is not in any of $O(x_j)$. We propose the following three-step construction.

- Step 1. Obtain $D_1 = (\mathbf{a}_1, \dots, \mathbf{a}_q)$ by taking all linear combinations of the rows of $(\mathbf{z}_1, \dots, \mathbf{z}_q)$, where \mathbf{a}_i is the *i*th column of D_1 ;
- Step 2. For each \mathbf{x}_j , choose u 1 independent columns from $O(\mathbf{x}_j)$ in (4) to form a generator matrix $G(\mathbf{x}_j)$. Obtain $A(\mathbf{x}_j)$ by taking all linear combinations of the rows of $G(\mathbf{x}_j)$. Apply the *method of replacement* to obtain an s^{u-1} -level column vector \mathbf{d}_j from $A(\mathbf{x}_j)$. Denote the resulting design by $\tilde{D}_2 = (\mathbf{d}_1, \dots, \mathbf{d}_p)$;
- Step 3. Obtain D_2 from \tilde{D}_2 via the *level replacement-based Latin hypercube* approach (Tang, 1993)

To have \mathbf{z}_j not in any of $O(\mathbf{x}_i)$, for $j = 1, \dots, q$ and $i = 1, \dots, p$,

イロト イポト イヨト イヨト

To have \mathbf{z}_j not in any of $O(\mathbf{x}_i)$, for $j = 1, \dots, q$ and $i = 1, \dots, p$,

The set of vectors {e₁,..., e_{u1}} ⊂ S_u, where e_i is a vector of S_u with the *i*th entry equal to 1 and the other entries equal to 0, and 1 ≤ u₁ ≤ u.

・ 同 ト ・ ヨ ト ・ ヨ

To have \mathbf{z}_j not in any of $O(\mathbf{x}_i)$, for $j = 1, \dots, q$ and $i = 1, \dots, p$,

The set of vectors {e₁,..., e_{u1}} ⊂ S_u, where e_i is a vector of S_u with the *i*th entry equal to 1 and the other entries equal to 0, and 1 ≤ u₁ ≤ u.

 $\mathcal{A} = \{ \mathbf{x} \in S_u \setminus (\cup_{i=1}^{u_1} O(\mathbf{e}_i)) \mid \text{the first entry of } \mathbf{x} \text{ is } 1 \}, \quad (5)$

(4 回) (4 回) (4 回)

To have \mathbf{z}_j not in any of $O(\mathbf{x}_i)$, for $j = 1, \dots, q$ and $i = 1, \dots, p$,

The set of vectors {e₁,..., e_{u1}} ⊂ S_u, where e_i is a vector of S_u with the *i*th entry equal to 1 and the other entries equal to 0, and 1 ≤ u₁ ≤ u.

$$\mathcal{A} = \{ \mathbf{x} \in \mathcal{S}_u \setminus (\cup_{i=1}^{u_1} O(\mathbf{e}_i)) \mid \text{the first entry of } \mathbf{x} \text{ is } \mathbf{1} \}, \quad (5)$$

•
$$n_A = (s-1)^{u_1-1}s^{u-u_1}$$
 column vectors in \mathcal{A} in (5).

・ 同 ト ・ ヨ ト ・ ヨ

Theorem

For given $\{\mathbf{e}_1, \dots, \mathbf{e}_{u_1}\}$, \mathcal{A} and n_A , if in the general construction we

- (i) choose $\mathbf{z}_i = \mathbf{e}_i$ and $\mathbf{x}_j \in \mathcal{A}$ for $1 \le i \le u_1$ and $1 \le j \le n_A$, an $MCD(D_1, D_2)$ with $D_1 = OA(s^u, u_1, s, u_1), D_2 = LHD(s^u, n_A)$ can be obtained, or,
- (ii) choose $\mathbf{z}_i \in \mathcal{A}$ and $\mathbf{x}_j = \mathbf{e}_j$ for $1 \le i \le n_A$ and $1 \le j \le u_1$, an $MCD(D_1, D_2)$ with $D_1 = OA(s^u, n_A, s, 2), D_2 = LHD(s^u, u_1)$ can be obtained,

where both D_2 's are non-cascading Latin hypercubes.

< ロ > < 同 > < 回 > < 回 > < 回 >

Subspace Construction

- The first u_1 entries of $\mathbf{x} \in \mathcal{A}$ can take $n_B = (s-1)^{u_1-1}$ distinct values, say $\{(1, b_{i2}, \dots, b_{iu_1}) \mid i = 1, \dots, n_B\}$. Let $\mathbf{b}_i = (1, b_{i2}, \dots, b_{iu_1}, 0, \dots, 0)^T$.
- Let E = {∑_{j=1}^{u₁} λ_je_j | λ_j ∈ GF(s)} consist of all linear combinations of e₁,..., e_{u₁}. For fixed *i*, b_i and A_i, 1 ≤ *i* ≤ n_B, define

$$E_i = \{ \mathbf{z} \in E \mid \mathbf{z}^T \mathbf{b}_i = 0 \} \text{ and } \overline{E}_i = E \setminus E_i.$$

If $\mathbf{z} \in \overline{E}_i$, then $\mathbf{z} \notin O(\mathbf{b}_i)$, which implies $\mathbf{z} \notin O(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{A}_i$ since the last $u - u_1$ entries of \mathbf{z} are zeros.

Define E^{*}_v to be the subset of ∩^v_{j=1} E_{ij} in which the first nonzero entry of each element is equal to 1. The value g(v) = f(v)/(s-1) is the number of elements of E^{*}_v. Define A^{*}_v = ∪^v_{j=1}A_{ij}.

Proposition

For { $\mathbf{b}_1, \ldots, \mathbf{b}_{n_B}$ } defined above, suppose that there exists a subset { $\mathbf{b}_{i_1}, \ldots, \mathbf{b}_{i_{n^*}}$ } such that any u_1 elements of the set are independent, for $n^* \leq n_B$. We have that for $1 \leq v \leq n^*$ and $1 \leq i_1 < i_2 \ldots < i_V \leq n_B$, the set $\bigcap_{j=1}^{v} \overline{E}_{i_j}$ contains f(v) elements with

$$f(v) = \begin{cases} (s-1)^{v} s^{u_{1}-v}, & 1 \le v \le u_{1}, \\ m^{*}, & u_{1}+1 \le v \le n^{*}, \end{cases}$$
(6)

where

$$m^* = s^{u_1} [1 - {\binom{v}{1}} s^{-1} + \dots + (-1)^{u_1} {\binom{v}{u_1}} s^{-u_1}] + \sum_{i=u_1+1}^{v} (-1)^{i} {\binom{v}{i}}.$$

Theorem

For E_v^* , \mathcal{A}_v^* and g(v) defined above, if in the general construction, we

(i) choose
$$\mathbf{z}_i \in E_v^*$$
 and $\mathbf{x}_j \in \mathcal{A}_v^*$, $i = 1, \dots, g(v)$ and $j = 1, \dots, vs^{u-u_1}$, an $MCD(D_1, D_2)$ with $D_1 = OA(s^u, g(v), s, 2), D_2 = LHD(s^u, vs^{u-u_1})$ can be obtained, or

(ii) choose
$$\mathbf{z}_i \in \mathcal{A}_v^*$$
 and $\mathbf{x}_j \in E_v^*$, $i = 1, ..., vs^{u-u_1}$ and $j = 1, ..., g(v)$, an $MCD(D_1, D_2)$ with $D_1 = OA(s^u, vs^{u-u_1}, s, 2), D_2 = LHD(s^u, g(v))$ can be obtained,

where both D_2 's are non-cascading Latin hypercubes.

Image: A mathematical states and a mathem

 Designs for computer experiments with both qualitative and quantitative variables

- Designs for computer experiments with both qualitative and quantitative variables
- Marginally coupled designs for run size economy

A I > A = A A

- Designs for computer experiments with both qualitative and quantitative variables
- Marginally coupled designs for run size economy
- Constructions for designs with better the overall space-filling property and the low-dimensional projection property, and flexible run sizes

• Interface between designs and analysis

- Interface between designs and analysis
- Optimal designs

• • • • • • • • • • • •

- Interface between designs and analysis
- Optimal designs
 - Pratola, Lin and Craigmile, (2018). "Optimal Design Emulator: A Point Process Approach."

< 47 ▶

- Interface between designs and analysis
- Optimal designs
 - Pratola, Lin and Craigmile, (2018). "Optimal Design Emulator: A Point Process Approach."
 - Muller, W.G. (2007). "Collecting Spatial Data: Optimum Design Of Experiments For Random Fields."

- Interface between designs and analysis
- Optimal designs
 - Pratola, Lin and Craigmile, (2018). "Optimal Design Emulator: A Point Process Approach."
 - Muller, W.G. (2007). "Collecting Spatial Data: Optimum Design Of Experiments For Random Fields."

Big data

Thank you! Q&A.

