# Recent Development on Designs for Computer Experiments with Mixed Inputs 

## C. Devon Lin

Joint work with Yuanzhen $\mathrm{He}^{1}$ and Fasheng Sun ${ }^{2}$<br>${ }^{1}$ Beijing Normal University<br>${ }^{2}$ Northeast Normal University

Workshop on Design of Experiments: New Challenges
CIRM Marseilles 2018

## Motivating Example 1

## Computational Fluid Dynamics (CFD) Based Computer Experiment



## Configuration Variables

Goal: Predict the highest temperature spot with different inputs of configuration variables

| Variable | Description | Values |
| :---: | :--- | :--- |
| $X_{1}$ | CRAC unit 1 flow rate $(\mathrm{cfm})$ | 070008500100001150013000 |
| $X_{2}$ | CRAC unit 2 flow rate $(\mathrm{cfm})$ | 070008500100001150013000 |
| $X_{3}$ | CRAC unit 3 flow rate $(\mathrm{cfm})$ | 0250040005500 |
| $X_{4}$ | CRAC unit 4 flow rate (cfm) | 0250040005500 |
| $X_{5}$ | Room temperature (F) | 656769717375 |
| $X_{6}$ | Tile distribution (location) | Layout1 Layout2 Layout3 |
| $X_{7}$ | Tile percentage open area | $(0,1)$ |

## Motivating Example 2



A fully 3D coupled finite element model is calibrated and verified by successfully modeling the performance of a full-scale embankment constructed on soft soil (Rowe and Liu, 2015).

## Design for Computer Experiments

- Model-based designs (Shewry and Wynn, 1987; Sacks, Welch, Mitchell and Wynn, 1989)


## Design for Computer Experiments

- Model-based designs (Shewry and Wynn, 1987; Sacks, Welch, Mitchell and Wynn, 1989)
- Space-filling designs (Lin and Tang, 2014)
- Latin hypercubes and their generalizations
- Designs based on distances between points (Maximin; Minimax)
- Uniform designs
- Others: Lattice points, nets, Sobol' sequences, sparse grids


## Design for Computer Experiments

- Model-based designs (Shewry and Wynn, 1987; Sacks, Welch, Mitchell and Wynn, 1989)
- Space-filling designs (Lin and Tang, 2014)
- Latin hypercubes and their generalizations
- Designs based on distances between points (Maximin; Minimax)
- Uniform designs
- Others: Lattice points, nets, Sobol' sequences, sparse grids
- Designs with good or guaranteed low-dimensional projection properties (Sun and Tang, 2017; Joseph, Gul and $\mathrm{Ba}, 2015$ )


## Design for Computer Experiments

- Model-based designs (Shewry and Wynn, 1987; Sacks, Welch, Mitchell and Wynn, 1989)
- Space-filling designs (Lin and Tang, 2014)
- Latin hypercubes and their generalizations
- Designs based on distances between points (Maximin; Minimax)
- Uniform designs
- Others: Lattice points, nets, Sobol' sequences, sparse grids
- Designs with good or guaranteed low-dimensional projection properties (Sun and Tang, 2017; Joseph, Gul and $\mathrm{Ba}, 2015$ )
- Sequential designs (for optimization, sensitivity analysis, contour estimation, quantile estimation, global fitting)


## Sliced Latin Hypercube Designs

A special Latin hypercube design that can be partitioned into slices of smaller Latin hypercube designs (Qian, 2012)

$$
B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=\left[\begin{array}{rr}
6 & 7 \\
1 & 2 \\
10 & 9 \\
11 & 6 \\
7 & 3 \\
3 & 11 \\
---1 \\
9 & 12 \\
8 & 10 \\
4 & 8 \\
12 & 4 \\
2 & 1 \\
5 & 5
\end{array}\right] \Longrightarrow\left[\begin{array}{ll}
0.42 & 0.53 \\
0.05 & 0.10 \\
0.81 & 0.66 \\
0.86 & 0.46 \\
0.57 & 0.17 \\
0.18 & 0.89 \\
\hdashline-.-1 .--. \\
0.71 & 0.94 \\
0.64 & 0.78 \\
0.28 & 0.59 \\
0.98 & 0.31 \\
0.13 & 0.07 \\
0.36 & 0.39
\end{array}\right]
$$



## Sliced Latin Hypercube Designs

- More flexible structures
- General sliced Latin hypercubes (Xie, Xiong, Qian and Wu, 2013)
- Bi-directional sliced Latin hypercubes (Zhou, Jin, Qian and Zhou, 2016)
- Clustered-sliced Latin hypercubes (Huang, Lin, Liu and Yang, 2016)


## Sliced Latin Hypercube Designs

- More flexible structures
- General sliced Latin hypercubes (Xie, Xiong, Qian and Wu, 2013)
- Bi-directional sliced Latin hypercubes (Zhou, Jin, Qian and Zhou, 2016)
- Clustered-sliced Latin hypercubes (Huang, Lin, Liu and Yang, 2016)
- Optimal sliced Latin hypercubes (Yin, Liu and Lin, 2014; Hwang, He and Qian, 2016, Yang et al., 2016; Ba, Mayers, and Brenneman, 2015)


## Sliced Latin Hypercube Designs

- More flexible structures
- General sliced Latin hypercubes (Xie, Xiong, Qian and Wu, 2013)
- Bi-directional sliced Latin hypercubes (Zhou, Jin, Qian and Zhou, 2016)
- Clustered-sliced Latin hypercubes (Huang, Lin, Liu and Yang, 2016)
- Optimal sliced Latin hypercubes (Yin, Liu and Lin, 2014; Hwang, He and Qian, 2016, Yang et al., 2016; Ba, Mayers, and Brenneman, 2015)
- Sampling property, central limit theorem, applications (He and Qian, 2016; Zhang and Qian, 2013)


## Using SLHD for CE with QQ Variables

- A sliced Latin hypercube design is used for quantitative factors


## Using SLHD for CE with QQ Variables

- A sliced Latin hypercube design is used for quantitative factors
- A factorial design is used for qualitative factors


## Using SLHD for CE with QQ Variables

- A sliced Latin hypercube design is used for quantitative factors
- A factorial design is used for qualitative factors
- Each slice of a sliced Latin hypercube design corresponds to each level combination of qualitative variables.

| 0 | 0 | $B_{1}$ |
| :--- | :--- | :--- |
| 0 | 1 | $B_{2}$ |
| 1 | 0 | $B_{3}$ |
| 1 | 1 | $B_{4}$ |

## Using SLHD for CE with QQ Variables

- A sliced Latin hypercube design is used for quantitative factors
- A factorial design is used for qualitative factors
- Each slice of a sliced Latin hypercube design corresponds to each level combination of qualitative variables.

| 0 | 0 | $B_{1}$ |
| :--- | :--- | :--- |
| 0 | 1 | $B_{2}$ |
| 1 | 0 | $B_{3}$ |
| 1 | 1 | $B_{4}$ |

- Each level combination of qualitative variable is replicated with the same number as the run size of $B_{i}$.


## Using SLHD for CE with QQ Variables

- A sliced Latin hypercube design is used for quantitative factors
- A factorial design is used for qualitative factors
- Each slice of a sliced Latin hypercube design corresponds to each level combination of qualitative variables.

| 0 | 0 | $B_{1}$ |
| :--- | :--- | :--- |
| 0 | 1 | $B_{2}$ |
| 1 | 0 | $B_{3}$ |
| 1 | 1 | $B_{4}$ |

- Each level combination of qualitative variable is replicated with the same number as the run size of $B_{i}$.
- It is useful when the number of qualitative factors is small.


## Marginally Coupled Design

- Consider a computer experiment with $q$ qualitative factors and $p$ quantitative variables. Suppose that the $i$ th qualitative factor has $s_{i}$ levels, $1 \leq i \leq q$.


## Marginally Coupled Design

- Consider a computer experiment with q qualitative factors and $p$ quantitative variables. Suppose that the $i$ th qualitative factor has $s_{i}$ levels, $1 \leq i \leq q$.
- Let $D_{1}$ and $D_{2}$ be the design matrices for qualitative variables and quantitative variables, respectively.


## Marginally Coupled Design

- Consider a computer experiment with $q$ qualitative factors and $p$ quantitative variables. Suppose that the $i$ th qualitative factor has $s_{i}$ levels, $1 \leq i \leq q$.
- Let $D_{1}$ and $D_{2}$ be the design matrices for qualitative variables and quantitative variables, respectively.
- A design $D=\left(D_{1}, D_{2}\right)$ is called a marginally coupled design if $D_{2}$ is a Latin hypercube design and the rows in $D_{2}$ corresponding to each level of any factor in $D_{1}$ form a small Latin hypercube design. In this work, we focus on using orthogonal arrays for $D_{1}$.



## An example of MCD



Figure: Scatter plots of $x_{1}$ versus $x_{2}$ where rows of $D_{2}$ corresponding to levels $0,1,2$ of $z_{i}$ are marked by $\times, \circ$, and $+:(\mathrm{a})$ the levels of $z_{1}$; (b) the levels of $z_{2}$.

## Orthogonal Array

An orthogonal array $D$ of strength $t$, denoted by $\mathrm{OA}\left(n, s_{1} \cdots s_{k}, t\right)$, is an $n \times k$ matrix of which the ith column has $s_{i}$ levels $0, \ldots, s_{i}-1$ and for every $n \times t$ submatrix of $D$, each of all possible level combinations appears equally often. If not all $s_{i}$ 's are equal, an orthogonal array is mixed. Otherwise it is called symmetric. (Hedayat, Sloane and Stufken, 1999)

| $\mathrm{OA}(9$ |  |  |  |
| :--- | :--- | :--- | :--- |
| 0 | $\left.3^{4}, 2\right)$ |  |  |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 2 |
| 0 | 2 | 2 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 2 | 0 |
| 1 | 2 | 0 | 2 |
| 2 | 0 | 2 | 2 |
| 2 | 1 | 0 | 1 |
| 2 | 2 | 1 | 0 |


| $\mathrm{OA}\left(8,2^{4} 3^{1}, 2\right)$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 2 |
| 1 | 0 | 1 | 0 | 2 |
| 0 | 1 | 1 | 0 | 3 |
| 1 | 0 | 0 | 1 | 3 |

## Resolvable Orthogonal Arrays

An $O A\left(n, s_{1}^{q_{1}} \cdots s_{k}^{q_{k}}, 2\right)$ is said to be $\left(\alpha_{1} \times \alpha_{2} \times \cdots \times \alpha_{k}\right)$ resolvable if for $1 \leq j \leq k$, its rows can be partitioned into $n /\left(\alpha_{j} s_{j}\right)$ subarrays $A_{1}, \ldots, A_{n /\left(\alpha_{j} s_{j}\right)}$ of $\alpha_{j} s_{j}$ rows each such that each of $A_{1}, \ldots, A_{n /\left(\alpha_{j} s_{j}\right)}$ is an $O A\left(\alpha_{j} s_{j}, s_{1}^{q_{1}} \cdots s_{k}^{q_{k}}, 1\right)$. If $\alpha_{1}=\cdots=\alpha_{k}=1$, the orthogonal array is called completely resolvable.

## Resolvable Orthogonal Arrays

| $\operatorname{CROA}\left(9,3^{3}, 2\right)$ | $\operatorname{CROA}\left(16,4^{2} 2^{3}, 2\right)$ |
| :---: | :---: |
| $\begin{array}{lll}0 & 0 & 0\end{array}$ | $\begin{array}{llllll}0 & 2 & 1 & 1 & 1\end{array}$ |
| 112 | $\begin{array}{llllll}3 & 1 & 0 & 0 & 1\end{array}$ |
| 221 | 2001000 |
| 0-1 ${ }^{-1}$ | $\begin{array}{lllll}1 & 3 & 0 & 1 & 0\end{array}$ |
| 120 | $\overline{3} \overline{0}^{-}{ }^{-}{ }^{-} \overline{1}-\overline{0}$ |
| 202 | $\begin{array}{lllll}0 & 3 & 1 & 0 & 0\end{array}$ |
| $0{ }^{-1} 2$ | 1220001 |
| 101 | $\begin{array}{lllll}2 & 1 & 1 & 1 & 1\end{array}$ |
| $\alpha=1$ | $\overline{0}-\overline{0}-\overline{0}-\overline{0}-\overline{1}$ |
|  | $\begin{array}{llllll}3 & 3 & 1 & 1 & 1\end{array}$ |
|  | $\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}$ |
|  | 220010 |
|  | $\overline{0}{ }^{-1} \overline{0}^{-} \overline{1}-\overline{0}$ |
|  | $\begin{array}{lllll}1 & 0 & 1 & 1 & 1\end{array}$ |
|  | 321100 |
|  | 2300001 |
|  | $\alpha_{1}=1, \alpha_{2}=2$ |

## Characterization

## Proposition

Given $D_{1}=O A\left(n, s^{q}, 2\right)$, a marginally coupled design exists if and only if $D_{1}$ is a completely resolvable orthogonal array.

## Characterization

## Proposition

Given $D_{1}=O A\left(n, s^{q}, 2\right)$, a marginally coupled design exists if and only if $D_{1}$ is a completely resolvable orthogonal array.

## Proposition

Given $D_{1}=O A\left(n, s_{1}^{q_{1}} s_{2}^{q_{2}}, 2\right)$ with $s_{1}=\alpha_{2} s_{2}$, a marginally coupled design exists if and only if $D_{1}$ is a $\left(1 \times \alpha_{2}\right)$-resolvable orthogonal array that can be expressed as

$$
\left(\begin{array}{rr}
A_{11} & A_{12}  \tag{2}\\
\vdots & \vdots \\
A_{m 1} & A_{m 2}
\end{array}\right)
$$

such that $\left(A_{i 1}, A_{i 2}\right)$ is an $O A\left(s_{1}, s_{1}^{q_{1}} s_{2}^{q_{2}}, 1\right)$, where $m=n / s_{1}$, and for $1 \leq i \leq m$, the $A_{i 2}$ is completely resolvable.

## Characterization

Define a matrix $\tilde{D}_{2}$, let

$$
\begin{equation*}
\tilde{D}_{2, i j}=\left\lfloor\frac{D_{2, i j}}{s}\right\rfloor, \tag{3}
\end{equation*}
$$

where $D_{2, i j}$ and $\tilde{D}_{2, i j}$ are the $(i, j)$ th entry of $D_{2}$ and $\tilde{D}_{2}$, and $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$.

## Characterization

Define a matrix $\tilde{D}_{2}$, let

$$
\begin{equation*}
\tilde{D}_{2, i j}=\left\lfloor\frac{D_{2, i j}}{s}\right\rfloor, \tag{3}
\end{equation*}
$$

where $D_{2, i j}$ and $\tilde{D}_{2, i j}$ are the $(i, j)$ th entry of $D_{2}$ and $\tilde{D}_{2}$, and $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$.

## Proposition

Given $D_{1}$ is an $O A(n, q, s, 2), D_{2}$ is an $\operatorname{LHD}(n, p)$ and $\tilde{D}_{2}$ is defined via (3), then $\left(D_{1}, D_{2}\right)$ is a marginally coupled design if and only if for $j=1, \ldots, p,\left(D_{1}, \tilde{d}_{j}\right)$ is an $\operatorname{MOA}\left(n, s^{q}(n / s), 2\right)$, where $\tilde{d}_{j}$ is the $j$ th column of $\tilde{D}_{2}$.

## Maximum Number $q$ of Columns

## Lemma

(Suen, 1989) If a resolvable $O A\left(n, s^{q}, 2\right)$ can be partitioned into $r$ $O A\left(n / r, s^{q}, 1\right)$ 's, then $q \leq(n-r) /(s-1)$.

## Maximum Number $q$ of Columns

## Lemma

(Suen, 1989) If a resolvable $O A\left(n, s^{q}, 2\right)$ can be partitioned into $r$ $O A\left(n / r, s^{q}, 1\right)$ 's, then $q \leq(n-r) /(s-1)$.

## Corollary

Let $q *$ be the maximum value of $q$ such that a marginally coupled design $D=\left(D_{1}, D_{2}\right)$ with $D_{1}=O A\left(n, s^{q}, 2\right)$ exists. We have $q^{*} \leq n / s$.

## Construction

- Deng, Hung and Lin (2015)


## Construction

- Deng, Hung and Lin (2015)
- $s$-level orthogonal arrays of $\lambda s^{2}$ runs


## Construction

- Deng, Hung and Lin (2015)
- $s$-level orthogonal arrays of $\lambda s^{2}$ runs
- Mixed orthogonal arrays


## Construction

- Deng, Hung and Lin (2015)
- $s$-level orthogonal arrays of $\lambda s^{2}$ runs
- Mixed orthogonal arrays
- He, Lin and Sun (2017)


## Construction

- Deng, Hung and Lin (2015)
- $s$-level orthogonal arrays of $\lambda s^{2}$ runs
- Mixed orthogonal arrays
- He, Lin and Sun (2017)
- Low dimensional uniformity


## Construction

- Deng, Hung and Lin (2015)
- $s$-level orthogonal arrays of $\lambda s^{2}$ runs
- Mixed orthogonal arrays
- He, Lin and Sun (2017)
- Low dimensional uniformity
- Non-cascading $D_{2}$ 's


## Construction

- Deng, Hung and Lin (2015)
- $s$-level orthogonal arrays of $\lambda s^{2}$ runs
- Mixed orthogonal arrays
- He, Lin and Sun (2017)
- Low dimensional uniformity
- Non-cascading $D_{2}$ 's
- He, Lin, Sun and Lv (2017)


## Construction

- Deng, Hung and Lin (2015)
- $s$-level orthogonal arrays of $\lambda s^{2}$ runs
- Mixed orthogonal arrays
- He, Lin and Sun (2017)
- Low dimensional uniformity
- Non-cascading $D_{2}$ 's
- He, Lin, Sun and Lv (2017)
- Two-level qualitative factors using subspace theory
- He, Lin and Sun (2018)


## Construction

- Deng, Hung and Lin (2015)
- $s$-level orthogonal arrays of $\lambda s^{2}$ runs
- Mixed orthogonal arrays
- He, Lin and Sun (2017)
- Low dimensional uniformity
- Non-cascading $D_{2}$ 's
- He, Lin, Sun and Lv (2017)
- Two-level qualitative factors using subspace theory
- He, Lin and Sun (2018)
- $s$-level qualitative factors using subspace theory


## Subspace Theory

- Let $S_{u}$ consist of $s$-level column vectors of length $u$. All of its column vectors form a space of dimension $u$.


## Subspace Theory

- Let $S_{u}$ consist of $s$-level column vectors of length $u$. All of its column vectors form a space of dimension $u$.
- For a nonzero element $\mathbf{x} \in S_{u}$, define

$$
\begin{equation*}
O(\mathbf{x})=\left\{\mathbf{y} \in S_{u} \mid \mathbf{y}^{\top} \mathbf{x}=0\right\} \tag{4}
\end{equation*}
$$

It can be seen that $O(\mathbf{x})$ is a $(u-1)$-dimensional subspace of $S_{u}$.

## Construction

Suppose we choose $q+p$ vectors $\mathbf{z}_{1}, \ldots, \mathbf{z}_{q}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}$ from $S_{u}$, such that $\mathbf{z}_{i}$ is not in any of $O\left(\mathbf{x}_{j}\right)$. We propose the following three-step construction.
Step 1. Obtain $D_{1}=\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{q}\right)$ by taking all linear combinations of the rows of $\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{q}\right)$, where $\mathbf{a}_{i}$ is the $i$ th column of $D_{1}$;
Step 2. For each $\mathbf{x}_{j}$, choose $u-1$ independent columns from $O\left(\mathbf{x}_{j}\right)$ in (4) to form a generator matrix $G\left(\mathbf{x}_{j}\right)$. Obtain $A\left(\mathbf{x}_{j}\right)$ by taking all linear combinations of the rows of $G\left(\mathbf{x}_{j}\right)$. Apply the method of replacement to obtain an $s^{u-1}$-level column vector $\mathbf{d}_{j}$ from $A\left(\mathbf{x}_{j}\right)$. Denote the resulting design by $\tilde{D}_{2}=\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{p}\right) ;$
Step 3. Obtain $D_{2}$ from $\tilde{D}_{2}$ via the level replacement-based Latin hypercube approach (Tang, 1993)

## Notations

To have $\mathbf{z}_{j}$ not in any of $O\left(\mathbf{x}_{i}\right)$, for $j=1, \ldots, q$ and $i=1, \ldots, p$,

## Notations

To have $\mathbf{z}_{j}$ not in any of $O\left(\mathbf{x}_{i}\right)$, for $j=1, \ldots, q$ and $i=1, \ldots, p$,

- The set of vectors $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{u_{1}}\right\} \subset S_{u}$, where $\mathbf{e}_{i}$ is a vector of $S_{u}$ with the $i$ th entry equal to 1 and the other entries equal to 0 , and $1 \leq u_{1} \leq u$.


## Notations

To have $\mathbf{z}_{j}$ not in any of $O\left(\mathbf{x}_{i}\right)$, for $j=1, \ldots, q$ and $i=1, \ldots, p$,

- The set of vectors $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{u_{1}}\right\} \subset S_{u}$, where $\mathbf{e}_{i}$ is a vector of $S_{u}$ with the $i$ th entry equal to 1 and the other entries equal to 0 , and $1 \leq u_{1} \leq u$.

$$
\begin{equation*}
\mathcal{A}=\left\{\mathbf{x} \in S_{u} \backslash\left(\cup_{i=1}^{u_{1}} O\left(\mathbf{e}_{i}\right)\right) \mid \text { the first entry of } \mathbf{x} \text { is } 1\right\}, \tag{5}
\end{equation*}
$$

## Notations

To have $\mathbf{z}_{j}$ not in any of $O\left(\mathbf{x}_{i}\right)$, for $j=1, \ldots, q$ and $i=1, \ldots, p$,

- The set of vectors $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{u_{1}}\right\} \subset S_{u}$, where $\mathbf{e}_{i}$ is a vector of $S_{u}$ with the $i$ th entry equal to 1 and the other entries equal to 0 , and $1 \leq u_{1} \leq u$.
0

$$
\begin{equation*}
\mathcal{A}=\left\{\mathbf{x} \in S_{u} \backslash\left(\cup_{i=1}^{u_{1}} O\left(\mathbf{e}_{i}\right)\right) \mid \text { the first entry of } \mathbf{x} \text { is } 1\right\} \tag{5}
\end{equation*}
$$

- $n_{A}=(s-1)^{u_{1}-1} s^{u-u_{1}}$ column vectors in $\mathcal{A}$ in (5).


## Theorem

For given $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{u_{1}}\right\}, \mathcal{A}$ and $n_{A}$, if in the general construction we
(i) choose $\mathbf{z}_{i}=\mathbf{e}_{i}$ and $\mathbf{x}_{j} \in \mathcal{A}$ for $1 \leq i \leq u_{1}$ and $1 \leq j \leq n_{A}$, an $M C D\left(D_{1}, D_{2}\right)$ with $D_{1}=O A\left(s^{u}, u_{1}, s, u_{1}\right), D_{2}=\operatorname{LHD}\left(s^{u}, n_{A}\right)$ can be obtained, or,
(ii) choose $\mathbf{z}_{i} \in \mathcal{A}$ and $\mathbf{x}_{j}=\mathbf{e}_{j}$ for $1 \leq i \leq n_{A}$ and $1 \leq j \leq u_{1}$, an $\operatorname{MCD}\left(D_{1}, D_{2}\right)$ with $D_{1}=O A\left(s^{u}, n_{A}, s, 2\right), D_{2}=\operatorname{LHD}\left(s^{u}, u_{1}\right)$ can be obtained,
where both $D_{2}$ 's are non-cascading Latin hypercubes.

## Subspace Construction

- The first $u_{1}$ entries of $\mathbf{x} \in \mathcal{A}$ can take $n_{B}=(s-1)^{u_{1}-1}$ distinct values, say $\left\{\left(1, b_{i 2}, \ldots, b_{i u_{1}}\right) \mid i=1, \ldots, n_{B}\right\}$. Let $\mathbf{b}_{i}=\left(1, b_{i 2}, \ldots, b_{i u_{1}}, 0, \ldots, 0\right)^{T}$.
- Let $E=\left\{\sum_{j=1}^{u_{1}} \lambda_{j} \mathbf{e}_{j} \mid \lambda_{j} \in G F(s)\right\}$ consist of all linear combinations of $\mathbf{e}_{1}, \ldots, \mathbf{e}_{u_{1}}$. For fixed $i, \mathbf{b}_{i}$ and $\mathcal{A}_{i}$, $1 \leq i \leq n_{B}$, define

$$
E_{i}=\left\{\mathbf{z} \in E \mid \mathbf{z}^{T} \mathbf{b}_{i}=0\right\} \text { and } \bar{E}_{i}=E \backslash E_{i} .
$$

If $\mathbf{z} \in \bar{E}_{i}$, then $\mathbf{z} \notin O\left(\mathbf{b}_{i}\right)$, which implies $\mathbf{z} \notin O(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{A}_{i}$ since the last $u-u_{1}$ entries of $\mathbf{z}$ are zeros.

- Define $E_{v}^{*}$ to be the subset of $\cap_{j=1}^{v} \bar{E}_{i_{j}}$ in which the first nonzero entry of each element is equal to 1 . The value $g(v)=f(v) /(s-1)$ is the number of elements of $E_{v}^{*}$. Define $\mathcal{A}_{v}^{*}=\cup_{j=1}^{v} \mathcal{A}_{i j}$.


## Proposition

For $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n_{B}}\right\}$ defined above, suppose that there exists a subset $\left\{\mathbf{b}_{i_{1}}, \ldots, \mathbf{b}_{i_{n^{*}}}\right\}$ such that any $u_{1}$ elements of the set are independent, for $n^{*} \leq n_{B}$. We have that for $1 \leq v \leq n^{*}$ and $1 \leq i_{1}<i_{2} \ldots<i_{v} \leq n_{B}$, the set $\cap_{j=1}^{v} \bar{E}_{i_{j}}$ contains $f(v)$ elements with

$$
f(v)= \begin{cases}(s-1)^{v} s^{u_{1}-v}, & 1 \leq v \leq u_{1}  \tag{6}\\ m^{*}, & u_{1}+1 \leq v \leq n^{*}\end{cases}
$$

where

$$
m^{*}=s^{u_{1}}\left[1-\binom{v}{1} s^{-1}+\cdots+(-1)^{u_{1}}\binom{v}{u_{1}} s^{-u_{1}}\right]+\sum_{i=u_{1}+1}^{v}(-1)^{i}\binom{v}{i} .
$$

## Theorem

For $E_{v}^{*}, \mathcal{A}_{v}^{*}$ and $g(v)$ defined above, if in the general construction, we
(i) choose $\mathbf{z}_{i} \in E_{v}^{*}$ and $\mathbf{x}_{j} \in \mathscr{A}_{v}^{*}, i=1, \ldots, g(v)$ and
$j=1, \ldots, v s^{u-u_{1}}$, an $\operatorname{MCD}\left(D_{1}, D_{2}\right)$ with
$D_{1}=O A\left(s^{u}, g(v), s, 2\right), D_{2}=L H D\left(s^{u}, v s^{u-u_{1}}\right)$ can be obtained, or
(ii) choose $\mathbf{z}_{i} \in \mathscr{A}_{v}^{*}$ and $\mathbf{x}_{j} \in E_{v}^{*}, i=1, \ldots, v s^{u-u_{1}}$ and $j=1, \ldots, g(v)$, an $\operatorname{MCD}\left(D_{1}, D_{2}\right)$ with $D_{1}=O A\left(s^{u}, v s^{u-u_{1}}, s, 2\right), D_{2}=\operatorname{LHD}\left(s^{u}, g(v)\right)$ can be obtained,
where both $D_{2}$ 's are non-cascading Latin hypercubes.

## Conclusion

- Designs for computer experiments with both qualitative and quantitative variables


## Conclusion

- Designs for computer experiments with both qualitative and quantitative variables
- Marginally coupled designs for run size economy


## Conclusion

- Designs for computer experiments with both qualitative and quantitative variables
- Marginally coupled designs for run size economy
- Constructions for designs with better the overall space-filling property and the low-dimensional projection property, and flexible run sizes


## Challenges

- Interface between designs and analysis


## Challenges

- Interface between designs and analysis
- Optimal designs


## Challenges

- Interface between designs and analysis
- Optimal designs
- Pratola, Lin and Craigmile, (2018). "Optimal Design Emulator: A Point Process Approach."


## Challenges

- Interface between designs and analysis
- Optimal designs
- Pratola, Lin and Craigmile, (2018). "Optimal Design Emulator: A Point Process Approach."
- Muller, W.G. (2007). "Collecting Spatial Data: Optimum Design Of Experiments For Random Fields."


## Challenges

- Interface between designs and analysis
- Optimal designs
- Pratola, Lin and Craigmile, (2018). "Optimal Design Emulator: A Point Process Approach."
- Muller, W.G. (2007). "Collecting Spatial Data: Optimum Design Of Experiments For Random Fields."
- Big data


## Thank you! Q\&A.

