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Motivating Example 1

Data Center Thermal Management @2007 IBM Corporation
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Configuration Variables

Goal: Predict the highest temperature spot with different inputs
of configuration variables

Variable Description Values
X1 CRAC unit 1 flow rate (cfm) 0 7000 8500 10000 11500 13000
X2 CRAC unit 2 flow rate (cfm) 0 7000 8500 10000 11500 13000
X3 CRAC unit 3 flow rate (cfm) 0 2500 4000 5500
X4 CRAC unit 4 flow rate (cfm) 0 2500 4000 5500
X5 Room temperature (F) 65 67 69 71 73 75
X6 Tile distribution (location) Layout1 Layout2 Layout3
X7 Tile percentage open area (0,1)

Data Center Thermal Management @2007 IBM Corporation
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Motivating Example 2

A fully 3D coupled finite element model is calibrated and verified
by successfully modeling the performance of a full-scale
embankment constructed on soft soil (Rowe and Liu, 2015).
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Design for Computer Experiments

Model-based designs (Shewry and Wynn, 1987; Sacks,
Welch, Mitchell and Wynn, 1989)

Space-filling designs (Lin and Tang, 2014)
Latin hypercubes and their generalizations
Designs based on distances between points (Maximin;
Minimax)
Uniform designs
Others: Lattice points, nets, Sobol’ sequences, sparse grids

Designs with good or guaranteed low-dimensional
projection properties (Sun and Tang, 2017; Joseph, Gul
and Ba, 2015)

Sequential designs (for optimization, sensitivity analysis,
contour estimation, quantile estimation, global fitting)
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Sliced Latin Hypercube Designs

A special Latin hypercube design that can be partitioned into
slices of smaller Latin hypercube designs (Qian, 2012)

B =

[
B1

B2

]
=
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Sliced Latin Hypercube Designs

More flexible structures

General sliced Latin hypercubes (Xie, Xiong, Qian and Wu,
2013)
Bi-directional sliced Latin hypercubes (Zhou, Jin, Qian and
Zhou, 2016)
Clustered-sliced Latin hypercubes (Huang, Lin, Liu and
Yang, 2016)

Optimal sliced Latin hypercubes (Yin, Liu and Lin, 2014; Hwang,
He and Qian, 2016, Yang et al., 2016; Ba, Mayers, and
Brenneman, 2015)

Sampling property, central limit theorem, applications (He and
Qian, 2016; Zhang and Qian, 2013)
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Using SLHD for CE with QQ Variables

A sliced Latin hypercube design is used for quantitative
factors

A factorial design is used for qualitative factors

Each slice of a sliced Latin hypercube design corresponds
to each level combination of qualitative variables.

0 0 B1

0 1 B2

1 0 B3

1 1 B4

Each level combination of qualitative variable is replicated
with the same number as the run size of Bi .
It is useful when the number of qualitative factors is small.
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Marginally Coupled Design

Consider a computer experiment with q qualitative factors
and p quantitative variables. Suppose that the i th
qualitative factor has si levels, 1≤ i ≤ q.

Let D1 and D2 be the design matrices for qualitative
variables and quantitative variables, respectively.

A design D = (D1,D2) is called a marginally coupled
design if D2 is a Latin hypercube design and the rows in D2

corresponding to each level of any factor in D1 form a small
Latin hypercube design. In this work, we focus on using
orthogonal arrays for D1.
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D1 D2

z1 z2 x1 x2

0 0 −2 −2
0 1 −1 4
0 2 3 −1
1 0 0 1
1 1 2 −3
1 2 −3 2
2 0 4 3
2 1 −4 0
2 2 1 −4

(1)
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An example of MCD
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Figure: Scatter plots of x1 versus x2 where rows of D2 corresponding
to levels 0,1,2 of zi are marked by ×, ◦, and +: (a) the levels of z1; (b)
the levels of z2.
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Orthogonal Array

An orthogonal array D of strength t , denoted by
OA(n,s1 · · ·sk , t), is an n× k matrix of which the i th column has
si levels 0, . . . ,si −1 and for every n× t submatrix of D, each of
all possible level combinations appears equally often. If not all
si ’s are equal, an orthogonal array is mixed. Otherwise it is
called symmetric. (Hedayat, Sloane and Stufken, 1999)

OA(9,34,2) OA(8,2431,2)
0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0

0 0 0 0 0
1 1 1 1 0
0 0 1 1 1
1 1 0 0 1
0 1 0 1 2
1 0 1 0 2
0 1 1 0 3
1 0 0 1 3
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Resolvable Orthogonal Arrays

An OA(n,sq1
1 · · ·s

qk
k ,2) is said to be (α1×α2×·· ·×αk)

resolvable if for 1≤ j ≤ k , its rows can be partitioned into
n/(αjsj) subarrays A1, . . . ,An/(αj sj) of αjsj rows each such that
each of A1, . . . ,An/(αj sj) is an OA(αjsj ,s

q1
1 · · ·s

qk
k ,1). If

α1 = · · ·= αk = 1, the orthogonal array is called completely
resolvable.
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Resolvable Orthogonal Arrays

CROA(9,33,2) CROA(16,4223,2)
0 0 0
1 1 2
2 2 1
0 1 1
1 2 0
2 0 2
0 2 2
1 0 1
2 1 0
α = 1

0 2 1 1 1
3 1 0 0 1
2 0 1 0 0
1 3 0 1 0
3 0 0 1 0
0 3 1 0 0
1 2 0 0 1
2 1 1 1 1
0 0 0 0 1
3 3 1 1 1
1 1 1 0 0
2 2 0 1 0
0 1 0 1 0
1 0 1 1 1
3 2 1 0 0
2 3 0 0 1
α1 = 1,α2 = 2
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Characterization

Proposition

Given D1 = OA(n,sq,2), a marginally coupled design exists if
and only if D1 is a completely resolvable orthogonal array.

Proposition

Given D1 = OA(n,sq1
1 sq2

2 ,2) with s1 = α2s2, a marginally
coupled design exists if and only if D1 is a (1×α2)-resolvable
orthogonal array that can be expressed as A11 A12

...
...

Am1 Am2

 (2)

such that (Ai1,Ai2) is an OA(s1,s
q1
1 sq2

2 ,1), where m = n/s1, and
for 1≤ i ≤m, the Ai2 is completely resolvable.
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Characterization

Define a matrix D̃2, let

D̃2,ij =
⌊D2,ij

s

⌋
, (3)

where D2,ij and D̃2,ij are the (i, j)th entry of D2 and D̃2, and bxc
denotes the greatest integer less than or equal to x .

Proposition

Given D1 is an OA(n,q,s,2), D2 is an LHD(n,p) and D̃2 is
defined via (3), then (D1,D2) is a marginally coupled design if
and only if for j = 1, . . . ,p, (D1, d̃j) is an MOA(n,sq(n/s),2),
where d̃j is the jth column of D̃2.
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Maximum Number q of Columns

Lemma

(Suen, 1989) If a resolvable OA(n,sq,2) can be partitioned into r
OA(n/r ,sq,1)’s, then q ≤ (n− r)/(s−1).

Corollary

Let q∗ be the maximum value of q such that a marginally
coupled design D = (D1,D2) with D1 = OA(n,sq,2) exists. We
have q∗ ≤ n/s.
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Construction

Deng, Hung and Lin (2015)

s-level orthogonal arrays of λs2 runs
Mixed orthogonal arrays

He, Lin and Sun (2017)
Low dimensional uniformity
Non-cascading D2’s

He, Lin, Sun and Lv (2017)
Two-level qualitative factors using subspace theory

He, Lin and Sun (2018)
s-level qualitative factors using subspace theory
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Subspace Theory

Let Su consist of s-level column vectors of length u. All of
its column vectors form a space of dimension u.

For a nonzero element x ∈ Su, define

O(x) = {y ∈ Su | yT x = 0}. (4)

It can be seen that O(x) is a (u−1)-dimensional subspace
of Su.
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Construction

Suppose we choose q+p vectors z1, . . . ,zq,x1, . . . ,xp from Su,
such that zi is not in any of O(xj). We propose the following
three-step construction.

Step 1. Obtain D1 = (a1, . . . ,aq) by taking all linear combinations of
the rows of (z1, . . . ,zq), where ai is the i th column of D1;

Step 2. For each xj , choose u−1 independent columns from O(xj)
in (4) to form a generator matrix G(xj). Obtain A(xj) by
taking all linear combinations of the rows of G(xj). Apply
the method of replacement to obtain an su−1-level column
vector dj from A(xj). Denote the resulting design by
D̃2 = (d1, . . . ,dp);

Step 3. Obtain D2 from D̃2 via the level replacement-based Latin
hypercube approach (Tang, 1993)
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Notations

To have zj not in any of O(xi) , for j = 1, . . . ,q and i = 1, . . . ,p,

The set of vectors {e1, . . . ,eu1} ⊂ Su, where ei is a vector
of Su with the i th entry equal to 1 and the other entries
equal to 0, and 1≤ u1 ≤ u.

A = {x ∈ Su \ (∪u1
i=1O(ei)) | the first entry of x is 1}, (5)

nA = (s−1)u1−1su−u1 column vectors in A in (5).
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Theorem

For given {e1, . . . ,eu1}, A and nA, if in the general construction
we

(i) choose zi = ei and xj ∈ A for 1≤ i ≤ u1 and 1≤ j ≤ nA, an
MCD(D1,D2) with D1 = OA(su,u1,s,u1),D2 = LHD(su,nA)
can be obtained, or,

(ii) choose zi ∈ A and xj = ej for 1≤ i ≤ nA and 1≤ j ≤ u1, an
MCD(D1,D2) with D1 = OA(su,nA,s,2),D2 = LHD(su,u1)
can be obtained,

where both D2’s are non-cascading Latin hypercubes.
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Subspace Construction

The first u1 entries of x ∈ A can take nB = (s−1)u1−1

distinct values, say {(1,bi2, . . . ,biu1) | i = 1, . . . ,nB}. Let
bi = (1,bi2, . . . ,biu1,0, . . . ,0)

T .

Let E = {∑u1
j=1 λjej | λj ∈ GF(s)} consist of all linear

combinations of e1, . . . ,eu1 . For fixed i , bi and Ai ,
1≤ i ≤ nB, define

Ei = { z ∈ E | zT bi = 0 } and E i = E \Ei .

If z ∈ E i , then z /∈ O(bi), which implies z /∈ O(x) for all
x ∈ Ai since the last u−u1 entries of z are zeros.

Define E∗v to be the subset of ∩v
j=1E ij in which the first

nonzero entry of each element is equal to 1. The value
g(v) = f (v)/(s−1) is the number of elements of E∗v .
Define A∗v = ∪v

j=1Aij .
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Proposition

For {b1, . . . ,bnB} defined above, suppose that there exists a
subset {bi1, . . . ,bin∗} such that any u1 elements of the set are
independent, for n∗ ≤ nB. We have that for 1≤ v ≤ n∗ and
1≤ i1 < i2 . . . < iv ≤ nB, the set ∩v

j=1E ij contains f (v) elements
with

f (v) =

{
(s−1)v su1−v , 1≤ v ≤ u1,

m∗, u1 +1≤ v ≤ n∗,
(6)

where
m∗= su1[1−

(v
1

)
s−1+ · · ·+(−1)u1

( v
u1

)
s−u1]+∑

v
i=u1+1(−1)i

(v
i

)
.
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Theorem

For E∗v , A∗v and g(v) defined above, if in the general
construction, we

(i) choose zi ∈ E∗v and xj ∈ A∗v , i = 1, . . . ,g(v) and
j = 1, . . . ,vsu−u1 , an MCD(D1,D2) with
D1 = OA(su,g(v),s,2),D2 = LHD(su,vsu−u1) can be
obtained, or

(ii) choose zi ∈ A∗v and xj ∈ E∗v , i = 1, . . . ,vsu−u1 and
j = 1, . . . ,g(v), an MCD(D1,D2) with
D1 = OA(su,vsu−u1,s,2),D2 = LHD(su,g(v)) can be
obtained,

where both D2’s are non-cascading Latin hypercubes.
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Conclusion

Designs for computer experiments with both qualitative and
quantitative variables

Marginally coupled designs for run size economy

Constructions for designs with better the overall
space-filling property and the low-dimensional projection
property, and flexible run sizes
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Challenges

Interface between designs and analysis

Optimal designs
Pratola, Lin and Craigmile, (2018). “Optimal Design
Emulator: A Point Process Approach.”
Muller, W.G. (2007). “Collecting Spatial Data: Optimum
Design Of Experiments For Random Fields.”

Big data
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Thank you! Q&A.
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