

Implementation of optimal experimental design algorithms on a quantum computer

> Sergei Leonov (ICON Innovation Center) Joint work with Valerii Fedorov

> > April 30, 2018

Outline

- Motivation 1: collaboration with Lockheed Martin on quantum computing
- Motivation 2: current landscape in oncology studies as a driver for better modeling
- Examples of designs: combinatorial and model-based
- Quantum computing: some examples

Motivation 1: Quantum computing

- About 2 years ago: start of a joint project between ICON Innovation Center and Lockheed Martin
- Exploring statistical problems to be solved on a quantum computer D-Wave: *https://www.dwavesys.com/quantum-computing*
- D-Wave: a quantum annealer, designed to solve quadratic unconstrained binary optimization problems (QUBO)

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \left[\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{h}^T \mathbf{x} \right], \tag{6}$$

elements of $n \times 1$ vector \mathbf{x} are either 0 or 1,

 \mathbf{Q} is an $n \times n$ symmetric matrix, \mathbf{h} is an $n \times 1$ vector.

Ising problem: $x'_i = \pm 1 \Rightarrow$ use $x_i = (1 + x'_i)/2$

Quantum computing

- Superposition
 - Conventional computing: a *bit* exists in one state at a time, either 0 or 1
 - A *qubit* exists in two states at one time, these states are probabilistic -> quantum computer can manipulate vast data sets simultaneously
 - Number of quantum states: 2²⁰⁰⁰ ~ 10⁶⁰⁰ for a computer with 2000 qubits (Number of atoms in the universe - ?)
- Entanglement:
 - Conventional bits interact only in a linear sequence, changing each other's state one at a time in a chain of binary operations
 - Qubits can interact directly with each other, even at great distances, altering each other's states without intermediate causal connections → potential for using computational "shortcuts" (quantum tunneling)
 - Conceptually counterintuitive

Albert Einstein's quote: "God does not play dice with the universe"

Superposition: Schrödinger's cat

Life-size cat figure in the garden of Erwin Schrödinger's house in Zurich (depending on the light conditions, the cat appears either alive or dead)

Huttenstrasse 9 8006 Zürich

Quantum computing (cont.)

- Hardware challenges: providing a super-cool environment
 - Technological challenge: "complete" isolation from the environment (vibrations, heat, light, electromagnetism,....)
 - Any energy input changes quantum states: an ideal quantum mechanical system can only exist at a temperature of absolute zero (0°K = -273.15°C = 459.67°F).
 - A processor must operate in the "nearabsolute-zero" space
 - The latest generation D-Wave system:
 15 millikelvin

https://www.dwavesys.com/tutorials/backgroundreading-series/introduction-d-wave-quantumhardware

Motivation 2: oncology studies

- Dozens of compounds (mono/combination therapies) and cancer types
- Need to screen multiple drug combinations for each cancer type
- Sponsors competing for resources (patients, research sites)
- Hundreds of clinical trials needed within the traditional setting (one treatment, one disease, one study at a time)
- Modeling is needed
 - Statistical, mechanistic
 - Operational processes (enrollment, drug supply)
 - Borrowing information between studies
- Example: dose finding (simultaneous modeling of efficacy and toxicity, including drug combinations)

Dose finding: efficacy – toxicity balance

Single drug: maximize probability of efficacy w/out toxicity

Drug combination: borrowing information between studies (composite designs)

Fedorov, Leonov (2013), Chapters 6, 8

Trial classifiers in oncology

- Number of all possible combinations = M × K × L × (?)
- Interested in drug combinations: $L \sim N(N-1)/2$, N size of the drug portfolio
- Different designs: different order of layers

Oncology: types of trials

Basket

Testing treatment effect on a specific biomarker across cancer types

Umbrella

Testing treatment effect on different biomarkers in a single cancer type

Modeling

Fusion of combinatorial and model-based design techniques

- Different type of designs within a single hierarchical framework
- Discussions with Rosemary Bailey: workshop "Design and Analysis of Experiments in Healthcare" at the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, July 2015

Starting point: ANOVA-type model, factorial designs, how to tackle the problem of a large number of drug combinations

• No dose finding today: *doses have been selected*

$$y_{ijk\ell\ell'} = \mu_{jk\ell\ell'} + \varepsilon_{ijk\ell\ell'} , \quad i = 1, \dots, n_{jk\ell\ell'} , \quad (1)$$

<u>Indices</u>: i - subject, j - subtrial, k - cancer type, ℓ, ℓ' - drugs

Modeling: combinatorial designs

J - no. of sub-trials, K – no. of cancer types, L – no. of drugs

Constraints to make a design balanced (Rosemary):

- 1. All sub-trials involve the same number of cancer types
- 2. All sub-trials use the same number of drugs
- 3. Each pair of distinct cancer types are involved together at the same nonzero number of sub-trials
- 4. Each pair of distinct drugs are used together at the same non-zero number of sub-trials
- 5. Each drug is used on each type of cancer at the same number of sub-trials

BIBD

Example: J = 10, K = 6, L = 5 (Bailey, Cameron, 2018)

(a)	Cancer	Drugs
Block	(subpopulation)	
1	C123	D15
2	C156	D12
3	C134	D23
4	C126	D34
5	C145	D45
6	C245	D13
7	C235	D24
8	C356	D35
9	C346	D14
10	C246	D25

(b)	Cancers										
Block	C1	C2	C3	C4	C5	C6					
1	D15	D15	D15								
2	D12				D12	D12					
3	D23		D23	D23							
4	D34	D34				D34					
5	D45			D45	D45						
6		D13		D13	D13						
7		D24	D24		D24						
8			D35		D35	D35					
9			D14	D14		D14					
10		D25		D25		D25					

From combinatorial to model-based designs

$$\mu_{jk\ell\ell'} = a + b_j + c_k, \qquad (2)$$

$$\mu_{jk\ell\ell'} = a + b_j + c_k + \{d_\ell \bigvee d_{\ell'}\},$$

$$\mu_{jk\ell\ell'} = a + b_j + c_k + d_\ell + d_{\ell'} + d_{\ell\ell'}, \ \ell < \ell'.$$

Goal: regression-type model,

$$y(\mathbf{x}) = \mathbf{f}^T(\mathbf{x})\boldsymbol{\beta} + \varepsilon, \ \mathbf{x} \in \mathcal{X}, \tag{3}$$

 \mathbf{x} - vector of experimental conditions; $f(\mathbf{x})$ - basis functions;

eta - unknown parameters; $\mathcal X$ - set of candidate (support) points

Candidate points, model (2), BIBD design

No	B	Block effects b_j				Cancer effects c_k			D)rug ef	fects	d_{ℓ}		
	<i>b</i> 1	b_2		b_{10}	c_1	c_2	C 3	C4	c_5	<i>c</i> 6	d_1	d_2		d_5
1	1	0	0	0	1	0	0	0	0	0	0	0	0	0
2	1	0	0	0	1	0	0	0	0	0	0	0	0	1
3	1	0	0	0	1	0	0	0	0	0	1	0	0	0
4	1	0	0	0	1	0	0	0	0	0	1	0	0	1
5	1	0	0	0	0	1	0	0	0	0	0	0	0	0
6	1	0	0	0	0	1	0	0	0	0	0	0	0	1
7	1	0	0	0	0	1	0	0	0	0	0	1	0	0
8	1	0	0	0	0	1	0	0	0	0	0	1	0	1
9	1	0	0	0	0	0	1	0	0	0	0	0	0	0
10	1	0	0	0	0	0	1	0	0	0	0	0	0	1
11	1	0	0	0	0	0	1	0	0	0	0	1	0	0
12	1	0	0	0	0	0	1	0	0	0	0	1	0	1
109	0	0	0	1	0	1	0	0	0	0	0	0	0	0
110	0	0	0	1	0	1	0	0	0	0	0	0	0	1
111	0	0	0	1	0	1	0	0	0	0	0	1	0	0
112	0	0	0	1	0	1	0	0	0	0	0	1	0	1
113	0	0	0	1	0	0	0	1	0	0	0	0	0	0
114	0	0	0	1	0	0	0	1	0	0	0	0	0	1
115	0	0	0	1	0	0	0	1	0	0	0	1	0	0
116	0	0	0	1	0	0	0	1	0	0	0	1	0	1
117	0	0	0	1	0	0	0	0	0	1	0	0	0	0
118	0	0	0	1	0	0	0	0	0	1	0	0	0	1
119	0	0	0	1	0	0	0	0	0	1	0	1	0	0
120	0	0	0	1	0	0	0	0	0	1	0	1	0	1
	x_{b1}	x_{b2}		x_{b10}	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8		x11

Set \mathcal{X} : 120 distinct support points

(b)	Cancers									
Block	C 1	C2	C3	C4	C5	C6				
1	D15	D15	D15							
2	D12				D12	D12				
3	D23		D23	D23						
4	D34	D34				D34				
5	D45			D45	D45					
6		D13		D13	D13					
7		D24	D24		D24					
8			D35		D35	D35				
9			D14	D14		D14				
10		D25		D25		D25				

Regression model, BIBD

 \mathbf{f}

The simplest linear regression model:

$$\boldsymbol{\beta} = (\beta_0; \beta_{b1}, \dots, \beta_{b10}; \beta_1 \dots, \beta_6; \beta_7, \dots, \beta_{11})^T,$$
(4)

with $\beta_0 = a$, $\beta_{b1 \to b10} = b_{1 \to 10}$, $\beta_{1 \to 6} = c_{1 \to 6}$, $\beta_{7 \to 11} = d_{1 \to 5}$,

$$\mathbf{f}(\mathbf{x}) = (1; x_{b1}, \dots, x_{b10}; x_1, \dots, x_6; x_7, \dots, x_{11})^T.$$

All parameters β cannot be estimated: constraints needed, e.g.

$$\sum_{j=1}^{10} \beta_{bj} = 0 \quad (Wu, Hamada (2000, Chapter 1.6)).$$

Simplification: exclude block terms β_{bj} , instead add interaction terms:

$$\boldsymbol{\beta} = (\beta_1 \dots, \beta_6; \ \beta_7, \dots, \beta_{11}, \beta_{12}, \dots, \beta_{21})^T,$$
(5)
$$(\mathbf{x}) = (x_1, \dots, x_6; x_7, \dots, x_{11}, x_7 x_8, \ x_7 x_9, \ \dots \ x_{10} x_{11})^T.$$

Candidate points, model (5)

Points			Can	cers					Drug	s		Comments
No	cl	c2	c3	c4	c5	c 6	dl	d2	d 3	d4	d5	
1	1	0	0	0	0	0	0	0	0	0	0	Placebo
2	1	0	0	0	0	0	1	0	0	0	0	Single drugs,
3	1	0	0	0	0	0	0	1	0	0	0	Cancer 1
4	1	0	0	0	0	0	0	0	1	0	0	
5	1	0	0	0	0	0	0	0	0	1	0	
6	1	0	0	0	0	0	0	0	0	0	1	
7	1	0	0	0	0	0	1	1	0	0	0	Pairs with D1
8	1	0	0	0	0	0	1	0	1	0	0	
9	1	0	0	0	0	0	1	0	0	1	0	
10	1	0	0	0	0	0	1	0	0	0	1	
11	1	0	0	0	0	0	0	1	1	0	0	Pairs with D2
12	1	0	0	0	0	0	0	1	0	1	0	
13	1	0	0	0	0	0	0	1	0	0	1	
14	1	0	0	0	0	0	0	0	1	1	0	Pairs with D3
15	1	0	0	0	0	0	0	0	1	0	1	
16	1	0	0	0	0	0	0	0	0	1	1	Pairs with D4
17	0	1	0	0	0	0	0	0	0	0	0	Placebo
18	0	1	0	0	0	0	1	0	0	0	0	Single drugs,
19	0	1	0	0	0	0	0	1	0	0	0	Cancer 2
22	0	1	0	0	0	0	0	0	0	0	1	
23	0	1	0	0	0	0	1	1	0	0	0	Pairs with D1
26	0	1	0	0	0	0	1	0	0	1	0	
32	0	1	0	0	0	0	0	0	0	1	1	Pairs with D4
81	0	0	0	0	0	1	0	0	0	0	0	Cancer 6
96	0	0	0	0	0	1	0	0	0	1	1	Pairs with D4
	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	

Set \mathcal{X}_2 : 96 distinct support points

Comparison of designs

Designs ξ_n : *n* support points with equal weight 1/n.

- ξ_{96}^* : all 96 support points from \mathcal{X}_2
- ξ^{*}₄₈: 48 points removed from ξ₉₆ via backward elimination, i.e., on step 1 find

$$\mathbf{x}_1^- = \arg\min_{\mathbf{x}\in\mathcal{X}_2} \mathbf{f}^T(\mathbf{x}) \mathbf{M}^{-1}(\xi_{96}) \mathbf{f}(\mathbf{x}),$$

and remove \mathbf{x}_1^- from then "current" design $\xi_{96} = \xi_{96}^*$, etc.

• ξ_{66} : 66 points obtained from BIBD design by removing replications

Design	$ {f D} ^{1/21}$	Efficiency (%)	$\mathrm{tr}\mathbf{D}/21$	$d_{av}(\mathbf{x}_i, \xi)$
ξ_{96}^{*}	13.80	100	44.1	21
ξ_{48}^*	14.56	94.8	48.3	23.6
ξ_{66}	14.76	93.5	36.7	24.06

Comparison of designs

ξ₉₆*: D-optimal
(Equivalence Theorem,
sensitivity function)

 ξ_{48} : small loss of efficiency (~5%), but possibly more practical

Cost analysis: which option is better

- Minor increase in sample size
- Substantial reduction in number of treatment arms

Back to quantum computing

- Similarities between QUBO and iterative algorithms of construction of model-based design
- Example: construction of saturated designs on a hypercube

$$y_i = \beta_0 + \mathbf{x}_i^T \boldsymbol{\beta} + \varepsilon_i, \ \mathbf{x}_i \in \mathcal{X} = \left\{ \mathbf{x} \mid \mathbf{x} \in \{0, 1\}^{m-1} \right\}.$$

Second-order exchange algorithm (Fedorov, 1972, Ch. 3.2):

Given $\xi_{N,(s)}$ find $\mathbf{x}_i^{(s)} \in \xi_{N,(s)}$ and $\mathbf{x}^{(s+1)} \in \mathscr{X} \setminus \xi_{N,(s)}$ such that their swapping maximizes the increment of

$$\frac{\mathbf{M}(\xi_{N,(s+1)})|}{|\mathbf{M}(\xi_{N,(s)})|} = 1 + \Delta_s .$$

One can verify that

$$\Delta_s = \mathbf{x}^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x} - \mathbf{x}_i^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x}_i$$

 $+\mathbf{x}^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x}_i \mathbf{x}_i^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x} - \mathbf{x}^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x} \mathbf{x}_i^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x}_i$

Second-order exchange algorithm

$$\Delta_s = \mathbf{x}^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x} - \mathbf{x}_i^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x}_i$$
$$+ \mathbf{x}^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x}_i \mathbf{x}_i^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x} - \mathbf{x}^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x} \mathbf{x}_i^T \mathbf{M}^{-1}(\xi_{N,(s)}) \mathbf{x}_i$$

 \mathbf{x}_i - current design point, \mathbf{x} - candidate point:

$$\tilde{\Delta}_{s,i}(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x}, \text{ where } \mathbf{Q} = (1 - \mathbf{x}_i^T \mathbf{M}^{-1} \mathbf{x}_i) \mathbf{M}^{-1} + \mathbf{M}^{-1} \mathbf{x}_i \mathbf{x}_i^T \mathbf{M}^{-1}$$

On each step s:

- Maximize $\tilde{\Delta}_{s,i}(\mathbf{x})$ over $\mathbf{x} \in \mathcal{X}$ for each design point \mathbf{x}_i .
- Find maximum $\Delta_{s,i}$ over design points.
- Iterative procedure (multiple steps)

Saturated design, m = 7: number of possible combinations $\sqrt{0.6 \times 10^9}$

Iterative quantum annealing on D-Wave

- Mapping the original optimization procedure to the QUBO problem wired at D-Wave machine
- Embedding algorithms to match "logical" and "physical" qubits: linking hardware and software
- Probabilistic nature: multiple solutions are typically returned
- Solutions: values that correspond to the optimal configuration of qubits found (*lowest points in the energy landscape*)
- Web API: libraries available for C, Python, and MATLAB

QMI - Quantum Machine Instruction

Interaction between classical components and quantum annealing core

- Embedding: depends on matrix Q

Number of runs

Return to the classical component and update design

Embedding: empirical solutions

24

Problem (5): how to deal with constraints

$$\mathbf{l}_1^T \mathbf{x} = 1, \ l_{1i} = 1, \ i = 1, \dots, 6; \ l_{1i} = 0, \ i = 7, \dots, 11;$$
 (8)

$$0 \le \mathbf{l}_2^T \mathbf{x} \le 2, \ \mathbf{l}_2 = \mathbf{1} - \mathbf{l}_1, \tag{9}$$

To reduce the optimization problem to QUBO:

(a) Introduce auxiliary variables $u_1, u_2 \in \{0, 1\}$ to reduce (9) to the equality

$$\mathbf{l}_2^T \mathbf{x} + u_1 + u_2 = 2. \tag{10}$$

(b) Introduce penalty functions

$$\Psi_1(\mathbf{x}) = w_1 \left[\mathbf{l}_1^T \mathbf{x} - 1 \right]^2, \Psi_2(\mathbf{x}, u_1, u_2) = w_2 \left[\mathbf{l}_2^T \mathbf{x} + u_1 + u_2 - 2 \right]^2.$$

(c) Identify "reasonable" values of weights w_1, w_2 to solve the problem

$$\{\mathbf{x}_{s}^{+}, \mathbf{x}_{s}^{-}\} = \arg\min_{\mathbf{x}\in\mathcal{X}, \mathbf{x}'\in\mathcal{X}_{N,s}; u_{1}, u_{2}} \left[\Psi_{1}(\mathbf{x}) + \Psi_{2}(\mathbf{x}, u_{1}, u_{2}) - \Delta_{s}(\mathbf{x}, \mathbf{x}')\right] ;$$

Recent activities

- Workshop "Quantum computing and its application in drug development", George Washington University, March 2017, co-organized by GWU Department of Statistics, Lockheed Martin and ICON Innovation Center
- A session at JSM 2017, July 2017 (Baltimore, MD)
- A session at CEN-ISBS 2017 conference in Vienna, August 2017
- Scientific Interest Group formed in March 2018 within Statistical Section of ASA
- A session planned at JSM 2018, August 2018 (Vancouver, BC)

References

- Bohachevsky, I., Johnson, M.E., Stein, M.L. (1986). Generalized simulated annealing for function optimization. *Technometrics*, 28(3), 209–217.
- Bailey, R.A., Cameron, P.J. (2018). Designs which allow each medical centre to treat only a limited number of cancer types with only a limited number of drugs. Available at: <u>https://arxiv.org/pdf/1803.00006.pdf</u>
- Fedorov, V.V, Leonov, S.L. (2013). *Optimal Design for Nonlinear Response Models*. Chapman & Hall/CRC Biostatistics Series, Boca Raton, FL.
- Haines, L.M. (1987). The application of the annealing algorithm to the construction of exact optimal designs for linear regression models. *Technometrics*, **29**(4), 439–447.
- Wu, C.F.J., and Hamada, M. (2000). *Experiments. Planning, Analysis, and Parameter Design Optimization*. Wiley, New York.

Questions: Sergei.Leonov@iconplc.com