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• Motivation 1: collaboration with Lockheed Martin on 
quantum computing 

• Motivation 2: current landscape in oncology studies as a 
driver for better modeling 

• Examples of designs: combinatorial and model-based  
• Quantum computing: some examples  
 

Outline 
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Motivation 1: Quantum computing 

• About 2 years ago: start of a joint project between ICON Innovation 
Center and Lockheed Martin 

• Exploring statistical problems to be solved on a quantum computer D-
Wave:      https://www.dwavesys.com/quantum-computing 

• D-Wave: a quantum annealer, designed to solve quadratic unconstrained 
binary optimization problems (QUBO) 
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Quantum computing 

• Superposition 
– Conventional computing: a bit exists in one state at a time, either 0 or 1  
– A qubit exists in two states at one time, these states are probabilistic →  

quantum computer can manipulate vast data sets simultaneously  
– Number of quantum states: 22000 ~ 10600 for a computer with 2000 qubits  

(Number of atoms in the universe - ?) 
• Entanglement:  

– Conventional bits interact only in a linear sequence, changing each other’s 
state one at a time in a chain of binary operations  

– Qubits can interact directly with each other, even at great distances, 
altering each other’s states without intermediate causal connections →  
potential for using computational “shortcuts” (quantum tunneling) 

– Conceptually counterintuitive 
 Albert Einstein’s quote: “God does not play dice with the universe”  
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Life-size cat figure in the garden of Erwin Schrödinger’s house in Zurich  
(depending on the light conditions, the cat appears either alive or dead) 

Superposition: Schrödinger's  cat 

Huttenstrasse 9 
8006 Zürich 
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Quantum computing  (cont.) 

• Hardware challenges:  providing a  
super-cool environment 
– Technological challenge: “complete” 

isolation from the environment (vibrations, 
heat, light, electromagnetism,….) 

– Any energy input changes quantum states: 
an ideal quantum mechanical system can 
only exist at a temperature of absolute zero 
(0°K = -273.15°C = 459.67°F).  

– A processor  must operate in the “near-
absolute-zero” space  

– The latest generation D-Wave system:         
15 millikelvin  

https://www.dwavesys.com/tutorials/background-
reading-series/introduction-d-wave-quantum-
hardware  

https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware
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 Dozens of compounds (mono/combination therapies) and cancer 
types 

 Need to screen multiple drug combinations for each cancer type 
 Sponsors competing for resources (patients, research sites) 
 Hundreds of clinical trials needed within the traditional setting 

(one treatment, one disease, one study at a time) 
 Modeling is needed 
 Statistical, mechanistic 
 Operational processes (enrollment, drug supply) 
 Borrowing information between studies 

 Example: dose finding (simultaneous modeling of efficacy and 
toxicity, including drug combinations) 

 

Motivation 2: oncology studies 
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Dose finding: efficacy – toxicity balance 

Single drug: maximize probability 
of efficacy w/out toxicity 

Drug combination: borrowing 
information between studies 
(composite designs)           

Mono therapy 
Combination 

Fedorov, Leonov (2013), Chapters 6, 8 
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??? 

Genotype G1 G2 … Gm … GM 

Cancer  C1 C2 … Ck … CK 

Treatment T1 T2 … Tl …  TL 

• Number of all possible combinations = M ˣ K ˣ L ˣ (?) 
• Interested in drug combinations: L ~N(N-1)/2,  N - size of the drug portfolio 
• Different designs: different order of layers 

 

Trial classifiers in oncology 
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 NSCLC 

Cancer  C1 C2 … CK 

Genotype G1 G2 … GM 

Treatment T1 T2 … TL 

Basket 

Treatment T1 T2 … TL 

Umbrella 

Cancer  C1 C2 … CK 

Genotype G1 G2 … GM 

Testing treatment effect on a  
specific biomarker across 
cancer types 

Testing treatment effect on 
different biomarkers in a 
single cancer type  

Oncology: types of trials 
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Fusion of combinatorial and model-based design techniques 
• Different type of designs within a single hierarchical framework 
• Discussions with Rosemary Bailey: workshop “Design and Analysis of 

Experiments in Healthcare” at the Isaac Newton Institute for Mathematical 
Sciences, Cambridge, UK, July 2015 

Starting point: ANOVA-type model, factorial designs, how to tackle the 
problem of a large number of drug combinations 
• No dose finding today: doses have been selected 

Modeling 
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J -  no. of sub-trials, K – no. of cancer types, L – no. of drugs 
 
Constraints to make a design balanced (Rosemary):  
1. All sub-trials involve the same number of cancer types 
2. All sub-trials use the same number of drugs 
3. Each pair of distinct cancer types are involved together at the same non-

zero number of sub-trials 
4. Each pair of distinct drugs are used together at the same non-zero number 

of sub-trials 
5. Each drug is used on each type of cancer at the same number of sub-trials 

Modeling: combinatorial designs 
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BIBD  

Example: J = 10, K = 6, L = 5 (Bailey, Cameron, 2018)  



14 

From combinatorial to model-based designs 
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Candidate points, model (2), BIBD design  
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Regression model, BIBD 
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Candidate points, model (5) 
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Comparison of designs 
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Comparison of designs 

ξ96*: D-optimal 
(Equivalence Theorem, 
sensitivity function) 
 
ξ48:  small loss of 
efficiency (~5%), but 
possibly more practical 
 
Cost analysis: which 
option is better 
• Minor increase in 

sample size 
• Substantial reduction 

in number of 
treatment arms 
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Back to quantum computing  
• Similarities between QUBO and iterative algorithms of construction of 

model-based design 
• Example: construction of saturated designs on a hypercube 
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Second-order exchange algorithm 
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Iterative quantum annealing on D-Wave  

• Mapping the original optimization procedure to the QUBO problem 
wired at D-Wave machine 

• Embedding algorithms to match “logical” and “physical” qubits: 
linking hardware and software   

• Probabilistic nature: multiple solutions are typically returned 
• Solutions: values that correspond to the optimal configuration of 

qubits found (lowest points in the energy landscape)  
• Web API:  libraries available for C, Python, and MATLAB 
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QMI - Quantum Machine Instruction 

Interaction between classical components and quantum 
annealing core 

– Embedding: depends on matrix Q 
 
 

 

 
– Call a solver 
                                   
 
– Select a solution            
 
– Return to the classical component and update design 

 

Annealing time 
 
Number of runs 
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Embedding: empirical solutions 
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Problem (5): how to deal with constraints 
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Recent activities 

• Workshop “Quantum computing and its application in drug development”, 
George Washington University, March 2017, co-organized by GWU 
Department of Statistics, Lockheed Martin and ICON Innovation Center  

• A session  at JSM 2017, July 2017 (Baltimore, MD) 
• A session at CEN-ISBS 2017 conference in Vienna, August 2017 
• Scientific Interest Group formed in March 2018 within Statistical Section of 

ASA 
• A session planned at JSM 2018, August 2018 (Vancouver, BC) 
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