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Generica: 
 
Small molecule drugs,  
simply rebuild the molecule. 
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Biosimilars: 
 
Large molecule drugs,  
cannot rebuild the Reference exactly. 
 
For admission:  
Show in a clinical trial that the  
effect of the Test is similar.  
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Patient→ treatment→ measurement  
  T    𝑦 = 𝜇 + 𝜏𝑇 + 𝑒 
   T    𝑦 = 𝜇 + 𝜏𝑇 + 𝑒 
  T    𝑦 = 𝜇 + 𝜏𝑇 + 𝑒 
  T    𝑦 = 𝜇 + 𝜏𝑇 + 𝑒 
 
  R    𝑦 = 𝜇 + 𝜏𝑅 + 𝑒 
  R    𝑦 = 𝜇 + 𝜏𝑅 + 𝑒 
  R    𝑦 = 𝜇 + 𝜏𝑅 + 𝑒 
  R    𝑦 = 𝜇 + 𝜏𝑅 + 𝑒 
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For admission of T as a biosimilar 
make sure that 𝜏𝑇 − 𝜏𝑅 is sufficiently near 0. 
 
 
However: chronic diseases. 
 
Patients get treated over a long time 
 
 R→R →R →R →R →R →R 
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Can we switch? 
 
 R→R →R →T →T →T →T 
 
Or, even, change from one to the other and 
back? 
 R→R →R →T →T →R →R 
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Can we switch? 
 
 R→R →R →T →T →T →T 
 
Or, even, change from one to another and 
back? 
 R→R →R →T →T →R →R 
 
This brings in the problem of carryover 
effects. 
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Maybe, 𝜏𝑇 ≈ 𝜏𝑅 does not even imply that the 
two drugs are truly equivalent. 
 
 
 R→R →R →R →R →R →R 
 
 T→ T →T →T → T →T →T 
 
Estimate carryover effects? 
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Model 
𝑦 = 𝑇𝑑𝜏 + 𝑆𝑑𝜒 + 𝑀𝑑𝜌 + 𝑈𝑈 + 𝑃𝑃 + 𝑒  

with  𝜏...  direct effects 
 𝜒… self carryover effects 
 𝜌… mixed carryover effects 
 𝛼… units 
 𝛽… periods 

For admission, shown already: 𝜏𝑇 ≈ 𝜏𝑅. 

For switchability, show that, additionally, 
𝜒𝑇 ≈ 𝜒𝑅 ≈ 𝜌𝑅 ≈ 𝜌𝑇. 
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Information matrix for the estimation of 
carryover effects 

𝐶𝑑 = 𝑆𝑑
𝑀𝑑

𝜔⊥ 𝑈,𝑃,𝑇𝑑 𝑆𝑑 ,𝑀𝑑 . 

 
Try the usual route: 
Step 1. Upper bound 

𝐶𝑑 ≤ 𝐶̃𝑑 = 𝐵4
𝑆𝑑
𝑀𝑑

𝜔⊥ 𝑈,𝑇𝑑 𝑆𝑑 ,𝑀𝑑 𝐵4 
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Information matrix for the estimation of 
carryover effects 

𝐶𝑑 = 𝑆𝑑
𝑀𝑑

𝜔⊥ 𝑈,𝑃,𝑇𝑑 𝑆𝑑 ,𝑀𝑑 . 

 
Try the usual route: 
Step 1. Upper bound 

𝐶𝑑 ≤ 𝐶̃𝑑 = 𝐵4
𝑆𝑑
𝑀𝑑

𝜔⊥ 𝑈,𝑇𝑑 𝑆𝑑 ,𝑀𝑑 𝐵4  
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Step 2. Split up into parts 
𝐶̃𝑑 = 𝐶𝑑𝑑𝑑 − 𝐶𝑑𝑑𝑑𝐶𝑑𝑑𝑑+ 𝐶𝑑𝑑𝑑𝑇 , 
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Step 2. Split up into parts 
𝐶̃𝑑 = 𝐶𝑑𝑑𝑑 − 𝐶𝑑𝑑𝑑𝐶𝑑𝑑𝑑+ 𝐶𝑑𝑑𝑑𝑇 , 

where 

𝐶𝑑𝑑𝑑 = 𝐵4
𝑆𝑑𝑇

𝑀𝑑
𝑇 𝜔⊥ 𝑈 𝑆𝑑 ,𝑀𝑑 𝐵4, 

𝐶𝑑𝑑𝑑 = 𝐵4
𝑆𝑑
𝑀𝑑

𝜔⊥ 𝑈 𝑇𝑑, 

𝐶𝑑22 = 𝑇𝑑𝑇𝜔⊥ 𝑈 𝑇𝑑. 
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Step 3: 
Use Kushner's method: 

𝑡𝑡𝐶̃𝑑 ≤ 𝑡𝑡𝐶𝑑𝑑𝑑 + 2𝑡𝑡𝐶𝑑𝑑𝑑𝑥 + 𝑡𝑡𝐶𝑑𝑑𝑑𝑥2 
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Step 3: 
Use Kushner's method: 

𝑡𝑡𝐶̃𝑑 ≤ 𝑡𝑡𝐶𝑑𝑑𝑑 + 2𝑡𝑡𝐶𝑑𝑑𝑑𝑥 + 𝑡𝑡𝐶𝑑𝑑𝑑𝑥2 
 

???? 
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Step 3: 
Use Kushner's method: 

𝑡𝑡𝐶̃𝑑 ≤ 𝑡𝑡𝐶𝑑𝑑𝑑 + 2𝑡𝑡𝐶𝑑𝑑𝑑𝑥 + 𝑡𝑡𝐶𝑑𝑑𝑑𝑥2 
 
The bound is not even defined in our case: 
 
𝐶𝑑𝑑𝑑 ∈ ℝ4×2 is not a quadratic matrix. 
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A generalization of Kushner's method: 
 
Theorem: 
For any matrix 𝑋 ∈ ℝ2×4, 
𝐶̃𝑑 ≤ 𝐶𝑑𝑑𝑑 − 𝐶𝑑𝑑𝑑𝑋 − 𝑋𝑇𝐶𝑑𝑑𝑑𝑇 + 𝑋𝑇𝐶𝑑𝑑𝑑𝑋 

in the Loewner-sense.  
Equality holds iff 

𝑋 = 𝐶𝑑𝑑𝑑+ 𝐶𝑑𝑑𝑑𝑇 =:𝑋𝑑 . 
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Then proceed like Kushner: 
For fixed 𝑋, the right-hand side 

𝐶𝑑𝑑𝑑 − 𝐶𝑑𝑑𝑑𝑋 − 𝑋𝑇𝐶𝑑𝑑𝑑𝑇 + 𝑋𝑇𝐶𝑑𝑑𝑑𝑋 
can be written as 

𝑛�𝜋𝑠(𝐶11 𝑠 − 𝐶12 𝑠 𝑋 

−𝑋𝑇𝐶12𝑇 𝑠 + 𝑋𝑇𝐶22 𝑠 𝑋). 
Sum is over all possible sequences 
𝜋𝑠 is the proportion of subjects receiving 
sequence 𝑠. 
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Some sequences 
 
RTRTRTRTR... provides no information on 
self carryover, 
TTTTTTTTT... provides no information on 
mixed carryover. 
 
RTTRRTTRR... looks promising 
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Corollary: 
The E-criterion of any design fulfills 
𝜆3(𝑑) ≤ 𝑛max

𝑠
(𝑘𝑇𝐶11 𝑠 𝑘 − 2𝑘𝑇𝐶12 𝑠 𝑏2𝑥 

+𝑏2𝑇𝐶12 𝑠 𝑏2𝑇𝑥2) 
where 𝑘 ⊥ 1 and 𝑥𝜖𝜖  
can be arbitrarily chosen. 
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Corollary: 
The E-criterion of any design fulfills 
𝜆3(𝑑) ≤ 𝑛max

𝑠
(𝑘𝑇𝐶11 𝑠 𝑘 − 2𝑘𝑇𝐶12 𝑠 𝑏2𝑥 

+𝑏2𝑇𝐶12 𝑠 𝑏2𝑇𝑥2) 
where 𝑘 ⊥ 1 and 𝑥𝜖𝜖  
can be arbitrarily chosen. 
Using this corollary, we can show for our 
model that 

𝜆3 𝑑 ≤ 𝑛 𝑝−14𝑝 = 𝑎. 
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Note that 
 
𝑎 = 𝑛 𝑝−14𝑝  hardly increases with 𝑝, 

 
lim
𝑝→∞

𝑎 =
𝑛
4

. 
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To get results for more general criteria, we 
have to find a candidate design. 
For p=1 mod 4, chose 𝑑∗ such that  
 
¼ of the units receive RTTRR...TTRR 
¼ of the units receive RRTTR...RTTR 
¼ of the units receive TRRTT...RRTT 
¼ of the units receive TTRRT...TRRT 
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Our design d* does not quite attain the bound 
for the E-criterion: 

𝜆 𝑑∗ =
𝑛 𝑝 − 1
4 𝑝 + 1

 

while the bound is 

𝑎 =
𝑛 𝑝 − 1

4𝑝
. 
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Second corollary: 
 
If for every sequence 𝑠 
𝑡𝑡(𝐶𝑓) ≥ 𝑡𝑡(𝐶11 𝑠 − 2𝐶12 𝑠 𝑋𝑓 +
                            𝑋𝑓𝑇𝐶22 𝑠 𝑋𝑓)  
 
then 𝑓 maximizes the trace of the information 
matrix.  
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For our situation, the second corollary shows 
that 

𝑡𝑡𝐶𝑑 ≤ 𝑛 2𝑝+3 𝑝−1
4 𝑝+1 = 𝐿. 

This bound is the trace of our candidate 
design 𝑑∗. 
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The A-criterion is 
1

𝜆1(𝑑)
+

1
𝜆2(𝑑)

+
1

𝜆3(𝑑)
. 

 
We know already that for any design 
𝜆3 𝑑 ≤ 𝑎 and 𝜆1 𝑑 + 𝜆2 𝑑 + 𝜆3 𝑑 ≤ 𝐿. 
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It therefore is easy to show that 
2

𝐿 − 𝑎
+

2
𝐿 − 𝑎

+
1
𝑎

 

is a lower bound of the A-criterion. 
 
Our design 𝑑∗ does not attain this bound – but 
it is highly efficient  
(the efficiency goes to 1 for 𝑝 → ∞). 
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