Efficient Designs for the Estimation of Mixed and Self Carryover Effects

J. Kunert, TU Dortmund J. Mielke, Novartis

Small molecule drugs, simply rebuild the molecule.

Biosimilars:

Large molecule drugs, cannot rebuild the Reference exactly.

For admission: Show in a clinical trial that the effect of the Test is similar.

For admission of T as a biosimilar make sure that $\tau_T - \tau_R$ is sufficiently near 0.

However: chronic diseases.

Patients get treated over a long time

$$\overset{\circ}{\smile} R \to R \to R \to R \to R \to R \to R$$

Can we switch?

Or, even, change from one to the other and back?

$$(\overset{\circ \circ}{\smile}) \quad R \to R \to R \to R \to T \to R \to R$$

Can we switch?

$$\bigcirc \circ \circ R \to R \to R \to T \to T \to T \to T$$

Or, even, change from one to another and back? $\stackrel{\circ}{\circ}$ $R \rightarrow R \rightarrow R \rightarrow T \rightarrow T \rightarrow R \rightarrow R$

This brings in the problem of carryover effects.

Maybe, $\tau_T \approx \tau_R$ does not even imply that the two drugs are truly equivalent.

Estimate carryover effects?

Model

$y = T_d \tau + S_d \chi + M_d \rho + U \alpha + P \beta + e$

with τ ... direct effects

- χ ... self carryover effects
- ρ ... mixed carryover effects
- α ... units
- β ... periods

For admission, shown already: $\tau_T \approx \tau_R$. For switchability, show that, additionally, $\chi_T \approx \chi_R \approx \rho_R \approx \rho_T$. Information matrix for the estimation of carryover effects

$$C_d = \begin{bmatrix} S_d \\ M_d \end{bmatrix} \omega^{\perp} ([U, P, T_d]) [S_d, M_d].$$

Try the usual route: Step 1. Upper bound $C_d \leq \tilde{C}_d = B_4 \begin{bmatrix} S_d \\ M_d \end{bmatrix} \omega^{\perp} ([U, T_d]) [S_d, M_d] B_4$

Information matrix for the estimation of carryover effects

$$C_d = \begin{bmatrix} S_d \\ M_d \end{bmatrix} \omega^{\perp} ([U, P, T_d]) [S_d, M_d].$$

Try the usual route: Step 1. Upper bound $C_d \leq \tilde{C}_d = B_4 \begin{bmatrix} S_d \\ M_d \end{bmatrix} \omega^{\perp} ([U, T_d]) [S_d, M_d] B_4 \checkmark$

Step 2. Split up into parts $\tilde{C}_d = C_{d11} - C_{d12}C_{d22}^+C_{d12}^T$,

Step 2. Split up into parts

$$\tilde{C}_d = C_{d11} - C_{d12}C_{d22}^+C_{d12}^T, \checkmark$$
where

$$C_{d11} = B_4 \begin{bmatrix} S_d^T \\ M_d^T \end{bmatrix} \omega^{\perp} (U) [S_d, M_d] B_4,$$

$$C_{d12} = B_4 \begin{bmatrix} S_d \\ M_d \end{bmatrix} \omega^{\perp} (U) T_d,$$

$$C_{d22} = T_d^T \omega^{\perp} (U) T_d.$$

Step 3: Use Kushner's method: $tr\tilde{C}_d \leq trC_{d11} + 2trC_{d12}x + trC_{d22}x^2$

Step 3: Use Kushner's method: $tr\tilde{C}_d \leq trC_{d11} + 2trC_{d12}x + trC_{d22}x^2$

????

Step 3: Use Kushner's method: $tr\tilde{C}_d \leq trC_{d11} + 2trC_{d12}x + trC_{d22}x^2$

The bound is not even defined in our case:

$C_{d12} \in \mathbb{R}^{4 \times 2}$ is not a quadratic matrix.

A generalization of Kushner's method:

Theorem:

For any matrix $X \in \mathbb{R}^{2 \times 4}$, $\tilde{C}_d \leq C_{d11} - C_{d12}X - X^T C_{d12}^T + X^T C_{d22}X$ in the Loewner-sense.

Equality holds iff

$$X = C_{d22}^+ C_{d12}^T =: X_d.$$

Then proceed like Kushner: For fixed X, the right-hand side $C_{d11} - C_{d12}X - X^T C_{d12}^T + X^T C_{d22}X$

can be written as

$$n \sum \pi_s (C_{11}(s) - C_{12}(s))X$$

 $-X^T C_{12}^T(s) + X^T C_{22}(s) X).$

Sum is over all possible sequences π_s is the proportion of subjects receiving sequence *s*.

Some sequences

RTRTRTRTR... provides no information on self carryover,

TTTTTTTTT... provides no information on mixed carryover.

RTTRRTTRR... looks promising

Corollary:

The E-criterion of any design fulfills $\lambda_3(d) \le n \max_s (k^T C_{11}(s)k - 2k^T C_{12}(s)b_2 x + b_2^T C_{12}(s)b_2^T x^2)$

where $k \perp 1$ and $x \in \mathbb{R}$ can be arbitrarily chosen.

Corollary:

The E-criterion of any design fulfills $\lambda_3(d) \le n \max_s (k^T C_{11}(s)k - 2k^T C_{12}(s)b_2 x + b_2^T C_{12}(s)b_2^T x^2)$

where $k \perp 1$ and $x \in \mathbb{R}$ can be arbitrarily chosen.

Using this corollary, we can show for our model that

$$\lambda_3(d) \le n \frac{p-1}{4p} = a.$$

Note that

$a = n \frac{p-1}{4p}$ hardly increases with p,

$$\lim_{p\to\infty}a=\frac{n}{4}.$$

To get results for more general criteria, we have to find a candidate design. For $p=1 \mod 4$, chose d^* such that

¹/₄ of the units receive RTTRR...TTRR
¹/₄ of the units receive RRTTR...RTTR
¹/₄ of the units receive TRRTT...RRTT
¹/₄ of the units receive TTRRT...TRRT

Our design d* does not quite attain the bound for the E-criterion:

$$\lambda(d^*) = \frac{n(p-1)}{4(p+1)}$$

while the bound is

$$a = \frac{n(p-1)}{4p}.$$

```
Second corollary:
```

If for every sequence s

$$tr(C_f) \ge tr(C_{11}(s) - 2C_{12}(s)X_f + X_f^T C_{22}(s)X_f)$$

then f maximizes the trace of the information matrix.

For our situation, the second corollary shows that

$$trC_d \le n \frac{(2p+3)(p-1)}{4(p+1)} = L.$$

This bound is the trace of our candidate design d^* .

The A-criterion is $\frac{1}{\lambda_1(d)} + \frac{1}{\lambda_2(d)} + \frac{1}{\lambda_3(d)}.$

We know already that for any design $\lambda_3(d) \le a$ and $\lambda_1(d) + \lambda_2(d) + \lambda_3(d) \le L$.

It therefore is easy to show that

$$\frac{2}{L-a} + \frac{2}{L-a} + \frac{1}{a}$$

is a lower bound of the A-criterion.

Our design d^* does not attain this bound – but it is highly efficient (the efficiency goes to 1 for $p \rightarrow \infty$).