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Randomization and Covariate Imbalance

Randomization: an essential tool for evaluating treatment effect.

Traditional randomization methods (e.g., complete randomization
(CR)): unsatisfactory, unbalanced prognostic or baseline covariates.

“Most of experimenters on carrying out a random
assignment of plots will be shocked to find out how far from
equally the plots distribute themselves.” —Fisher (1926)
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Why Covariate Balance?

Advantages of covariate balance:

Improve accuracy and efficiency of inference.

Remove the bias and increase the power.

Increases the interpretability of results by making the units more
comparable, enhance the credibility.

More robust against model misspecification.
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Covariate Balance in Causal Inference

When there exists covariate imbalance,

Difficult to compare across treatment groups.

Although ex-post adjustments are available (e.g., regression and
matching), they are much less efficient than achieving an ex-ante
balance.

Adjustments rely on a nearly correct model, which is difficult to
verify.

Rubin (2008): the greatest possible efforts should be made during
the design phase rather than the analysis stage.
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Covariate Balance in Clinical Trial and Other Fields

Clinical trialists are often concerned that treatment arms will be
unbalanced with respect to key covariates of interest. To prevent this,
covariate-adaptive randomization is often employed. Over 50000
covariate-adaptive clinical trials had been reported from 1988-2008
(Taves, 2010).

Some Procedures in literature:

Stratified permuted block design

Minimizing procedures: Pocock and Simon’s marginal procedure
(1975) and Taves (1975).

Hu and Hu’s procedures (Hu and Hu, 2012), etc.
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Covariate Balance in Clinical Trial and Other Fields

Some concerns of these methods:

Only for discrete covariates.

Not for many covariates.

Theoretical properties?
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What if large p and large n?

p: the number of covariates.
n: sample size, i.e., the number of units.

The phenomenon of covariate imbalance is exacerbated as p and n
increase.

Ubiquitous in the era of big data.

Example: the probability of one particular covariate being
unbalanced is α = 5%. For a study with 10 covariates, the chance of
at least one covariate exhibiting imbalance is 1− (1− α)p = 40%.
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Example

The Project GATE (Growing America Through Entrepreneurship),
sponsored by the U.S. Department of Labor, was designed to evaluate
the impact of offering tuition-free entrepreneurship training services
(GATE services) on helping clients create, sustain or expand their own
business. (https://www.doleta.gov/reports/projectgate/)

The cornerstone is complete randomization. Members of the treatment
group were offered GATE services; members of the control group were
not.

n = 4, 198 participants

p = 105 covariates
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Rerandomization (RR)

Morgan and Rubin (2012) proposed rerandomization.

(1) Collect covariate data.

(2) Specify a balance criterion, M < a, i.e., threshold on the
Mahalanobis distance,

M = (x̄1 − x̄2)T [cov(x̄1 − x̄2)]−1(x̄1 − x̄2),

where x̄1 and x̄2 are the sample means for treatment groups.

(3) Randomize the units using the complete randomization (CR).

(4) Check the balance criterion, M < a.

If satisfied, go to Step (5); otherwise, return to Step (3).

(5) Perform the experiment using the final randomization obtained in
Step (4).



Introduction CAM and Properties Causal Inference under CAM Real Data Examples Conclusions

Rerandomization (RR)

Pros:

Desirable properties for causal inference:

Reduction in variance of estimated treatment effect.

Work well with a few covariates.

Cons:

No covariate information is used.

Incapable to scale up for massive data.

As p increases, the probability of acceptance pa = P(M < a)
decreases, causing the RR to remain in the loop for a long time.
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We Propose:

Covariate-adaptive randomization via Mahalanobis distance (CAM):

Adaptive.

Sequential.

Capable for large p and large n.

Better covariate balance.

Less computational time.

Optimality: the minimum asymptotic variance of estimated
treatment effect in linear regressions.
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Covariate-Adaptive Randomization via Mahalanobis
Distance (CAM)

x i ∈ Rp: covariate of the i-th unit.

Ti ∈ {1, 0}: treatment assignment of the i-th unit.

Ti = 1: treatment 1.

Ti = 0: treatment 2.

i = 1, ..., n
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Covariate-Adaptive Randomization via Mahalanobis
Distance (CAM)

(1) Use the new defined Mahalanobis distance

M(n) = 0.25(x̄1 − x̄2)T [cov(x̄)]−1(x̄1 − x̄2).

(2) Randomly arrange units in a sequence

x1, x2︸ ︷︷ ︸
1st pair

, x3, x4︸ ︷︷ ︸
2nd pair

, x5, x6︸ ︷︷ ︸
3rd pair

, ..., xn.

(3) Assign the 1st pair, T1 = 1, T2 = 0.

(4) For the next pair, i.e., 2i + 1-th and 2i + 2-th units, (i > 1)

(4a) If T2i+1 = 1 and T2i+2 = 0, obtain the “potential” M
(1)
i .

(4b) If T2i+1 = 0 and T2i+2 = 1, obtain the “potential” M
(2)
i .
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Covariate-Adaptive Randomization via Mahalanobis
Distance (CAM)

(5) Assign the (2i + 1)-th and (2i + 2)-th units by

P(T2i+1 = 1,T2i+2 = 0|x2i ,T2i ...) =


q if M

(1)
i < M

(2)
i ,

1− q if M
(1)
i > M

(2)
i ,

0.5 if M
(1)
i = M

(2)
i ,

P(T2i+1 = 0,T2i+2 = 1|x2i ,T2i ...) =

1− P(T2i+1 = 1,T2i+1 = 0|x2i ,T2i ...),

where

0.5 < q < 1.
Note: T2i+1 = T2i+2 = 0, 1 is not allowed.

(6) Repeat Steps (4) and (5) until finish.
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Covariate-Adaptive Randomization via Mahalanobis
Distance (CAM)

A smaller value of M(n) indicates a better covariate balance.

q = 0.75. More discussion in Hu and Hu (2012).

Units are not observed sequentially; however, we allocate them
sequentially (in pairs).

Better covariate balance.

n! different possible sequences. Similar performance.
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Properties of CAM

Theorem 1

Under CAM, suppose x i is i.i.d. multivariate normal; then

M(n) = Op(n−1).

Note:

Under CR, MCR(n) ∼ χ2
df=p, a stationary distribution of a

Chi-square distribution with p degrees of freedom, regardless of n.

Under RR, MRR(n) ∼ χ2
df=p|χ2

df=p < a, a stationary distribution of a
Chi-square distribution with p degrees of freedom conditional on
MRR(n) < a, regardless of n.

Under CAM, M(n)→ 0 at the rate of 1/n.

More units, better balance.
Advantages of CAM in large n.
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Properties of CAM

As p increases,

Under CR, the stationary distribution becomes flatter, poorer
covariate balance.

Under RR, the stationary distribution becomes flatter, poorer
covariate balance.

Under CAM, M(n)→ 0 at the rate of 1/n, regardless of p.

The effect of p on M(n) is less severe than CR and RR.
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CAM vs. Rerandomization: Mahalanobis Distance
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In the Figure

At the fixed p.

Blue histogram shrinks to 0. Red is unchanged.
Advantage of CAM over RR.

At the fixed n.

Overlap between the blue and red histograms becomes smaller as p
increases.
Advantage of CAM over RR.
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CAM vs. Rerandomization: Computational Iterations
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CAM vs. Rerandomization: Computational Time
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CAM vs. Rerandomization: Ratio of Computational Times
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Convergence Rate of M(n) under CAM
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Framework

A framework similar to Morgan and Rubin (2012).

The observed outcome yi , i = 1, ..., n, for each unit.

Let yi (Ti ) represents the potential outcome of the i-th unit under
the treatment Ti .

yi = yi (1)Ti + yi (0)(1− Ti ).

The average treatment effect is

τ =

∑n
i=1 yi (1)

n
−
∑n

i=1 yi (0)

n
.

The fundamental problem in causal inference: only observe yi (Ti )
for one particular Ti , therefore, τ cannot be calculated directly.
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Estimate without Adjustment for Imbalance

A natural estimate, τ̂ , without adjustment for imbalance:

τ̂ =

∑n
i=1 Tiyi∑n
i=1 Ti

−
∑n

i=1(1− Ti )yi∑n
i=1(1− Ti )

,

τ̂ cannot cope with imbalance in covariates.

Example: estimate the drug effect using treatment groups with
predominately male and female patients. Cannot remove the gender
effect.
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Estimate with Adjustment for Imbalance

Another estimate, τ̃ , with adjustment for imbalance:

Outcome variable is assumed to follow

yi = µ1Ti + µ2(1− Ti ) + β1xi1 + ...+ βpxip + εi .

Suppose

Y =

y1...
yn

 , T̃ =

T1 1− T1

...
...

Tn 1− Tn

 ,X =

x11 · · · x1p
...

. . .
...

xn1 · · · xnp

 , X̃ = [T̃ ; X ].

The OLS estimate of β∗ = (µ1, µ2, β1, ..., βp)T is

β̂
∗

= (X̃
T
X̃ )−1X̃

T
Y .

Let L = (1,−1, 0, ..., 0)T ∈ Rp+2 and define

τ̃ = LT β̂
∗
,
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Framework

τ̂ is equivalent to lm(Y ∼ T̃).

τ̃ is equivalent to lm(Y ∼ T̃ + X).

Randomization method
Working model for estimating τ

lm(Y ∼ T̃) lm(Y ∼ T̃ + X)

Complete Randomization τ̂CR τ̃CR
Rerandomization τ̂RR τ̃RR

CAM τ̂CAM τ̃CAM
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Unbiasedness

Unbiasedness of τ̂CR and τ̂RR has been established.

Theorem 2

Under CAM, we have

E[τ̂CAM|X ,CAM] = τ.
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Balanced Covariates

In addition to unbiasedness, we have,

Theorem 3

Under CAM, suppose x i is i.i.d. multivariate normal; then, we have

cov[x̄1 − x̄2|X ,CAM] = uncov[x̄1 − x̄2|X ,CR],

where un = E[M(n)|X ,CAM] and un = O(n−1).

Recall that rerandomization has

cov[x̄1 − x̄2|X ,RR] = vacov[x̄1 − x̄2|X ,CR],

where va = E[M(n)|X ,RR] and va does not depend on the sample
size.
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Percent Reduction in Variance (PRIV)

Consider the PRIV for the j-th covariate,

100
(Var[x̄j,1 − x̄j,2|X ,CR]− Var[x̄j,1 − x̄j,2|X ,CAM]

Var[x̄j,1 − x̄j,2|X ,CR]

)
,

Rerandomization’s PRIV is

100(1− va)%,

which is a constant and independent of the sample size.

CAM’s PRIV is
100(1− un)%,

which converges to 100% as n→∞.
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PRIV for Estimated Treatment Effect

Theorem 4

Under CAM, suppose that yi and x i are normally distributed, and that
the treatment effect is additive; then, the PRIV of τ̂CAM is

100
(Var[τ̂CR|X ,CR]− Var[τ̂CAM|X ,CAM]

Var[τ̂CR|X ,CR]

)
= 100(1− un)R2,

where R2 is the squared multiple correlation between yi and x i within the
treatment groups and un = O(n−1).

Rerandomization’s PRIV is

100(1− va)R2%,

which is a constant and independent of the sample size.

CAM’s PRIV is
100(1− un)R2%,

which converges to 100% as n→∞.
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CAM vs Rerandomization

PRIV of estimated treatment effect
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CAM vs Rerandomization

PRIV of estimated treatment effect
Rerandomization
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Optimality of CAM

Theorem 5 (Optimal precision)

Suppose yi truly follows the linear regression model; then, we have

√
n
(
τ̂CAM − (µ1 − µ2)

) D→ N(0,V1)
√
n
(
τ̃CAM − (µ1 − µ2)

) D→ N(0,V2)
√
n
(
τ̃CR − (µ1 − µ2)

) D→ N(0,V3)
√
n
(
τ̂CR − (µ1 − µ2)

) D→ N(0,V4).

where 4σ2
ε = V1 = V2 = V3 < V4.
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Optimality of CAM

The precision of τ̂CAM is the same as τ̃CAM
The regression adjustment would not be necessary under the
proposed method, because the covariates already would have been
balanced sufficiently well.
The regression adjustment does not provide any additional benefit.

The precision of τ̂CAM is the same as τ̃CR.

τ̃CR is considered optimal, therefore, τ̂CAM is optimal too.
τ̃CR requires to estimate all regression coefficients, whereas τ̂CAM is
simply the sample mean difference.
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Optimality of CAM

Randomization method
Working model for estimating τ

lm(Y ∼ T̃) lm(Y ∼ T̃ + X)

Complete Randomization Asym. Var. > Asym. Var.
∨ ‖

CAM Asym. Var. = Asym. Var.
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Optimality of CAM: Simulation

Four continuous covariates

Outcome:

yi = µ1Ti + µ2(1− Ti ) + 1 ∗ xi1 + 1 ∗ xi2 + 1 ∗ xi3 + 1 ∗ xi4 + εi ,

where µ1 = 0, µ2 = 1, xij ∼ N(0, 1), and εi ∼ N(0, 36).

Sample size was n = 5000.

Randomization method
Working model for estimating τ

lm(Y ∼ T̃) lm(Y ∼ T̃ + X)

Complete randomization 161.1932 144.5853
CAM 145.5646 145.6051



Introduction CAM and Properties Causal Inference under CAM Real Data Examples Conclusions

Computational Time

Why not let va → 0 in rerandomization to match the performance of
CAM?

However, this option is infeasible in many cases.
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Computational Time

Suppose that

Cp: time to allocate one additional unit using CAM.

R: time to allocate one unit using complete randomization.

Theorem 6

To achieve the same level of performance, the ratio of average
computational times (i.e., CAM/RR) is proportional to

χ2
df=p(a∗)Cp/R,

where χ2
df=p(·) is the cumulative distribution function of a Chi-square

distribution with p degrees of freedom, and a∗ is the root of
γ(p/2, a∗/2)Dp = 2γ(p/2 + 1, a∗/2)n where D > 0 is a constant and

γ(w , t) =
∫ t

0
xw−1 exp{−x}dx is the incomplete gamma function.
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CAM vs Rerandomization

Ratio of computational times in log scale 
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CAM vs Rerandomization

Sample size n p = 2 4 6 8 10
200 0.9830 0.1084 0.0094 7.492e-04 5.686e-05
400 0.4957 0.0275 0.0012 4.884e-05 1.876e-06
600 0.3312 0.0123 0.0003 9.748e-06 2.510e-07
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Real Data Example I - Project GATE

Two treatment groups:
Treatment: were offered GATE services; control: were not offered
GATE services.

p = 105 (covariates obtained from the application packages, 13
continuous and 92 categorical)

Sample size n = 3, 448 (out of 4,198 participants from who
answered the evaluation survey 6 months after the assignment)

Original allocation M = 75.27, moderate covariate imbalance.

We repeat the allocation 1,000 times for these participants using
CAM, complete randomization and rerandomization.
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CAM vs Rerandomization

The Maximum of Malahanobis distances obtained from CAM is 12. If we
set the balance criterion for rerandomization to M < 12, the probability
of acceptance Pa = P(χ2

df=105 < 12) = 3.4× 10−31, which means nearly
impossible for rerandomization to achieve a similar balance level as CAM.

We set Pa = 2× 10−5 for Rerandomization to have similar computational
time with CAM.
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Comparison of Mahalanobis Distance
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Estimation

The outcome variable (0/1): has owned a business within 6 months
after assignment or not.

After the allocation, we simulate the outcome variable according to

logit(P(y sim
i = 1)) = µ̂1T

sim
i + µ̂2(1− T sim

i ) + xTi β̂ + εsim,

where µ̂1, µ̂2 and β̂ are obtained from fitting regression to original
data. εsim is drawn from the residuals of that regression.
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Performance Comparison

Compare the estimation performance (PRIV) of CAM and
rerandomization.

Method PRIV un or va
CAM 17.7% 0.081

Rerandomization 10.5% 0.505
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Real Data Example II

A real data set obtained in a clinical study of a Ceragem massage
(CGM) thermal therapy bed, a medical device for the treatment of
lumbar disc disease.

Number of covariates p = 50.

30 numerical covariates: age, measurements of the patient’s current
conditions, including lower back pain, leg pain, leg numbness, body
examination scores, and magnitudes of pain in shoulders, neck,
chest, hip and so on. All are measured on 0-10 scales.

Sample size n = 186.

Replicate the data four times to have a sample size of n = 744.

Original allocation M = 57.67, moderate covariate imbalance.

We repeat the allocation for these patients using CAM, complete
randomization and rerandomization.
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CAM vs Rerandomization

Comparison of Mahalanobis Distance
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Estimation

After the allocation, we simulate the outcome variable according to

y sim
i = µ̂1T

sim
i + µ̂2(1− T sim

i ) + xTi β̂ + εsim,

where µ̂1, µ̂2 and β̂ are obtained from fitting regression to original
data. εsim is drawn from the residuals of that regression.

Compare the estimation performance (PRIV and MSE) of CAM,
complete randomization, and rerandomization (M < 30, M < 40).

Optimal PRIV is 0.33 (R2 is 0.33).
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Performance Comparison

Sample Size Method PRIV MSE un or va

n = 186

CAM 19.7% 0.081 0.502
Rerandomization (M < 30) 15.1% 0.085 0.562
Rerandomization (M < 40) 12.2% 0.090 0.730
Complete Randomization - 0.100 -

n = 744

CAM 27.4% 0.018 0.205
Rerandomization (M < 30) 14.6% 0.021 0.556
Rerandomization (M < 40) 10.9% 0.022 0.718
Complete Randomization - 0.025 -

Note: The optimal PRIV is 0.33 (i.e., R2 = 0.33).
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Conclusions

A covariate-adaptive randomization (CAM) approach to generate a
more balanced treatment allocation, and thus to improve the quality
of the subsequent causal inference.

Allocate units adaptively and sequentially.

For cases with a large number of covariates or a large number of
units, the proposed method exhibits superior performance, with a
more balanced randomization and much less computational time.

The proposed method is proven to be optimal, in that, the estimated
treatment effect under the proposed method achieves the minimum
asymptotic variance in the linear regression framework.
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