
Computing D-optimal approximate designs of
experiments on finite spaces: a survey and

comparison of algorithms

Radoslav Harman

Department of Applied Mathematics and Statistics
Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava
Slovakia

Design of Experiments: New Challenges
CIRM Marseilles 2018

Overview of the talk

• Notation and problem statement

• Survey of algorithms (Vertex-direction, Away-step,
Multiplicative, Vertex-exchange, Cocktail, Other algorithms)

• A randomized batch-exchange method

• Numerical comparison of the D-optimal design algorithms

Partially based on the manuscript:

Radoslav Harman, Lenka Filová, Peter Richtárik: A Randomized
Exchange Algorithm for Computing Optimal Approximate Designs of
Experiments, arXiv:1801.05661 [stat.CO]

Notation and problem statement

Our aim is to compute a solution w∗ to the problem

max det

(
n∑

i=1

wixixT
i

)
, subject to w ∈ W, (1)

where x1, . . . ,xn ∈ Rm are known vectors, andW is the simplex:

W = {w ∈ [0,1]n : 1T
n w = 1}.

In experimental design, w ∈ W represents an “approximate design” of
a regression model with m parameters and “regressors” (or vectors of
“covariates”) x1, . . . ,xn. Any solution w∗ of (1) is a “D-optimal
approximate design”.
The problem (1) with xi = (1,yT

i)T , i = 1, . . . ,n, is equivalent to the
problem of finding the minimum-volume ellipsoid enclosing the data
{y1, . . . ,yn} ⊂ Rm−1. The MVEE has numerous applications beyond
design of experiments.

Notation and problem statement
The “information matrix” mapping M : Rm → Sm defined by

M(w) =
n∑

i=1

wixixT
i

is linear on Rm, and the “criterion of D-optimality” Φ : Sm
+ → [0,∞)

Φ(M) = (det(M))1/m

is concave on Sm
+ . Therefore, (1) is a problem of convex optimization.

Because M(W) ⊂ Sm
+ is compact and Φ is continuous on Sm

+ , there is
always at least one D-optimal design w∗. Moreover, M(w∗) is a
unique non-singular matrix (if span(x1, . . . ,xn) = Rm).

Sometimes we are able to find the analytic form of a D-optimal
design; usually, however, we must use a computer to find a D-optimal
design numerically.

Algorithms for D-optimal design (in general)
1 Generate w1 ∈ W such that M(w1) is non-singular; set k ← 1
2 while wk does not satisfy a stopping rule do
3 Compute wk+1 ∈ W based on wk
4 Set k ← k + 1
5 end

An algorithm “converges to D-optimality” if (with no stopping rule):

lim
k→∞

Φ(M(wk)) = Φ(M(w∗)),

where w∗ is any D-optimal design.
We will not discuss the methods of generating an initial design nor
stopping rules; we will focus on Step 3 of algorithms with proved
convergence to D-optimality.
Note: There is a large class of powerful “population” methods such as
genetic algorithms and particle swarm optimization (Wong et al),
which store and improve an entire set of feasible designs. However,
the real power of these methods is in non-convex optimization.

Algorithms for D-optimal design (in general)
For w ∈ W such that M(w) ∈ Sm

++ define the “variance function” by
d(xi ,w) := xT

i M−1(w)xi , i = 1, . . . ,n.

Interpretation of d(xi ,w): Variance of the BLUE of the response
expectation in xi , a directional derivative of a version of criterion of
D-optimality, the leveraging coefficient hii (→ the talk of J.Stufken)...

It is simple to show that for any w∗ ∈ W such that M(w∗) ∈ Sm
++:

w∗ is D-optimal⇔
w∗ minimizes maxi d(xi ,w)⇔
maxi d(xi ,w∗) = m.

The first equivalence above is the original “equivalence theorem”
between D- and G-optimality (Kiefer & Wolfowitz 1969).

Most algorithms for D-optimality are inspired by this equivalence in
the sense that they try to minimize the maximum of d by increasing
wi for one of more regressors xi with a large value of d(xi ,w).

Recent algorithms also utilize the sparsity of supp(w∗) = {i : w∗i > 0}.

Vertex direction method (VDM)
Fedorov 1972; related to the metod of Frank & Wolfe 1956.

1 repeat
2 Find i∗ ∈ argmaxi d(xi ,w)
3 Find α∗ ∈ argmaxαΦ[M(αw + (1− α)ei∗)]
4 Set w← α∗w + (1− α∗)ei∗

5 end;

There is an explicit formula for α∗ in Step 2.
Variants: a different selection of α∗ in Step 2 (e.g., Wynn 1970).

m

Figure: Design points, Variance function, Decrease of w , Increase of w

Vertex direction method (VDM)

Aspect Evaluation

Simplicity of the idea and coding Very good

Speed of computation Bad

Possibility to include non-standard design constraints Good*

Possibility to use for other criteria Very good

*Cook & Fedorov 1995

Away-steps method (AWS)

Atwood 1973, which is realted to a previous work of Wolfe 1970

1 repeat
2 Find k ∈ argmin{d(xu,w) : u ∈ supp(w)}
3 Find l ∈ argmax{d(xv ,w) : v ∈ {1, . . . ,n}}
4 if 1

2 [d(xk ,w) + d(xl ,w)] > m then
5 Find a smart α∗ ∈ [0,1]
6 w← α∗w + (1− α∗)el

7 end
8 else
9 Find a smart α∗ ∈ [1,1 + wk]

10 w← α∗w + (1− α∗)ek

11 end
12 end;

Used in, e.g., Todd 2016.

Away-steps method (AWS)

m

m

Figure: Design points, Variance function, Decrease of w , Increase of w

Away-step method (AWS)

Aspect Evaluation

Simplicity of the idea and coding Good

Speed of computation Good

Possibility to include non-standard design constraints I do not know

Possibility to use for other criteria Good

Multiplicative method (MUL)
Torsney, Titterigton & Silvey 1970’s

1 repeat
2 Set d(w)← (d(x1,w), . . . ,d(xn,w))T

3 Set w← m−1d(w)�w
4 end;

Variants: for instance using a “longer” Step 3 (e.g., Dette, Pepelyshev
& Zhigljavsky 2008)

m

Figure: Design points, Variance function, Decrease of w , Increase of w

Multiplicative method (MUL)

Aspect Evaluation

Simplicity of the idea and coding Very good

Speed of computation Good

Possibility to include non-standard design constraints Problematic*

Possibility to use for other criteria Good**

*For simple constraints see Harman 2014, Harman & Benková 2017
**Heuristically, we can use MUL with almost any criterion, but
convergence proved only for some criteria; see Yu 2010

Vertex exchange algorithm (VEM)
Böhning 1986

1 repeat
2 Find k ∈ argmin{d(xu,w) : u ∈ supp(w)}
3 Find l ∈ argmax{d(xv ,w) : v ∈ {1, . . . ,n}}
4 Find α∗ belong to argmax{ΦD[M(w + αel − αek)] : α ∈ [−wl ,wk]}
5 wk ← wk − α∗; wl ← wl + α∗

6 end;

There is an explicit formula for α∗ in Step 4.

m

Figure: Design points, Variance function, Decrease of w , Increase of w

Vertex exchange algorithm (VEX)

Aspect Evaluation

Simplicity of the idea and coding Good

Speed of computation Often good

Possibility to include non-standard design constraints I do not know

Possibility to use for other criteria Possible*

*But I am not aware of any convergence result for criteria other than
D-optimality.

Cocktail algorithm (COA)

Yu 2011
A clever hybrid of the methods VDM, MUL and VEX, where the vertex
exchange is performed on “neighbouring” design points (we will not
formulate it as a pseudo-code).

Aspect Evaluation

Simplicity of the idea and coding Average

Speed of computation Very good

Possibility to include non-standard design constraints I do not know

Possibility to use for other criteria Possible*

*But I am not aware of any convergence result for criteria other than
D-optimality.

Other algorithms for D-optimality
Simplicial decomposition (SIM; Ucinski & Patan 2007 in design of
experiments, but the idea dates back to 70s): In each iteration, a
simple sub-problem is solved, which generates an extreme point of
the polyhedron of feasible solutions, and a non-linear restricted
master problem finds the maximum of the objective function over the
convex hull (a simplex) of previously defined extreme points.

A very efficient variant of SIM for computing optimal designs has
been proposed in Yang, Biedermann & Tang 2013, where the master
problem is solved by a Newton method.

Semidefinite and second-order programming methods can also be
used for computing D-optimal designs (e.g., Vandenberghe, Boyd &
Wu 1998, Sagnol & Harman 2015). A major disadvantage is that
these algorithms can be used only for small size of the problems (n in
the order of thousands with standard hardware), although it has huge
other advantages (e.g., possibility to include general linear
constraints→ the talk of F. Gamboa).

Randomized batch-exchange algorithm (REX)
Harman, Filová & Richtárik 2018

1 repeat
2 Perform steps 2-5 of VEX.
3 k← a random permutation of elements of supp(w)
4 l← a random permutation of the indices of L greatest elements of

d(xi ,w), i = 1, . . . ,n
5 for l in 1 : L do
6 for k in 1 : #supp(w) do
7 Find α∗ ∈ argmax{Φ[M(w +α(ell − ekk))] : α ∈ [−wll ,wkk]}
8 if Step 2 was not nullifying or α∗ = −wll or α∗ = wkk then
9 wkk ← wkk − α∗ and wll ← wll + α∗

10 end
11 end
12 end
13 end;

L can be chosen as a constant or based on some heuristic rule. Step
2 is “nullifying”, if it nullified some of the weights that it exchanged.
There is an explicit formula for α∗ in Step 7.

Randomized exchange algorithm (REX)
REX can be viewed as analogous the KL exchange algorithm for
computing exact D-optimal designs (Atkinson et al. 2007), but instead
of finding the best exchange between K times L pairs of points, we
distribute the weights optimally between the pairs of design points
based on very fast formulas. (And we do it in a random order.)

m

Figure: Design points, Variance function, Support points weights change,
Maximum variance points weights change

Randomized batch-exchange algorithm (REX)

Aspect Evaluation

Simplicity of the idea and coding Average

Speed of computation Excellent

Possibility to include non-standard design constraints I do not know

Possibility to use for other criteria Possible*

*We derived optimal-exchange formulas for A-optimality, but were
unable to prove the convergence of REX for A-optimality, despite
strong numerical evidence.

However, we were able to prove convergence of REX for the criterion
of D-optimality (see the manuscript for a rather long and technical
proof).

Numerical comparison
Important factors that influence the computation are n, m, but also the
position of x1, . . . ,xn themselves (the “structure” of the problem).

We selected various combinations of n,m and generated x1, . . . ,xn
independently randomly from Nm(0m, Im) to imitate a “general”
problem of D-optimality.

Of course, each specific selection of the regressors leads to different
performance of the algorithms, but we have also tested several other
situations (e.g., the regressors of polynomial models with one or
several explanatory variables), and the numerical results are similar.

As for the implementation, we used author-supplied R codes for COA
and did our best to convert the other competing algorithms to R.

In the following graphs, “log-efficiency of 1” means efficiency 0.9,
“log-efficiency of 2” means efficiency of 0.99, etc. All the efficiencies
are relative to a pre-computed, practically perfectly D-optimal design.

Numerical comparison
(a) n=10000, m=6

time (s)

lo
g−

ef
fic

ie
nc

y

0 0.2 0.4 0.6 0.8 1

2
4

6

● ● ●
●

●
● ●

●
●

● ● ●
●

●
●

●
●

●

●
● ● ● ● ● ● ● ●

● ● ●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

● ● ● ● ● ●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
●

●
●

●
● ● ● ● ● ● ● ● ● ●

● ●
● ●

●

●●●
●
●

●
●

●●
●
●●● ●●●●

●● ●●●
●●
● ●●

●●●●●●
●●

●●●
●●●

Figure: REX, SIM, COA, MUL, AWS, VEM, VDM

Numerical comparison
(b) n=160000, m=6

time (s)

lo
g−

ef
fic

ie
nc

y

0 2 4 6 8 10

2
4

6

● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
●

●
●

●
●

●
● ●

● ●
●

●

●

●
●

● ● ● ●

● ●
●

●

●

●
●

●

●

● ● ● ● ● ● ●
●

●
●

●

●

●

●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ●
●

●
● ● ● ● ● ●

●
● ●

● ● ● ●
●

●
●

●
● ● ● ●

Figure: REX, SIM, COA, MUL, AWS, VEM, VDM

Numerical comparison
(c) n=10000, m=15

time (s)

lo
g−

ef
fic

ie
nc

y

0 1 2 3 4 5

2
4

6

●●●●
●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●
●●

●●
●●●

●●
●●

●
●●

●●
●●

●
●
●
●●

●●
●●

●●
●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●●
●●●

●●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

● ●

●
●

● ●

●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●●
●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●
●●●

●●●
●●

●●●●
●●●●●

●●●
●●●

●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●
●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●

●●●●●
●●●
●●●
●●●
●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●

Figure: REX, SIM, COA, MUL, AWS, VEM, VDM

Numerical comparison
(d) n=160000, m=15

time (s)

lo
g−

ef
fic

ie
nc

y

0 4 8 12 16 20

2
4

6

● ●

● ● ● ●● ● ● ● ● ●● ● ● ●● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●

●

●

● ●

● ●

● ●

●●●●●

Figure: REX, SIM, COA, MUL, AWS, VEM, VDM

Numerical comparison
(e) n=10000, m=28

time (s)

lo
g−

ef
fic

ie
nc

y

0 4 8 12 16 20

2
4

6

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●
●

●
●

●

●

●

●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Figure: REX, SIM, COA, MUL, AWS, VEM, VDM

Numerical comparison
(f) n=1000000, m=6

time (s)

lo
g−

ef
fic

ie
nc

y

0 12 24 36 48 60

2
4

6

● ● ●
●

●

●
●

● ●
●

●
●

● ● ● ● ● ● ● ●

● ●
●

●
●

● ● ●
●

●
● ●

●
●

●
● ● ● ●

●
●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

●
●

●
●

● ● ● ● ● ●

● ● ● ● ● ●
●

Figure: REX, SIM, COA, MUL, AWS, VEM, VDM

Final remarks
Approximate D-optimality on a finite design space is fundamental, not
only because of its central position in optimal design of experiments,
but also because it is equivalent to the problem of computing the
minimum-volume enclosing ellipsoid of multidimensional data-points;
the algorithms for D-optimality will continue to be used.

Among the available algorithms, REX seems to be generally the best
and VDM is usually the worst, but each algorithm has some
advantages. In particular, for a large m, the MUL algorithm can be
more efficient than all other algorithms (including REX).

The development of algorithms for D-optimality on finite design
spaces is (and will be) “work in progress”. For instance, can we
efficiently incorporate the deletion rules (Harman & Pronzato 2007)
into the algorithms? Can we perhaps utilize parallel computing? Is it
possible to use methods of machine learning to “teach” some of the
algorithms to perform very efficient heuristic choices (e.g., REX gives
much freedom of choice that could be exploited).

Play with REX at

https://optdesign.shinyapps.io/rexalg/

or download the (short) R code of REX at

http://www.iam.fmph.uniba.sk/ospm/Harman/design/

Thank you for attention!

https://optdesign.shinyapps.io/rexalg/
http://www.iam.fmph.uniba.sk/ospm/Harman/design/

