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Outline 
 

1. Optimal experiments for treatment comparison  

  Why Bayesian?  Why Randomized?  Why Adaptive? 

 

2. The utility-based Bayes adaptive designs 

• Choice of utility 

_________________________ 

3. An A-optimal Bayes adaptive design for binary data 

• Convergence to optimal target 

• Discussion 

4. Bayesian doubly-adaptive methods 

• The Bayesian Randomized Adaptive Compound (BRAC)   

• The Bayesian Randomized Adaptive Compound Efficient (BRACE) design 

• Convergence to optimal target 

 

5. Some simulations to compare BRAC and BRACE 
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Why Bayesian?  

  

Nearly all desirable treatment allocations (= targets) depend on 
unknown parameters of model   

Optimal experiments for treatment comparison 

Example :  
• Two treatments T1, T2  
• binary responses, with success probabilities  p1, p2  
• Minimizing the variance of estimated difference p1 - p2  gives Neyman’s 

allocation proportion 
 

 
 

With 50-50 allocation 

  If p1 = 0.1 and  p2 = 0.4, loss of information = 5.8% 

   If p1 = 0.2 and  p2 = 0.3, loss of information = 4.6 o/oo 
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Why Bayesian?  

  

 Need to use prior information on treatment effects for designing the 
experiment 

• best  guess  

• Bayesian – prior distribution on parameters 

   (very popular also among non-Bayesians!) 

 Wish to use prior distribution  AT THE PLANNING STAGE, but not 
necessarily for inference 

Bayarri & Berger   Statistical Science, 2004;  

Ventz, et al. Applied Stochastic Models in Business and Industry, 2017  
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Randomization not essential in Bayesian statistics, BUT now widely accepted  
(Ball, Smith and Verdinelli JSPI, 1993) 

 

1. Randomization to fight accidental/selection bias  

2. Present trend: 

Bayesian approach to design strongly biased towards clinical studies 

 

 

 

 
  

  In clinical trials randomization is a must 

Why Randomized? 

S. Berry, Carlin, Lee and Muller, (2011)  

Bayesian Adaptive Methods for Clinical Trials   

 FDA guidelines (2010) 
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Why Adaptive? 
  
 

Designing whole experiment on the basis of the initial prior can be very 
inefficient  
 

More efficient to update prior belief step-by-step in the light 
of the accrued data 



 
 

Start with  

a prior on parameters and a suitable utility function  

At each step 

update the prior 

  calculate the expected utility according to updated  prior 

  maximize the expected utility (= temporary targets) 

  use a randomization rule that is a function of the temporary target 
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Adaptive design in a Bayesian framework: 

how? 

Taking the prior expectation of an optimal target may turn out to be 

strongly sub-optimal  

(falling between two stools! ) 

Our choice:  The Decision-theoretic Approach  (Lindley, 1957) 

 Several  possible Bayesian approaches:  “probability only”, Bayesian biased coins.... 

Clearly 
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“Ethical” utilities (in clinical trials) 

• Expected number of subjects allocated to better treatment/s  

• Expected number of successes 

 

Compound utilities (Trade-offs of Exploration v. Exploitation) 

     Weighted combinations of above (with weights possibly depending on the 

parameters) 

see also  Asya Metelkina & Luc Pronzato  Information-regret compromise in covariate-
adaptive treatment allocation  

Information criteria 

• Trace of inverse Fisher’s info  A-optimality 

• Determinant of Fisher’s info  D-optimality 

  have Bayesian interpretations 

Choice of utility (or loss) 

In Chaloner and  Larntz (JSPI, 1989): 

Utility as a function of Fisher’s information matrix M 
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An  A-optimal Bayes adaptive design  

for binary data 
(in Applied Stochastic Models in Business and Industry, 2017) 

Two treatments     T1     T2 
 

Model is binary     success probabilities   p1     p2 
 

 

Utility is A-optimality:   want to minimize 
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     A-optimal Bayes design: 
 
Proportion of allocations to T1 
 
 
  
NOT the same as expected  Neyman’s target 
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An  A-optimal Bayesian adaptive design  

for binary data 

Priors are independent Betas   Beta(aj,bj)        j=1,2                    

Posteriors are Betas 

At each step  k ≥ 1   Njk = number of assignments to Tj 
   Sjk = number of successes of Tj 

 

A-optimal allocation  of T1  according to the updated information 
(temporary target) is  
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Randomization: 
 At step k, choose T1 with probability equal to temporary target 
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A-optimal Bayesian adaptive design 

The treatment allocation  proportion   N1n /n converges almost 

surely to Neyman’s target  N  for all Beta priors and all  p1
  
 p2 

 

This A-optimal Bayes adaptive design is Bayesian analogue of 

frequentist Sequential Maximum Likelihood design targeting 

Neyman’s allocation 



The  Sequential Maximum Likelihood (SML) design 

 for a target π0(θ) 

n0 observations for initial estimate of parameters 

 at each step i ( > n0)  

-  parameter θ estimated by ML utilizing all the data up to k 

-  the unknown target π0(θ) is estimated 

- treatments are randomized with probability given by the current estimate of the 
target regardless of whether present assignments are too few or too many 

 Almost sure convergence of proportion of allocations  N1n /n to target 

  ML estimators are consistent and asimptotically normal 

 Asymptotic normality of N1n /n  

 
BUT   Slow convergence 
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Some Beta priors   Beta(aj,bj) 

 
 

 
 
 

Uniform in [0,1] 

CASE 2 

a2= 1 

b2= 1 

a1 =1 

b1= 1 

a1 = 2 

b1= 18 
a2 = 8 

b2= 12 

a1= 5 

b1= 5 

a2= 2 

b2= 8 

p1*= 0.1   

p2*= 0.4  

An  A-optimal Bayesian adaptive design  

for binary data 
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Convergence of Bayes A-optimal design to Neyman’s target  

CASE 1 CASE 3 

CASE 2 p1*= 0.1   

p2*= 0.4  

Neyman’s target = 0.382 
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Asymptotic  variance of A-optimal Bayes design   

CASE 1 

CASE 3 

CASE 2 

The efficiency of a randomized design is a 
decreasing function of the variability of 
the design 

(Hu & Rosenberger, JASA, 2003) 

p1*= 0.1,  p2*= 0.4 ; No. of replications = 1000 

Asymptotic variance  

of the SML design = 0.76  
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To get faster convergence (less variability) 

can we import frequentist improvement 

methods into Bayesian designs? 
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Ethical/Utilitarian criterion   

  E  =  Expected proportion of units allocated to better treatment  

 

Information criterion  

 F     determinant, square root of det, trace of inverse normalized Fisher 

information M 

Essential requirement:  F  is F  re-scaled to range in [0,1] 

    U  w E + (1 - w)F      w  

     

 

Compound utilities  

U  U(; w; p1*, p2*)  = n1/n 

TU(k)  arg max EU | Fk-1 “TEMPORARY  

TARGETS” 

At stage k, we maximize expected utility wrt posterior up to k-1 
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Examples 

.   F  detM           w < 4/5 

 
 
With Beta priors  
 
where           

         and  Ix(a2,b2) is the CDF of Beta(a2,b2) 

 

 

 

2.   F  SQRT(detM) 

  
 Beta priors   

 
 

 
 3. F  trace(M-1 )     w < /2 



P(T1 P(T1) = ) = 

19 

Simply adaptive randomization rule 

Randomization : 

 

at stage k        P(T1) = TU(k)   Optimal allocation given the data 

 

or     P(T1) = j(TU(k)) 

 
  

When utility is compound,  

Bayesian Randomized Adaptive Compound (BRAC) 

design   

. j ( y)   in y  

2. j (y) = 1 – j (1- y)   for all y 
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Doubly-adaptive designs 
 

In frequentist context:  

Doubly-adaptive randomization:  

takes into account both past allocations and target 

The probability of assigning T1 to unit n+1 is based on a measure of  "dissimilarity" 

between the current allocation of  T1 and the current estimate of the target  

 

 Doubly-adaptive Biased Coin Design  
(Eisele, JSPI, 1994; Hu & Zhang, Annals, 2004) 

 

 Efficient Randomized-Adaptive DEsign  (ERADE) 
(Hu, Zhang & He, Annals, 2009) 

 

 Reinforced Doubly-Adaptive BCD  
 (Baldi-Antognini & Zagoraiou, Annals, 2012) 

 (Doubly-adaptive BCD and  ERADE are special cases)  
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Doubly-adaptive  randomization rule  

y: (0,1)2 → [0,1] 

(C)  Conditions for y (x,y) 

. y(x, y)   in x 

2. y (x, y)   in y  

3. y (x, x) = x   for all x  

4. y (x, y) = 1 – y (1- x,1- y)   for all x, y 

 

x = present allocation proportion     

y = current temporary target 

 

y  = some measure of dissimilarity 

Randomization :   Choose T1 with probability = y (N1k /k ,TU (k))   

If the allocation proportion N1k /k is smaller than the temporary targetTU (k) then the 
allocation probability will be greater than the temporary target and viceversa. This will 
drive allocations to the true target if  TU (k) → T* 
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Theorem 
 

If         
i) the utility function U and independent priors for p1 and p2 are such 

that   0 < TU(k)  < 1          and    
ii)  the Bayesian randomized doubly-adaptive design is defined by y 

satisfying (C), 
then   

 The temporary targets converge to the desired target almost 

surely 

 The allocation proportion converges to the desired target 

almost surely  

Convergence of Bayesian doubly-adaptive designs 

(after   Baldi Antognini & Zagoraiou, Bernoulli, 2015)
  



ERADE 
(Hu, Zhang & He, Annals, 2009 – inspired by Efron’s Biased Coin Design, 1971) 

 
 
 
Frequentist 
 

 

 P(T1) 
 

• x = present allocation 
proportion     

• y = current estimate of 
the target 

ρ ∈ [0; 1) a randomization parameter : for  ρ = 0 ERADE becomes design by Robbins et 

al. (1967), for ρ → 1 allocations are more randomized and  ERADE tends to the SML 

design  

• Almost sure convergence and asymptotic normality hold. 
• Under differentiability conditions of the target,  the asymptotic 

variance is a minimum. 

ERADE is asymptotically best 
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BRACE design 
(Bayesian Randomized Adaptive Compound Efficient) 

Randomization rule = “Bayesian ERADE” 
 
 
   P(T1) 
 
 

 
Satisfies Condition (C)  →   Convergence theorem applies 
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 Xiao, Liu & Hu (2017, Science China: Mathematics) also study Bayesian 
adaptive designs  

• No utility function.  

• Randomization rule is a function of  P(p1 >  p2|Fk ). 

• They have a threshold value for the randomization probability. 

• They compare BAR (simply adaptive) with BDBCD (doubly-adaptive, 
based on Hu and Zhang, 2004) 

• They prove convergence of BDBCD to a fixed value which depends on 
the threshold, and the asymptotic normality of BDBCD. 

 
 
 

Comparisons of Bayesian adaptive and doubly 

adaptive designs 



26 

Comparing BRAC and BRACE designs 

p1*= 0.4   

p2*= 0.5  
w  = 0.5,  r = 0.5   

PRIORS 

a1 = 40, a2 = 60 

b1 = 50, b2 = 50 

Example 1 
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Comparing BRAC and BRACE designs   

p1* = 0.4   

p2*= 0.5  

w  = 0.5   a1 = 5, a2 = 5 

b1 = 4, b2 = 5 

Example 1 
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Comparing BRAC and BRACE designs 

N = 1000 replications w  = 0.5   Example 1 “Bad” prior 
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Comparing BRAC and BRACE designs 

N = 1000 replications w  = 0.5   
Choice of Beta priors 

Average Variability 

(A)  is “very good” prior, (B) is “good”,  (C) and (D)  are “bad”   
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Comparing BRAC and BRACE designs 

w  = 0.5   N = 1000 replications 

(E)  is “very good” prior, (F) is “good”,  (G) and (H)  are “bad”   
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Conclusions  

 Simulations show: 

• Convergence is better when the success probabilities are farther apart. 

•  If the initial perception regarding the treatment effects is fundamentally correct, 
then a small number of units n is sufficient to achieve convergence. 

• The prior precision does not seem to affect the design much.  

• The ERADE modifications seem  improve the speed of convergence to the optimal 
target in the Bayesian approach too 

 

TO DO 

• Our simulations only carried out for one compound utility: ample scope for further 
investigation. 

• The asymptotic normality of the design in the Bayesian context still needs to be 
investigated 

• COVARIATES!!! 
  



THE   END 
 

with thanks to the organizers for inviting me 
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