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Outline 
 

1. Optimal experiments for treatment comparison  

  Why Bayesian?  Why Randomized?  Why Adaptive? 

 

2. The utility-based Bayes adaptive designs 

• Choice of utility 

_________________________ 

3. An A-optimal Bayes adaptive design for binary data 

• Convergence to optimal target 

• Discussion 

4. Bayesian doubly-adaptive methods 

• The Bayesian Randomized Adaptive Compound (BRAC)   

• The Bayesian Randomized Adaptive Compound Efficient (BRACE) design 

• Convergence to optimal target 

 

5. Some simulations to compare BRAC and BRACE 
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Why Bayesian?  

  

Nearly all desirable treatment allocations (= targets) depend on 
unknown parameters of model   

Optimal experiments for treatment comparison 

Example :  
• Two treatments T1, T2  
• binary responses, with success probabilities  p1, p2  
• Minimizing the variance of estimated difference p1 - p2  gives Neyman’s 

allocation proportion 
 

 
 

With 50-50 allocation 

  If p1 = 0.1 and  p2 = 0.4, loss of information = 5.8% 

   If p1 = 0.2 and  p2 = 0.3, loss of information = 4.6 o/oo 
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Why Bayesian?  

  

 Need to use prior information on treatment effects for designing the 
experiment 

• best  guess  

• Bayesian – prior distribution on parameters 

   (very popular also among non-Bayesians!) 

 Wish to use prior distribution  AT THE PLANNING STAGE, but not 
necessarily for inference 

Bayarri & Berger   Statistical Science, 2004;  

Ventz, et al. Applied Stochastic Models in Business and Industry, 2017  
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Randomization not essential in Bayesian statistics, BUT now widely accepted  
(Ball, Smith and Verdinelli JSPI, 1993) 

 

1. Randomization to fight accidental/selection bias  

2. Present trend: 

Bayesian approach to design strongly biased towards clinical studies 

 

 

 

 
  

  In clinical trials randomization is a must 

Why Randomized? 

S. Berry, Carlin, Lee and Muller, (2011)  

Bayesian Adaptive Methods for Clinical Trials   

 FDA guidelines (2010) 
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Why Adaptive? 
  
 

Designing whole experiment on the basis of the initial prior can be very 
inefficient  
 

More efficient to update prior belief step-by-step in the light 
of the accrued data 



 
 

Start with  

a prior on parameters and a suitable utility function  

At each step 

update the prior 

  calculate the expected utility according to updated  prior 

  maximize the expected utility (= temporary targets) 

  use a randomization rule that is a function of the temporary target 
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Adaptive design in a Bayesian framework: 

how? 

Taking the prior expectation of an optimal target may turn out to be 

strongly sub-optimal  

(falling between two stools! ) 

Our choice:  The Decision-theoretic Approach  (Lindley, 1957) 

 Several  possible Bayesian approaches:  “probability only”, Bayesian biased coins.... 

Clearly 
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“Ethical” utilities (in clinical trials) 

• Expected number of subjects allocated to better treatment/s  

• Expected number of successes 

 

Compound utilities (Trade-offs of Exploration v. Exploitation) 

     Weighted combinations of above (with weights possibly depending on the 

parameters) 

see also  Asya Metelkina & Luc Pronzato  Information-regret compromise in covariate-
adaptive treatment allocation  

Information criteria 

• Trace of inverse Fisher’s info  A-optimality 

• Determinant of Fisher’s info  D-optimality 

  have Bayesian interpretations 

Choice of utility (or loss) 

In Chaloner and  Larntz (JSPI, 1989): 

Utility as a function of Fisher’s information matrix M 
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An  A-optimal Bayes adaptive design  

for binary data 
(in Applied Stochastic Models in Business and Industry, 2017) 

Two treatments     T1     T2 
 

Model is binary     success probabilities   p1     p2 
 

 

Utility is A-optimality:   want to minimize 
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     A-optimal Bayes design: 
 
Proportion of allocations to T1 
 
 
  
NOT the same as expected  Neyman’s target 
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An  A-optimal Bayesian adaptive design  

for binary data 

Priors are independent Betas   Beta(aj,bj)        j=1,2                    

Posteriors are Betas 

At each step  k ≥ 1   Njk = number of assignments to Tj 
   Sjk = number of successes of Tj 

 

A-optimal allocation  of T1  according to the updated information 
(temporary target) is  
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Randomization: 
 At step k, choose T1 with probability equal to temporary target 
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A-optimal Bayesian adaptive design 

The treatment allocation  proportion   N1n /n converges almost 

surely to Neyman’s target  N  for all Beta priors and all  p1
  
 p2 

 

This A-optimal Bayes adaptive design is Bayesian analogue of 

frequentist Sequential Maximum Likelihood design targeting 

Neyman’s allocation 



The  Sequential Maximum Likelihood (SML) design 

 for a target π0(θ) 

n0 observations for initial estimate of parameters 

 at each step i ( > n0)  

-  parameter θ estimated by ML utilizing all the data up to k 

-  the unknown target π0(θ) is estimated 

- treatments are randomized with probability given by the current estimate of the 
target regardless of whether present assignments are too few or too many 

 Almost sure convergence of proportion of allocations  N1n /n to target 

  ML estimators are consistent and asimptotically normal 

 Asymptotic normality of N1n /n  

 
BUT   Slow convergence 
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Some Beta priors   Beta(aj,bj) 

 
 

 
 
 

Uniform in [0,1] 

CASE 2 

a2= 1 

b2= 1 

a1 =1 

b1= 1 

a1 = 2 

b1= 18 
a2 = 8 

b2= 12 

a1= 5 

b1= 5 

a2= 2 

b2= 8 

p1*= 0.1   

p2*= 0.4  

An  A-optimal Bayesian adaptive design  

for binary data 
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Convergence of Bayes A-optimal design to Neyman’s target  

CASE 1 CASE 3 

CASE 2 p1*= 0.1   

p2*= 0.4  

Neyman’s target = 0.382 
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Asymptotic  variance of A-optimal Bayes design   

CASE 1 

CASE 3 

CASE 2 

The efficiency of a randomized design is a 
decreasing function of the variability of 
the design 

(Hu & Rosenberger, JASA, 2003) 

p1*= 0.1,  p2*= 0.4 ; No. of replications = 1000 

Asymptotic variance  

of the SML design = 0.76  
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To get faster convergence (less variability) 

can we import frequentist improvement 

methods into Bayesian designs? 
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Ethical/Utilitarian criterion   

  E  =  Expected proportion of units allocated to better treatment  

 

Information criterion  

 F     determinant, square root of det, trace of inverse normalized Fisher 

information M 

Essential requirement:  F  is F  re-scaled to range in [0,1] 

    U  w E + (1 - w)F      w  

     

 

Compound utilities  

U  U(; w; p1*, p2*)  = n1/n 

TU(k)  arg max EU | Fk-1 “TEMPORARY  

TARGETS” 

At stage k, we maximize expected utility wrt posterior up to k-1 
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Examples 

.   F  detM           w < 4/5 

 
 
With Beta priors  
 
where           

         and  Ix(a2,b2) is the CDF of Beta(a2,b2) 

 

 

 

2.   F  SQRT(detM) 

  
 Beta priors   

 
 

 
 3. F  trace(M-1 )     w < /2 



P(T1 P(T1) = ) = 
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Simply adaptive randomization rule 

Randomization : 

 

at stage k        P(T1) = TU(k)   Optimal allocation given the data 

 

or     P(T1) = j(TU(k)) 

 
  

When utility is compound,  

Bayesian Randomized Adaptive Compound (BRAC) 

design   

. j ( y)   in y  

2. j (y) = 1 – j (1- y)   for all y 
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Doubly-adaptive designs 
 

In frequentist context:  

Doubly-adaptive randomization:  

takes into account both past allocations and target 

The probability of assigning T1 to unit n+1 is based on a measure of  "dissimilarity" 

between the current allocation of  T1 and the current estimate of the target  

 

 Doubly-adaptive Biased Coin Design  
(Eisele, JSPI, 1994; Hu & Zhang, Annals, 2004) 

 

 Efficient Randomized-Adaptive DEsign  (ERADE) 
(Hu, Zhang & He, Annals, 2009) 

 

 Reinforced Doubly-Adaptive BCD  
 (Baldi-Antognini & Zagoraiou, Annals, 2012) 

 (Doubly-adaptive BCD and  ERADE are special cases)  
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Doubly-adaptive  randomization rule  

y: (0,1)2 → [0,1] 

(C)  Conditions for y (x,y) 

. y(x, y)   in x 

2. y (x, y)   in y  

3. y (x, x) = x   for all x  

4. y (x, y) = 1 – y (1- x,1- y)   for all x, y 

 

x = present allocation proportion     

y = current temporary target 

 

y  = some measure of dissimilarity 

Randomization :   Choose T1 with probability = y (N1k /k ,TU (k))   

If the allocation proportion N1k /k is smaller than the temporary targetTU (k) then the 
allocation probability will be greater than the temporary target and viceversa. This will 
drive allocations to the true target if  TU (k) → T* 
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Theorem 
 

If         
i) the utility function U and independent priors for p1 and p2 are such 

that   0 < TU(k)  < 1          and    
ii)  the Bayesian randomized doubly-adaptive design is defined by y 

satisfying (C), 
then   

 The temporary targets converge to the desired target almost 

surely 

 The allocation proportion converges to the desired target 

almost surely  

Convergence of Bayesian doubly-adaptive designs 

(after   Baldi Antognini & Zagoraiou, Bernoulli, 2015)
  



ERADE 
(Hu, Zhang & He, Annals, 2009 – inspired by Efron’s Biased Coin Design, 1971) 

 
 
 
Frequentist 
 

 

 P(T1) 
 

• x = present allocation 
proportion     

• y = current estimate of 
the target 

ρ ∈ [0; 1) a randomization parameter : for  ρ = 0 ERADE becomes design by Robbins et 

al. (1967), for ρ → 1 allocations are more randomized and  ERADE tends to the SML 

design  

• Almost sure convergence and asymptotic normality hold. 
• Under differentiability conditions of the target,  the asymptotic 

variance is a minimum. 

ERADE is asymptotically best 
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BRACE design 
(Bayesian Randomized Adaptive Compound Efficient) 

Randomization rule = “Bayesian ERADE” 
 
 
   P(T1) 
 
 

 
Satisfies Condition (C)  →   Convergence theorem applies 
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 Xiao, Liu & Hu (2017, Science China: Mathematics) also study Bayesian 
adaptive designs  

• No utility function.  

• Randomization rule is a function of  P(p1 >  p2|Fk ). 

• They have a threshold value for the randomization probability. 

• They compare BAR (simply adaptive) with BDBCD (doubly-adaptive, 
based on Hu and Zhang, 2004) 

• They prove convergence of BDBCD to a fixed value which depends on 
the threshold, and the asymptotic normality of BDBCD. 

 
 
 

Comparisons of Bayesian adaptive and doubly 

adaptive designs 
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Comparing BRAC and BRACE designs 

p1*= 0.4   

p2*= 0.5  
w  = 0.5,  r = 0.5   

PRIORS 

a1 = 40, a2 = 60 

b1 = 50, b2 = 50 

Example 1 
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Comparing BRAC and BRACE designs   

p1* = 0.4   

p2*= 0.5  

w  = 0.5   a1 = 5, a2 = 5 

b1 = 4, b2 = 5 

Example 1 
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Comparing BRAC and BRACE designs 

N = 1000 replications w  = 0.5   Example 1 “Bad” prior 
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Comparing BRAC and BRACE designs 

N = 1000 replications w  = 0.5   
Choice of Beta priors 

Average Variability 

(A)  is “very good” prior, (B) is “good”,  (C) and (D)  are “bad”   
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Comparing BRAC and BRACE designs 

w  = 0.5   N = 1000 replications 

(E)  is “very good” prior, (F) is “good”,  (G) and (H)  are “bad”   
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Conclusions  

 Simulations show: 

• Convergence is better when the success probabilities are farther apart. 

•  If the initial perception regarding the treatment effects is fundamentally correct, 
then a small number of units n is sufficient to achieve convergence. 

• The prior precision does not seem to affect the design much.  

• The ERADE modifications seem  improve the speed of convergence to the optimal 
target in the Bayesian approach too 

 

TO DO 

• Our simulations only carried out for one compound utility: ample scope for further 
investigation. 

• The asymptotic normality of the design in the Bayesian context still needs to be 
investigated 

• COVARIATES!!! 
  



THE   END 
 

with thanks to the organizers for inviting me 
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