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Why Bayesian?

Optimal experiments for treatment comparison

Nearly all desirable treatment allocations (= targets) depend on
unknown parameters of model

Example :
 Twotreatments T, T,
* binary responses, with success probabilities p;, p,

Minimizing the variance of estimated difference p, - p, gives Neyman’s
allocation proportion

s VPi(1-py)
n \/pl(l_ ) +\/p2(1' P,)

With 50-50 allocation

If p,=0.1and p,=0.4, loss of information = 5.8%
If p,=0.2 and p,=0.3, loss of information = 4.6 °/_,



Why Bayesian?

Need to use prior information on treatment effects for designing the
experiment

* Dbest guess
« Bayesian — prior distribution on parameters

(very popular also among non-Bayesians!)

Wish to use prior distribution AT THE PLANNING STAGE, but not
necessarily for inference

Bayarri & Berger Statistical Science, 2004;
Ventz, et al. Applied Stochastic Models in Business and Industry, 2017



Why Randomized?

Randomization not essential in Bayesian statistics, BUT now widely accepted
(Ball, Smith and Verdinelli JSPI, 1993)

1. Randomization to fight accidental/selection bias

2. Present trend:

Bayesian approach to design strongly biased towards clinical studies

S. Berry, Carlin, Lee and Muller, (2011)
Bayesian Adaptive Methods for Clinical Trials

FDA guidelines (2010)

In clinical trials randomization is a must



Why Adaptive?

Designing whole experiment on the basis of the initial prior can be very
inefficient

More efficient to update prior belief step-by-step in the light
of the accrued data



Adaptive design in a Bayesian framework:
how?
Clearly  Taking the prior expectation of an optimal target may turn out to be

strongly sub-optimal
(falling between two stools! ©)

Several possible Bayesian approaches: “probability only”, Bayesian biased coins....

Our choice: The Decision-theoretic Approach (Lindley, 1957)

Start with
d a prior on parameters and a suitable utility function
At each step
J update the prior
 calculate the expected utility according to updated prior
[ maximize the expected utility (= temporary targets)
1 use a randomization rule that is a function of the temporary target



Choice of utility (or loss)

In Chaloner and Larntz (JSPI, 1989):

Utility as a function of Fisher’s information matrix ‘M

Information criteria
 Trace of inverse Fisher’s info A-optimality
« Determinant of Fisher’s info D-optimality

have Bayesian interpretations

“Ethical” utilities (in clinical trials)
« Expected number of subjects allocated to better treatment/s
» Expected number of successes

Compound utilities (Trade-offs of Exploration v. Exploitation)
Weighted combinations of above (with weights possibly depending on the
parameters)

see also Asya Metelkina & Luc Pronzato Information-regret compromise in covariate-
adaptive treatment allocation



An A-optimal Bayes adaptive design

for binary data
(in Applied Stochastic Models in Business and Industry, 2017)

Two treatments T T,

Model is binary  success probabilities P,

Utility is A-optimality: want to minimize

— A-optimal Bayes design:

P,

E(

IO1,I02)

P21 p2)

Proportion of allocations to T,

JEp [Piti]

"8 [Ep [Pl + JE,, [P0,]

NOT the same as expected Neyman’s target

E(pl,pz)[

~/ P1s

A/ POy + A/ szz}




An A-optimal Bayesian adaptive design
for binary data

Priors are independent Betas Beta(aj,bj) =152
—— Posteriors are Betas

At each step k>1 Nj = number of assignments to T;
Si = humber of successes of T;

A-optimal allocation of T, according to the updated information
(temporary target) is

Gy

T(k) =
Gy + Gy

=S ) (DN S
where ij: \/(J Jk)(J Jk Jk)
\/(aj+bj+Njk)(aj+bj+Njk+l)

Randomization:
At step K, choose T, with probability equal to temporary target



A-optimal Bayesian adaptive design

The treatment allocation proportion N,,/n converges almost
surely to Neyman’s target Tt for all Beta priors and all p; p,

This A-optimal Bayes adaptive design is Bayesian analogue of
frequentist Sequential Maximum Likelihood design targeting
Neyman’s allocation
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The Sequential Maximum Likelihood (SML) design
for a target r,(0)

Ny observations for initial estimate of parameters

at each step i (>n,)

parameter 0 estimated by ML utilizing all the data up to k
the unknown target 1,(8) is estimated

treatments are randomized with probability given by the current estimate of the
target regardless of whether present assignments are too few or too many

Almost sure convergence of proportion of allocations N,, /n to target
ML estimators are consistent and asimptotically normal

Asymptotic normality of N, /n

BUT Slow convergence
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An A-optimal Bayesian adaptive design
for binary data

Some Beta priors Beta(a;,b;)
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Convergence of Bayes A-optimal design to Neyman'’s target
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Asymptotic variance of A-optimal Bayes design
p;*= 0.1, p,*=0.4; No. of replications = 1000
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To get faster convergence (less variability)
can we import frequentist improvement

methods into Bayesian designs?



Compound utilities

Ethical/Utilitarian criterion
E = Expected proportion of units allocated to better treatment

Information criterion

@ = determinant, square root of det, trace of inverse normalized Fisher
information M

Essential requirement: @ is @ re-scaled to range in [0,1]

U= E+(1-0)D 0<mw<l1

U= "U(r; o; p,*, p,*) T I’Il/n
At stage k, we maximize expected utility wrt posterior up to k-1

“TEMPORARY T (k) =argmax_E(U | F.,)
TARGETS”
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Examples

1. @ =detM Tp[ﬂ]—l

- < ol Fo i) o < 4/5
5T 31_ pa|Fi—1) — B(p1 < pa|Fi-1))

With Beta priors

- — (29 (@67 5%) — 1)

where

1 -1 _ =1 ;
g(ay, by, ag, by) = / £ B{{l ;;‘ I(as.by)dz and (2, b,) is the CDF of Beta(a, b,)
Jo 1,0

2. @ =SQRT(detM)

| w ( ( (k) HL.E.J ltlt”.b-@;k']} . l)
—(k) == + _
Beta priors volk) 2 /

3 \ 2
1”#4[1—;;.,] 4 w2 (Eg[ﬂlﬁ b”‘ HL b[ﬁ.) )

3. @ =trace(M1) o<1/72
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Simply adaptive randomization rule

Randomization :

at stage K P(T) =T (k) Optimal allocation given the data

or P(T)) = (T ,(K)) L ey /iny
2 o)=1-¢@1-y) forally

When utility is compound,

Bayesian Randomized Adaptive Compound (BRAC)

design



Doubly-adaptive designs

In frequentist context:

Doubly-adaptive randomization:
takes into account both past allocations and target

The probability of assigning T, to unit n+1 is based on a measure of "dissimilarity"
between the current allocation of T, and the current estimate of the target

J Doubly-adaptive Biased Coin Design
(Eisele, JSPI, 1994; Hu & Zhang, Annals, 2004)

(1 Efficient Randomized-Adaptive DEsign (ERADE)
(Hu, Zhang & He, Annals, 2009)

J Reinforced Doubly-Adaptive BCD
(Baldi-Antognini & Zagoraiou, Annals, 2012)
(Doubly-adaptive BCD and ERADE are special cases)
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Doubly-adaptive randomization rule

v. (0,1)? — [0,1]
(C) Conditions for / (X,Y) X = present allocation proportion
1 o) S\ fix y = current temporary target
2. y(xy) Jiny v = some measure of dissimilarity
3. w(X, X)=X for all X
4 wXy)=1-w(l-x1-y) forallX,y

Randomization : Choose T, with probability = (N, /k /T, (k)

If the allocation proportion Ny, /k is smaller than the temporary target T, (k) then the
allocation probability will be greater than the temporary target and viceversa. This will
drive allocations to the true target if T, (k) — T*



Convergence of Bayesian doubly-adaptive designs

Theorem
(after Baldi Antognini & Zagoraiou, Bernoulli, 2015)
If

i) the utility function ‘U and independent priors for p, and p, are such

that 0<Tyk) <1 and
i) the Bayesian randomized doubly-adaptive design is defined by

satisfying (C),

then

U The temporary targets converge to the desired target almost
surely

0 The allocation proportion converges to the desired target
almost surely

22



ERADE

(Hu, Zhang & He, Annals, 2009 — inspired by Efron’s Biased Coin Design, 1971)

Frequentist * X =present allocation
_ proportion
FY, fz>y, * Y= current estimate of
P(T,)) =4 v ifr =1y, the target
l —p(l —vy), ifzx<uy,

p € [0; 1) a randomization parameter : for p = 0 ERADE becomes design by Robbins et
al. (1967), for p — 1 allocations are more randomized and ERADE tends to the SML

design

» Almost sure convergence and asymptotic normality hold.
« Under differentiability conditions of the target, the asymptotic
variance Iis a minimum.

ERADE is asymptotically best




BRACE design
(Bayesian Randomized Adaptive Compound Efficient)

Randomization rule = “Bayesian ERADE”

pT(k) if r1,, /k > T(k)
PT) = {T(k) if 1y /k = T(k)
1—p (1=T(k)) ifny/k < T(k)

Satisfies Condition (C) = Convergence theorem applies



Comparisons of Bayesian adaptive and doubly
adaptive designs

Xiao, Liu & Hu (2017, Science China: Mathematics) also study Bayesian
adaptive designs

* No utility function.
* Randomization rule is a function of P(py > pol Fy )

* They have a threshold value for the randomization probability.
 They compare BAR (simply adaptive) with BDBCD (doubly-adaptive,
based on Hu and Zhang, 2004)

 They prove convergence of BDBCD to a fixed value which depends on
the threshold, and the asymptotic normality of BDBCD.



Comparing BRAC and BRACE designs
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Figure 5. Single run of the algorithm. Left: BRAC. Right: BRACE.



Comparing BRAC and BRACE designs
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Figure 6. Single run of the algorithm. Left: BRAC. Right: BRACE.

TARGET = 0.375



Comparing BRAC and BRACE designs
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Figure 3. BRAC design. p; = 0.4, p; =0.5.
Left: ]E[n]mfn], Center: ]E[|r11mfn —']I"’|]. Right: AVAR= vkSD[ny;/k]; k=1,...,n.
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Figure 4. BRACE design. p] = 0.4, p; =0.5.
Left: ]E[nmjn], Center: ]E[|r11,”fn —’]l"*|]. Right: AVAR= vkSD[n,,/k]; k=1,...,n.
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Comparing BRAC and BRACE designs

Choice of Beta priors

a, b, a, b,
(A) | 40 60 50 50
(B) 4 6 5 5
(C) 5 5 4 5
(D) | 50 50 40 50

N = 1000 replications

p; =0.4, p; =0.5, n=100. T* = 0.375.

BRAC BRACE
E[n,,/n] AVAR | E[n,,/n] AVAR
PRIOR (A) 0.394  0.498 0.393 0.184
PrIOR (B) 0.438 0.648 0.431 0.507
PrIoR (C) 0.472 0.684 0.448 0.561
PrIOR (D) 0.533 0.590 0.509 0.479

(A) is “very good” prior, (B) is “good”, (C) and (D) are “bad”

Average Variability AVAR = Jn SD[n,,/n]




Comparing BRAC and BRACE designs

N = 1000 replications w =05
@ b a b p; =02, p;=0.6, n=100. T* = 0.375.
(E) | 163 652 20 13.3
BRAC BRACE
()| 1.3 52 51 34 E[n;,/n] AVAR | E[n,,/n] AVAR

PRIOR (E) 0.379 0484 | 0.378 0.071
PrIOR (F) 0.378 0.480 0.379 0.069

PRIOR (G) | 0.430 0.542| 0.381 0.115
(G)| 51 34 13 5.2

PRIOR (H) 0.596 0.536 | 0.531 0.462

(H)| 20 13.3 16.3 65.2
Table 5. Sumnmary of results for BRAC and BRACE designs.

. . .
Larger Difference between p; and p;.

(E) is “very good” prior, (F) is “good”, (G) and (H) are “bad”



Conclusions

Simulations show:
* Convergence is better when the success probabilities are farther apart.

* If the initial perception regarding the treatment effects is fundamentally correct,
then a small number of units n is sufficient to achieve convergence.

* The prior precision does not seem to affect the design much.

* The ERADE modifications seem improve the speed of convergence to the optimal
target in the Bayesian approach too

TO DO

e Our simulations only carried out for one compound utility: ample scope for further
investigation.

* The asymptotic normality of the design in the Bayesian context still needs to be
investigated

« COVARIATESI!



THE END

with thanks to the organizers for inviting me
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