
Sampling and spectral approximation

Bertrand Gauthier
CIRM, Marseille, April 30 - May 4 2018

Cardiff University - School of Mathematics

Table of contents

1. Introduction

2. Squared-kernel discrepancy and spectral approximation

3. Quadrature-sparsification as quadratic programming

4. Examples

5. Conclusion

1

Intro

General framework

• X a general measurable set.
•  a separable RKHS of real-valued functions on X , with (measurable)
reproducing kernel K(⋅, ⋅).

•  the set of all measures on X , and

T (K) =
{
� ∈ ||�� = ∫X K(x, x)d�(x) < +∞

}
.

Continuous inclusion and integral operator

For all � ∈ T (K), we have K(⋅, ⋅) ∈ L2(� ⊗ �); in addition, for all ℎ ∈ , we
have ℎ ∈ L2(�) and ‖ℎ‖2

L2(�)
⩽ ��‖ℎ‖2 . We can thus define the symmetric

and positive-semidefinite integral operator T� on L2(�),

∀f ∈ L2(�),∀x ∈ X , T� [f] (x) = ∫X K(x, t)f (t)d�(t).

• T�[f] ∈  ⊂ L2(�), and for all ℎ ∈ ,
(
ℎ||T�[f]

)
 =

(
ℎ||f

)
L2(�).

2

So what?

For a given � ∈ T (K), how to compute an accurate approximation of the
main eigenpairs of T�?

Idea: “Use a quadrature”, i.e., search for a discrete measure � ∈ T (K)
supported by a small number of points, and use the spectral approximation of
T� to approximate the one of T�. . .

Problems: What are “good measures” �? How to design such masures?
What does “use the spectral approximation of T� to approximate the one of T�”
mean? Can we have a money-back guarantee?

Related work
[GS18] Bertrand Gauthier and Johan A.K Suykens. Optimal
quadrature-sparsification for integral operator approximation. -preprint-
https://hal.archives-ouvertes.fr/hal-01416786v3. 2018

3

 https://hal.archives-ouvertes.fr/hal-01416786v3

More about T�

• 0� =
{
ℎ ∈ ||‖ℎ‖L2(�) = 0

}
and � = ⊥

0� ; →  = � ⦹0�.

• {�k}k∈I+� set (at most countable) of all strictly positive eigenvalues of T�.

• {'k}k∈I+� a set of (canonically extended) associated eigenfunctions,

orthonormalised in L2(�), (i.e., 'k ∈ , and ('k|'k′)L2(�) = �k,k′);
→ {

√
�k'k}k∈I+� o.n.b. of the subspace � of .

• The reproducing kernel K�(⋅, ⋅) of � is given by, for all x and t ∈ X ,

K�(x, t) =
∑
k∈I+� �k'k(x)'k(t).

• For all � ∈ T (K), T� is an Hilbert-Schmidt op. on L2(�), and also on .

4

Squared-kernel discrepancy and
spectral approximation

Plan

Introduction

Squared-kernel discrepancy and spectral approximation

Squared-kernel discrepancy

Spectral approximation

Conic squared-kernel discrepancy

Quadrature-sparsification as quadratic programming

The penalised problems

Analogy with one-class SVM

Examples

Two-dimensional examples

An example with relatively “big N”

Conclusion

Measure of the approximation error

We denote by HS() the Hilbert space of all Hilbert-Schmidt operators on .
Let � and � ∈ T (K); for an o.n.b. {ℎj}j∈I of  (with I a general, at most
countable, index set), the Hilbert-Schmidt inner product between the operators
T� and T� on  is given by

(
T�||T�

)
HS() =

∑
j∈I

(
T�[ℎj]||T�[ℎj]

)
 .

Squared-kernel discrepancy
For � and � ∈ T (K), we define

DK2 (�, �) = ‖T� − T�‖2HS();

in particular,

DK2 (�, �) = ‖K‖2
L2(�⊗�)

+ ‖K‖2
L2(�⊗�)

− 2‖K‖2
L2(�⊗�)

,

with ‖K‖2
L2(�⊗�)

= ∫X×X
(
K(x, t)

)2d�(x)d�(t) = (T�|T�)HS().

5

A property

Weighted spectral sum-of-squared-errors-type criterion
Let � and � ∈ T (K) be such that � ⊂ �, then

DK2 (�, �) =
∑
k∈I+� �k

‖‖T�['k] − T�['k]‖‖2 ,

and, in addition,
∑
k∈I+� �k

‖‖T�['k] − T�['k]‖‖2L2(�) ⩽ ��DK2 (�, �).

Remark: the squared kernel K2(⋅, ⋅) =
(
K(⋅, ⋅)

)2 is also symmetric and positive
semidefinite, and is thus related to a RKHS . Many of the properties of the
integral operators defined from K(⋅, ⋅) can be interpreted in the RKHS .

6

General remarks

• DK2 (�, �) ⩾ 0 and DK2 (�, �) = 0 → the “raw” minimisation of
� ↦ DK2 (�, �) on T (K) is of no interest (i.e., “overall, the best
approximation of T� is T� itself”).

• For a given n ∈ ℕ∗, the search of an optimal discrete measure �∗n such that
DK2 (�, �∗n) is minimal among all measures �n supported by n points is in
general a difficult (i.e., usually non-convex) optimisation problem on
(X ×ℝ+)n.

Nevertheless:

• If we assume that the support of � is included in a fixed finite set of points
 = {xk}Nk=1 (with, in practice, N large), the squared-kernel discrepancy
can be expressed as a convex quadratic function.

• Sparsity of the approximate measure can then be promoted through the
introduction of an l1-type penalisation, and the induced penalised
squared-kernel-discrepancy minimisation problems consist in convex
quadratic minimisation problems.

7

Plan

Introduction

Squared-kernel discrepancy and spectral approximation

Squared-kernel discrepancy

Spectral approximation

Conic squared-kernel discrepancy

Quadrature-sparsification as quadratic programming

The penalised problems

Analogy with one-class SVM

Examples

Two-dimensional examples

An example with relatively “big N”

Conclusion

Approximate operator

We consider two measures � and � ∈ T (K), corresponding to an initial
operator T� and an approximate operator T� .

Eigendecomposition of T�
Denote by {#l}l∈I+� the strictly positive eigenvalues of T�, and let { l}l∈I+� be
an L2(�)-orthonormal of associated eigenfunctions, i.e., T�[l] = #l l ∈ ,
with #l > 0 and (l| l′)L2(�) = �l,l′ . We shall refer to the functions l as the
approximate eigendirections of T� induced by T� .

Normalised approximate eigendirections
For all l ∈ I+� such that ‖ l‖L2(�) > 0, we introduce '̂l = l∕‖ l‖L2(�).

Notice that if � ⊂ �, then we necessarily have ‖ l‖L2(�) > 0 for all l ∈ I+� . If
‖ l‖L2(�) = 0, then l ∈ 0� and thus T�[l] = 0; such directions are therefore
of no use in approximating the eigendirections related to the strictly positive
eigenvalues of T�.

8

Remark: orthogonality test

The normalised approximate eigenfunctions '̂l are by definition orthogonal in
L2(�) and in , and verify ‖'̂l‖L2(�) = 1. Controlling their orthogonality in
L2(�) offer a relatively affordable way to assess their accuracy. Indeed, accurate
normalised approximate eigenfunctions '̂l should be almost mutually orthogonal
in L2(�); this condition is however only a necessary condition.

It also is very instructive to try to estimate the eigenvalue, for the operator T�,
related to an approximate eigendirection l induced by T� . . .

9

Approximate eigenvalues

Geometric approximate eigenvalues
For all l ∈ I+� such that ‖ l‖L2(�) > 0, we define

�̂[1]l =1∕‖'̂l‖2 = #l‖ l‖2L2(�) =
(√

#l l||T�[
√
#l l]

)
 =

(
T�[l]||T�[l]

)
 ,

�̂[2]l =‖‖T�[
√
#l l]‖‖ ,

�̂[3]l =
(
'̂l||T�['̂l]

)
L2(�) = ‖‖T�['̂l]‖‖2 =

(
�̂[2]l

)2∕�̂[1]l ,
�̂[4]l =‖‖T�['̂l]‖‖L2(�) = ‖‖T�[l]‖‖L2(�)∕‖‖ l‖‖L2(�),

and if ‖ l‖L2(�) = 0, we set �̂[1]l = �̂[2]l = �̂[3]l = �̂[4]l = 0.

10

A property

Theorem 1

For all l ∈ I+� , we have �̂[1]l ⩽ �̂[2]l ⩽ �̂[3]l ⩽ �̂[4]l , with equality when l is an
eigendirection of T�; in case of equality, the approximation �̂[⋅]l corresponds
exactly to the eigenvalue of T� related to the eigendirection l (in particular,
equality between the four geometric approximate eigenvalues occurs as soon
as two of them are equal).

In addition, for � ∈ ℝ, the function

�↦ ‖‖�
√
#l l − T�[

√
#l l]‖‖2 = �2 − 2��̂[1]l +

(
�̂[2]l

)2

reaches its minimum at � = �̂[1]l . In the same way, if ‖ l‖L2(�) > 0 (so that
the normalised approximate eigenfunction '̂l is well-defined), the function

�↦ ‖‖�'̂l − T�['̂l]‖‖2L2(�) = �2 − 2��̂[3]l +
(
�̂[4]l

)2

reaches its minimum at � = �̂[3]l .

11

Plan

Introduction

Squared-kernel discrepancy and spectral approximation

Squared-kernel discrepancy

Spectral approximation

Conic squared-kernel discrepancy

Quadrature-sparsification as quadratic programming

The penalised problems

Analogy with one-class SVM

Examples

Two-dimensional examples

An example with relatively “big N”

Conclusion

Invariance of the spectral approximation (1)

Proportional approximate measures lead to the same spectral approximation of
T� and to the same approximate kernel K�(⋅, ⋅). For a given measure � ∈ T (K),
we can thus search the value of c ⩾ 0 for which DK2 (�, c�) is minimal.

Theorem 2 (part 1)
We denote by c� the argument of the minimum of the function
� ∶ c ↦ �(c) = DK2 (�, c�), with c ∈ ℝ; we have

c� =
(T�|T�)HS()

‖T�‖2HS()

=
‖K‖2

L2(�⊗�)

‖K‖2
L2(�⊗�)

, and �
(
c�
)
= ‖K‖2L2(�⊗�) −

‖K‖4
L2(�⊗�)

‖K‖2
L2(�⊗�)

.

In particular, Tc�� = c�T� is the orthogonal projection, in HS(), of T� onto
the linear subspace spanned by T� ; in addition,
‖c�T� − 1

2T�‖2HS() =
1
4‖K‖2

L2(�⊗�)
, so that, in HS(), the approximate

operator c�T� lies on a sphere centered at 1
2T� and with radius 1

2‖T�‖HS().

12

Invariance of the spectral approximation (2)

Theorem 2 (part 2)
Assuming that � ⊂ � (for simplicity and without loss of generality), we
have

∑
l∈I+� �̂

[1]
l
‖‖T�['̂l] − �̂[1]l '̂l‖‖2⩽

∑
l∈I+� �̂

[1]
l
‖‖T�['̂l] − c�#l'̂l‖‖2⩽ DK2 (�, c��),

and
∑
l∈I+� �̂

[1]
l
‖‖T�['̂l] − �̂[3]l '̂l‖‖2L2(�)⩽

∑
l∈I+� �̂

[1]
l
‖‖T�['̂l] − �̂[1]l '̂l‖‖2L2(�)

⩽ ��DK2 (�, c��).

In view of Theorem 2, in order to approximate the eigenvalues of the initial
operator T� induced by the eigendecomposition of T� , we could also define the
“globally rescaled” approximate eigenvalues {c�#l}l∈I+� ; in comparison, the

approximate eigenvalues {�̂[1]l }l∈I+� are “individually rescaled”.

13

Quadrature-sparsification as
quadratic programming

Plan

Introduction

Squared-kernel discrepancy and spectral approximation

Squared-kernel discrepancy

Spectral approximation

Conic squared-kernel discrepancy

Quadrature-sparsification as quadratic programming

The penalised problems

Analogy with one-class SVM

Examples

Two-dimensional examples

An example with relatively “big N”

Conclusion

Discrete operators

We only consider measures with support included in a fixed set  = {xk}Nk=1.
We assume that � =

∑N
k=1 !k�xk , with ! > 0, and that � =

∑N
k=1 �k�xk , with

� ⩾ 0. We then have

DK2 (�, �) = (! − �)T S(! − �),

where S is the kernel matrix with i, j entry Si,j = K2(xi, xj) ⩾ 0. Notice that
S = K ∗ K (Hadamard product), where K is the kernel matrix defined by K(⋅, ⋅)
and , i.e., Ki,j = K(xi, xj).

For a given (fixed) !, we introduce

D(�) = 1
2 (! − �)T S(! − �).

14

Regularised problem

Consider a penalisation direction d = (d1,⋯ , dN)T ∈ ℝN , with d > 0, and a
regularisation parameter � ⩾ 0.

Regularised SKD minimisation

minimise
�∈ℝN

D�(�) =
1
2 (! − �)T S(! − �) + �dT � subject to � ⩾ 0. (1)

Since � ⩾ 0, the term dT � can be interpreted as a weighted l1-type
regularisation. Notice that if d = diag(K), then dT � = trace(T�).

15

Constrained problem

Constrained SKD minimisation

For 0 ⩽ z ⩽ dT!, we can equivalently consider

minimise
�∈ℝN

D(�) = 1
2 (! − �)T S(! − �) subject to � ⩾ 0 and dT � = z. (2)

The penalised and constrained formulations are equivalent.

16

Penalisation and spectral approximation

No-free-lunch theorem
One can formally show that under “reasonable conditions”, increasing the
amount of penalisation tends to increase the sparsity of the approximate
measure at the expense of monotonically reducing the overall accuracy of the
induced spectral approximation.

17

Illustration: N = 2

0 1 2 3 4 5

0
1

2
3

4
5

18

Plan

Introduction

Squared-kernel discrepancy and spectral approximation

Squared-kernel discrepancy

Spectral approximation

Conic squared-kernel discrepancy

Quadrature-sparsification as quadratic programming

The penalised problems

Analogy with one-class SVM

Examples

Two-dimensional examples

An example with relatively “big N”

Conclusion

SVM related to the regularised problem

We recall that we denote by  the RKHS associated with the squared kernel
K2(⋅, ⋅), and that for � ∈ T (K), the function g� ∈  is defined as
g�(x) = ∫X K2(t, x)d�(t), see Lemma 1. We introduce

minimise
g∈

1
2‖g‖2 + (g|g�)

subject to g(xk) ⩾ −�dk for all k ∈ {1,⋯ , N}.
(3)

Relation between the primal and dual solutions

If �∗� is a solution to (1) with � ⩾ 0, then g∗�(x) =
∑N
k=1[�

∗
� − !]kK

2(x, xk) is
the solution to (3).

Introducing the change of variable ǧ = g + g� ∈ , we can define

minimise
ǧ∈

1
2
‖ǧ‖2 subject to ǧ(xk) ⩾ g�(xk) − �dk for all k, (4)

which is an equivalent formulation for (3), with solution
ǧ∗�(x) =

∑N
k=1[�

∗
�]kK

2(x, xk) = g�∗� (x).
19

Numerical examples

Plan

Introduction

Squared-kernel discrepancy and spectral approximation

Squared-kernel discrepancy

Spectral approximation

Conic squared-kernel discrepancy

Quadrature-sparsification as quadratic programming

The penalised problems

Analogy with one-class SVM

Examples

Two-dimensional examples

An example with relatively “big N”

Conclusion

Settings

•  = {xk}Nk=1 consists of the N = 2016 first points of a uniform Halton
sequence on [−1, 1]2.

• ! = 1∕N (we recall that � =
∑
k !k�xk).

• Gaussian kernel K(x, y) = exp(−l‖x− y‖2), where ‖x− y‖ is the Euclidean
norm on ℝ2, and with l = 1∕0.16.

• d = 1.

0 10 20 30 40 50 60

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0 eigenvalues �k

k

-1.0
-0.5

0.0
0.5

1.0-1.0

-0.5
0.0

0.5
1.0-1

0

1

eigenfunction 'k for k = 11

20

How does optimal measures look?

-1.0 -0.5 0.0 0.5 1.0

-1.
0

-0.
5

0.0
0.5

1.0

solution �∗ for z = 0.81 or � ≈ 8.354215 × 10−3

Figure 1: Graphical representation (Gaussian kernel, ! = 1∕N and d = 1) of the
solution �∗ to problem (2) with z = 0.81, or equivalently, to problem (1) with
� ≈ 8.354215 × 10−3. The grey crosses represent the points in  and the filled dots are
the strictly positive components of �∗ (surface being proportional to �∗k). 21

Orthogonality test

0.0

0.2

0.4

0.6

0.8
l = 21

l = 44

Figure 2: Graphical representation of the matrix with l, l′ entry ||
(
'̂l||'̂l′

)
L2(�)

|| for the
160 normalised approximate eigendirections induced by the solution �∗ presented in
Figure 1 (i.e., z = 0.81).

22

Geometric approximate eigenvalues and spectral-ratio test

0 50 100 150

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0 approx. eigenval. �̂[4]l

approx. eigenval. �̂[3]l
approx. eigenval. �̂[2]l
approx. eigenval. �̂[1]l

← l = 21

← l = 44

l
0 50 100 150

0.0
0.2

0.4
0.6

0.8
1.0 (

�̂[3]l ∕�̂[4]l
)2

(
�̂[1]l ∕�̂[2]l

)2

l

Figure 3: Approximate eigenvalues �̂[1]l , �̂[2]l , �̂[3]l and �̂[4]l induced by the solution �∗

presented in Figure 1 (left); ratios
(
�̂[1]l ∕�̂[2]l

)2
and

(
�̂[3]l ∕�̂[4]l

)2
highlighting the

accuracy of the approximate eigendirections l of T� (right).

23

About the approximate eigenvalues

1
2

3
4 most accurate approximate eigenvalue

0 50 100 150

-1e
-03

-5e
-04

0e+
00

5e-
04

1e-
03

�̂[4]l − �l �̂[3]l − �l �̂[2]l − �l �̂[1]l − �l

l

Figure 4: Errors �̂[⋅]l − �l for the geometric approximate eigenvalues induced by the
solution �∗ presented in Figure 1 (bottom), and indication of the most accurate
(smallest absolute error) approximation among �̂[1]l , �̂[2]l , �̂[3]l and �̂[4]l (top).

24

Error on the eigenvectors

Table 1: Approximation error ‖'̂l − 'l‖2L2(�)
, with 1 ⩽ l ⩽ 20, for the normalised

approximate eigendirections induced by the solution �∗ presented in Figure 1 (i.e.,
z = 0.81); the values of l grouped together correspond to pairs of eigendirections
related to the approximation of an eigensubspace of dimension two.

l 1 2 and 3 4 5 and 6 7 and 8 9 and 10

�̂[1]l 0.10861 0.08747 0.08737 0.07028 0.06103 0.06089 0.04907 0.04895 0.03706 0.03692
‖'̂l − 'l‖2L2(�)

0.00017 0.00035 0.00035 0.00056 0.00054 0.00120 0.00115 0.00117 0.00245 0.00243

l 11 12 and 13 14 and 15 16 and 17 18 and 19 20

�̂[1]l 0.03418 0.02976 0.02971 0.02073 0.02070 0.01954 0.01954 0.01573 0.01571 0.01251
‖'̂l − 'l‖2L2(�)

0.00196 0.00128 0.00448 0.00438 0.00456 0.00773 0.00685 0.00843 0.00830 0.00711

25

Regularisation path

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0 z ↦ card({k|[�∗z]k > 0})

z 0.0 0.2 0.4 0.6 0.8 1.0

0.0
00

0.0
10

0.0
20

z ↦ D(�∗z)z ↦ D(cz�∗z)

z 0.0 0.2 0.4 0.6 0.8 1.0

0.0
0

0.0
2

0.0
4

0.0
6 z ↦ (�∗z)TS(! − �∗z)∕z

z

Figure 5: For the two-dimensional example (Gaussian kernel, ! = 1∕N and d = 1),
graphical representation of the 12 818 first events of the regularisation path related to
problem (2) for increasing z; number of strictly positive components of �∗z as function
of z (left); graph of z ↦ D(�∗z) and z ↦ D(cz�∗z) (middle), and relation between z
and the parameter � of problem (1) (right).

26

Greedy pairwise merging

-1.0 -0.5 0.0 0.5 1.0

-1.
0

-0.
5

0.0
0.5

1.0

merged vector �[90] and support of �[0] = �∗

0 50 100 150

0.0
0

0.1
0

0.2
0

0.3
0

c(0, 1:nInci)

c(0
,In

cri
zD

cos
tA

) D(�[m]) −D(�∗)

m

70 80 90 100 110 120

0e+
00

2e-
04

4e-
04

Inc
riz

Dc
ost

A[
Uz

uu
m] D(�[m]) −D(�∗)

m
0 10 20 30 40 50 60 70

0.0
0.2

0.4
0.6

0.8
1.0

T1

(
�̂[1]l ∕�̂[2]l

)2 for �[90](
�̂[1]l ∕�̂[2]l

)2 for �∗

l

Figure 6: Merged measure �[90] obtained after 90 iterations of the
strong-pairwise-merging strategy applied to the solution �∗ presented in Figure 1; the
grey diamonds indicate the support of �∗ (left). Increase of the cost D(⋅) induced by
each merging iteration, for the whole 159 iterations (top-middle), and zoom around
the 90-th iteration (bottom-middle). Representation of the ratios

(
�̂[1]l ∕�̂[2]l

)2
obtained

from the merged vector �[90] and comparison with the same ratios for the solution �∗

(right).
27

Penalisation direction

0.000 0.005 0.010 0.015 0.020 0.025

0
50

15
0

25
0

35
0

d = vmax(S)d = (S!)2

d =
√
S!

d = 1

d = 1∕
√
S! d = 1∕(S!) d = 1∕(S!)2

D(�∗�) ↦ card({k|[�∗�]k > 0})

0.000 0.005 0.010 0.015 0.020 0.025

0
50

10
0

20
0

30
0

d = vmax(S)
d = (S!)2

d =
√
S!

d = 1
d = 1∕

√
S!

d = 1∕(S!)d = 1∕(S!)2

D(c��∗�) ↦ card({k|[�∗�]k > 0})

Figure 7: Number of strictly positive components of the solution �∗� to problem (1) as
function of the squared-kernel discrepancy D(�∗�) (top), and of the conic
squared-kernel discrepancy D(c��∗�) (bottom) for various penalisation vectors d; all the
curves have been obtained thanks to the regularisation-path strategy. 28

Plan

Introduction

Squared-kernel discrepancy and spectral approximation

Squared-kernel discrepancy

Spectral approximation

Conic squared-kernel discrepancy

Quadrature-sparsification as quadratic programming

The penalised problems

Analogy with one-class SVM

Examples

Two-dimensional examples

An example with relatively “big N”

Conclusion

Settings

•  = {xk}Nk=1 consists of the N = 500 000 test points (in ℝ18) of the
standardised UCI-SUSY dataset.

• ! = 1∕N .

• Gaussian kernel K(x, y) = exp(−l‖x − y‖2) with l = 1∕0.4.
• d = 1.

• Computations (CPU) performed on a 2015 desktop endowed with an Intel
Core i7-4790 processor with 16 GB of RAM; “full C” implementation.

Computation of the dual distortion term S! → 5 665.6 seconds.

We compute an approximate solution (vertex-exchange strategy) for the
constrained problem (2) with z = 0.3; we perform four consecutive batches of
50 000 iterations each, the solver being initialised at �̃ = e1. After 200 000
iterations (i.e., at the end of the fourth batch), the obtained approximate
solution �̂∗ verifies D(�̂∗) = 3.931629 × 10−5 and has n = 20 664 strictly positive
components.

29

Kernelised VEX

Table 2: Information relative to the approximate solutions to problem (2) with z = 0.3
returned by the VEX strategy for four consecutive batches of 50 000 iterations (the
solver is initialised at a vertex of the polytope); for each batch, execution time, total
number of iterations, Frank-Wolfe error bound � and number n of strictly positive
components of the approximate solution.

batch 1 batch 2 batch 3 batch 4

time (in sec.) 1 148.7 1 158.3 1 158.5 1 159.1
total nb. of it. 50 000 100 000 150 000 200 000

� 3.1413 × 10−7 6.5477 × 10−8 2.7049 × 10−8 7.0928 × 10−9

n 19 721 20 619 20 693 20 674

To enhance sparsity, we perform a weak-pairwise merging of the approximate
solution �̂∗; the computation of 20 673 merging iterations took 78.86 seconds.
The merged solution �[13674] is supported by 7 000 points and
D(�[13674]) = D(�̂∗) + 5.271960 × 10−7 (i.e., increase of only 1.34%).

30

Spectral approximation (1)

• Computing the 300 first normalised approximate eigenvectors v̂l of KW
(with W = diag(!)) induced by �[13674] (i.e., v̂l ∈ ℝN is the vector
corresponding to '̂l) took 3 278.2 seconds (time for canonical extension
and rescaling), and we thus also obtain the approximate eigenvalues �̂[1]l .

• For l and l′ ∈ {1,⋯ , 300}, we have maxl≠l′ |('̂l|'̂l′)L2(�)| ≈ 0.003734, so
that we can expect the approximations '̂l to be relatively accurate.

• To access precisely their accuracy, we compute T�['̂l] (i.e., KWv̂l) for
these 300 first approximate eigendirections; this operation took 191 622.3
seconds (i.e., around 53 hours).

31

Spectral approximation (2)

0 50 100 150 200 250 300

0.0
00

0.0
02

0.0
04

0.0
06 approx. eigenval. �̂[4]l

approx. eigenval. �̂[3]l
approx. eigenval. �̂[2]l
approx. eigenval. �̂[1]l

l

0 50 100 150 200 250 300

0.0
0.2

0.4
0.6

0.8
1.0

(
�̂[3]l ∕�̂[4]l

)2
(
�̂[1]l ∕�̂[2]l

)2

l

Figure 8: For the test subsample of the SUSY dataset, graphical representation of the
300 first approximate eigenvalues �̂[⋅]l induced by the merged solution �[13674] obtained
from the approximate solution �̂∗ to problem (2) with z = 0.3 (top); ratios

(
�̂[1]l ∕�̂[2]l

)2
and

(
�̂[3]l ∕�̂[4]l

)2
measuring the accuracy of the underlying approximate eigendirections

(bottom). We only use 7000 points among 500 000. 32

Conclusion

Conclusion

Contribution

• QP-based strategy for “quadrature-sparsification”.

• Analogy with kernel-LASSO and one-class SVM models.

• Spectral approximation with controlled error.

Numerical thought

• Main bottleneck of the approach: computation of the dual distortion term
S!; this can nevertheless be massively parallelised, and GPU could be used.

• Once the dual distortion term is known, sparse solutions can be obtained
readily.

• Assessing the accuracy of an approximate eigendirection trough the
computation of the four associated geometric approximate eigenvalues can
also prove challenging (same complexity as the distortion term); this
operation is nevertheless optional, and the more affordable orthogonality
test might be performed to detect poorly approximated eigendirections.

33

Thank you.

33

	Introduction
	Squared-kernel discrepancy and spectral approximation
	Squared-kernel discrepancy
	Spectral approximation
	Conic squared-kernel discrepancy

	Quadrature-sparsification as quadratic programming
	The penalised problems
	Analogy with one-class SVM

	Examples
	Two-dimensional examples
	An example with relatively ``big N''

	Conclusion

