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Classical linear model

What are you dealing with : Regression model

F : X ⊂ Rn → Rp, continuous.

Noisy linear model observed at ti ∈ X, i = 1, . . . ,N

zi = 〈θ∗, F(ti)〉+ εi.

θ∗ ∈ Rp unknown,

ε second order homoscedastic centred white noise

Best choice for ti ∈ X, i = 1, . . . ,N ?
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Information matrix

Normalized inverse covariance matrix of the optimal linear unbiased
estimate of θ∗ (Gauss Markov)

M(ξ) =
1

N

N∑
i=1

F(ti)F
T (ti) =

l∑
i=1

wiF(xi)F
T (xi).

ti, i = 1, · · · ,N are picked Nwi times within xi, i = 1, · · · , l, (l < N)

ξ =

(
x1 x2 · · · xl
w1 w2 · · · wl

)

wj =
nj
N ,

Simplification of the frame (if not discrete optimisation)
⇒ 0 < wj < 1,

∑
wj = 1

Best choice for the design ξ?
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Concave matricial criteria

Wish to maximize the information matrix with respect to ξ

M(ξ) =

l∑
i=1

wiF(xi)F
T (xi) =

∫
X

F(x)FT (x)dσξ.

ξ =

(
x1 x2 · · · xl
w1 w2 · · · wl

)
σξ(dx) :=

l∑
j=1

wjδxj(dx).

Concave criteria for symmetric p× p non negative matrix : φq(q ∈ [−∞, 1])

M > 0, φq(M) :=


( 1p trace(M

q))1/q if q 6= −∞, 0

det(M)1/p if q = 0
λmin(M) if q = −∞

detM = 0, φq(M) :=

{
( 1p trace(M

q))1/q if q ∈ (0, 1]

0 if q ∈ [−∞, 0].
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Optimal design

Wish to maximize φq(M(ξ)) ( with respect to ξ)

ξ =

(
x1 x2 · · · xl
w1 w2 · · · wl

)
σξ(dx) :=

l∑
j=1

wjδxj(dx).

φq(M) concave with respect to M and positively homogenous,
φq(M) is isotonic with respect to Loewner ordering

Main idea : extend the optimization problem to all probability measures

M(P) =

∫
X

F(x)FT (x)dP(x), P ∈ P(X).

Within the solutions build one with finite support
Big problem : description of all possible information matrices

I :=

{∫
X

F(x)FT (x)dP(x), P ∈ P(X)
}
.
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Our frame : polynomial regression

R[x] real polynomials in the variables x = (x1, . . . , xn)

d ∈ N R[x]d := {p ∈ R[x] : deg p 6 d} deg p := total degree of p
Assumption F = (f1, . . . , fp) ∈ (R[x]d)p.

X ⊂ Rn is a given closed basic semi-algebraic set

X := {x ∈ Rm : gj(x) > 0, j = 1, . . . ,m} (1)

gj ∈ R[x], deg gj = dj, j = 1, . . . ,m, and X compact e.g :

g1(x) := R
2 − ‖x‖2

F. Gamboa (IMT Toulouse) Polynomial design 30th of April 2018 9 / 27



Linear model and design Our frame : Polynomial regression Moment spaces SDP relaxation Examples Short bibliography

Some facts and notations

xα1
1 · · · xαnn , α = (α1, . . . ,αn) ∈ Nn basis of R[x] (xα := xα1

1 · · · xαnn )

R[x]d has dimension s(d) :=
(
n+d
n

)
. Basis (xα)|α|6d,

|α| := α1 + · · ·+ αn.

vd(x) := ( 1︸︷︷︸
degree 0

,x1, . . . ,xn︸ ︷︷ ︸
degree 1

,x21,x1x2, . . . ,x1xn,x22, . . . ,x
2
n︸ ︷︷ ︸

degree 2

, . . . , . . . ,xd1 , . . . ,xdn︸ ︷︷ ︸
degree d

)>

There exists a unique matrix A of size p×
(
n+d
n

)
such that

∀x ∈ X, F(x) = A vd(x) . (2)
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Moments, the moment cone and the moment matrix

µ ∈M+(X)α ∈ Nn,yα = yα(µ) =

∫
X

xαdµ

M+(X) is the cone of nonnegative Borel measures supported on X

(the dual of cone of nonnegative elements of C(X))
y = yα(µ) = (yα)α∈Nn moment sequence of µ
Md(X) moment cone :=convex cone of truncated sequences

Md(X) :=
{
y ∈ R(

n+d
n ) :∃µ ∈M+(X) s.t. (3)

yα =

∫
X

xα dµ, ∀α ∈ Nn, |α| 6 d
}
.

I only depends on M2d(X)
Recall

I :=

{∫
X

F(x)FT (x)dP(x), P ∈ P(X)
}
.
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Main tool

Pd(X) := convex cone of nonnegative polynomials of degree 6 d (may be
also viewed as a vector of coefficients)

Theorem

Md(X) = Pd(X)
? and Pd(X) = Md(X)

?

Good new : for X = [a,b], A non negative polynomial is a sum of two
squared polynomial (Lukacs-Markov theorem). So, Md(X) is
representable using positive semidefinitness of Hankel matrices- So
that Optimal design may be solved by SDP
Bad new : no more true in general ! ! !
Good new : when degree increases a non negative polynomial is
more and more often a sum of squared polynomials

Our recipe : Increase the dimension, SDP and projection
Good new : when degree goes to infinity warranty to achieve the optimal.
In practice finite degree convergence
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Approximations of the moment cone

Set vj := ddj/2e, j = 1, . . . ,m, (half the degree of the gj). For δ ∈ N,
M2d(X) can be approximate by

MSDP
2(d+δ)(X) :=

{
yd,δ ∈ R(

n+2d
n ) : ∃yδ ∈ R(

n+2(d+δ)
n ) such that (4)

yd,δ = (yδ,α)|α|62d and

Md+δ(yδ) < 0, Md+δ−vj(gjyδ) < 0, j = 1, . . . ,m
}
.

Good approximation

M2d(X) ⊆ · · · ⊆MSDP
2(d+2)(X) ⊆MSDP

2(d+1)(X) ⊆MSDP
2d (X).

This hierarchy converges M2d(X) =
⋂∞
δ=0M

SDP
2(d+δ)(X)
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The SDP relaxation scheme

Ideal moment Problem on M2d(X) is not SDP representable⇒ Use the
outer approximations of Step 1

ρδ = max
y

φq(Md(y))

s.t. y ∈MSDP
2(d+δ)(X), y0 = 1. (∀δ > 0, ρδ > ρ.)

If y? is coming from a measure µ? then ρδ = ρ and y?d,δ is the solution of
unrelaxed Step 1
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Asymptotics on δ

Theorem

Let q ∈ (−∞, 1), y?d,δ optimal solution of relaxed, p?d,δ ∈ R[x]2d dual
polynomial associated (equivalence theorem in designer words). Then,

1 ρδ → ρ as δ→∞,
2 For every α, |α| 6 2d, limδ→∞ y?d,δ,α = y?α,
3 p?d,δ → p?d as δ→∞,
4 If the dual polynomial p? := trace(Md(y

?)q) − p?d to the unrelaxed
Step 1 belongs to PSOS

2(d+δ)(X) for some δ, then finite convergence
takes place.

PSOS
2(d+δ)(X) is a set of non negative polynomials of degree less than 2d

built on sum of squares of polynomial of degrees 2(d+ δ) ponderated by
the gj
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Example I : interval

X = [−1, 1], polynomial regression model
∑d
j=0 θjx

j

D-optimal design : for d = 5 and δ = 0 we obtain the sequence
y? ≈ (1, 0, 0.56, 0, 0.45, 0, 0.40, 0, 0.37, 0, 0.36)>. Recover the
corresponding atomic measure from the sequence y? : supported by
-1, -0.765, -0.285, 0.285, 0.765 and 1 (for d = 5, δ=0). The points
match with the known analytic solution to the problem (critical points
of the Legendre polynomial)
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FIGURE: Polynomial p? D-optimality, n = 1
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Example II : Wynn’s polygon
Polygon given by the vertices (−1,−1), (−1, 1), (1,−1) and (2, 2), scaled
to fit the unit circle, i.e., we consider the design space

X =
{
x ∈ R2 : x1,x2 > − 1

4

√
2, x1 6 1

3 (x2 +
√
2), x2 6 1

3 (x1 +
√
2), x21 + x22 6 1

}
.

D-optimal design
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FIGURE: The polynomial p?d −
(
2+d
2

)
where for d = 1 , d = 2, d = 3. The red

points correspond to the good level set
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Example III : Ring of ellipses

An ellipse with a hole in the form of a smaller ellipse

X = {x ∈ R2 : 9x21 + 13x22 6 7.3, 5x21 + 13x22 > 2}.

D-optimal design
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FIGURE: The boundary in bold black. The support of the optimal design measure
(red points). Size of the points corresponds to the respective weights for d = 1
(left), d = 2 (middle), d = 3 (right) and δ = 3.
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Example IV : Folium

Zero set of f(x) = −x1(x
2
1 − 2x22)(x

2
1 + x

2
2)

2 is a curve with a triple singular
point at the origin called a folium,

X = {x ∈ R2 : f(x) > 0, x21 + x
2
2 6 1}.

D-optimal design
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FIGURE: Boundary in bold black The support of the optimal design measure (red
points). The good level set in thin blue d = 1 (left), d = 2 (middle), d = 3 (right),
δ = 3
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The 3-dimensional unit sphere

Polynomial regression
∑

|α|6d θαx
α on the unit sphere

X = {x ∈ R3 : x21 + x
2
2 + x

2
3 = 1}.

D-optimal design

FIGURE: Optimal design in red d = 1 (left), d = 2 (middle), d = 3 (right) and δ = 0
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The 3-dimensional unit sphere+constraint on moments

Fix y020 := 2ω, y002 := ω, y110 := 0.01ω and y101 := 0.95ω. ω chosen
such that the problem is feasible

D-optimal design
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FIGURE: Support points d = 1 without constraint in red and constrained in blue
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