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Context: Binary Regression Following

Sequential Informative Selection of Doses

Inference For
M  Examples assume P{toxicity} increases with dose.
Following
Adaptive
Dose
Allocation.

Nancy
Flournoy &
Assaf Oron
University of
Missouri &
Institute for

Disease

Mapping

F(x): dose-toxicity
curve

Probability of Toxicity
N
|

adaptive
dose
allocation

estimation MTD =7

Conditioning Dose (x)
Toxicity
Rates

Consider inverse estimation of a target quantile,

as opposed to a dose-selection (Tsutakawa, 1980).
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Some Adaptive Allocation Procedures

Inference For
Binary
Observations Short Memory

Following

- @ Classical Up-and-Down Design (Markov chain)
A'::a::" @ Biased Coin Design (BCD, Markov chain)
Assat Oon @ K-in-a-row (Geometric) (Krow, Markov chain)
oo (seat of the pants)

o Long Memory
sdanive @ Continual Reassessment Method .
allocation (CRM, Bayesian)
e e EWOC (Bayesian design)
Sl @ Interval Designs  (CCD Frequentist & mTPI Bayesian)
Rotes " @ Adaptive Optimal Design (AO, Frequentist & Bayesian)
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Outline: Inference Following Informative
Dose Assignments

Inference For
Binary
Observations
Following
Adaptive
Dose
Allocation.

Flouroy & © Model-based versus isotonic regression:
et This will warm up the talk and provide context
Missouri &

Institute for © Thoughts about the Likelihood and Conditioning

Disease

Mapping © Bias in Observed Toxicity Rates and their Variances:

adaptive What can and cannot (?) be done about it.
dose
allocation

estimation

Conditioning

Toxicity
Rates
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Fundamental Challenges Were Recognized

by Robbins (1954) & Wetherill (1963)

Inference For

ervaik @ Parametric Regression — MLE, LSE or Bayes

Observations

e With F[(x; — a)/8], fi=BF(N+a.

Dose
aliccation @ Concentrated allocations yield poor estimates of j.

Nancy o In small studies,
Flournoy &
UAs_saf f_Jtronf @ Bayes estimates will depend heavily on priors;
R @ MLEs frequently do not exist.
Institute for . .

Disease © Isotonic Regression

Happing o Eliminates need to estimate slope parameter;
adaptive e Quality of estimate depends on sample sizes at doses
dose iion neighboring the target;

@ Centered Isotonic (CIR) (Oron & Flournoy, 2017).

estimation

© Last dose is the estimated target — SA, CRM, ...
ey @ goes with trying to put all subjects on the target dose u;
aes e if "successful”, can’t estimate response function slope.

Conditioning
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Consider Simulations from the Logistic
Model: /ogit(F) = a + fx

Inference For
Binary
Observations
Following
Adaptive Dose 6

Dose o ]
Allocation.

Dose 7 | Dose 8
0.01 | 0.0008 | 0.2927 | 0.2928 | 0.2930
1.01 | 0.09 | 0.2714 | 0.2885 | 0.3063
2.01 | 0.17 | 0.2510 | 0.2842 | 0.3199
4.01 | 0.34 | 0.2134 | 0.2757 | 0.3481
801 | 0.68 | 0.1505 | 0.2590 | 0.4081
12.01 | 1.02 | 0.1029 | 0.2427 | 0.4723
18.01 | 1.57 | 0.0550 | 0.2186 | 0.5735
24.01 | 2.15 | 0.0274 | 0.1948 | 0.6752

_ = 28.01 | 2.57 | 0.0164 | 0.1790 | 0.7398
ad2ptie A A 32.01 | 3.02 |0.0094 | 0.1630 | 0.7994

dose s
allocation

Nancy 34
Flournoy &
Assaf Oron R
University of "
Missouri & s
Institute for

Disease
Mapping

estimation

LT Logistic toxicity probabilities for selected angles 6 such that
Toxicity F(7.25) = 0.2929 and F'(7.25) = tan(0).

Rates
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First Patient of n = 100 for Whom MLEs
Exist, i.e., Silvapule Conditions are Met

Inference For
Binary
Observations
Following
Adaptive
Dose
Allocation.

60
I

Nancy
Flournoy &
Assaf Oron
University of

Missouri &
Institute for

patient

40
I

Disease

N

adaptive CHA T T T T T T T T T T T T T T T T T T T T —  CCD

20
I

d ® 034 0687103 139 1¥6 215 2571302 351 4D5 4.66
afl):zation ° 1 o % © — CRM

- - theta angle/beta values EWOC
estimation
renal Dots are percent of time that MLEs exist (Moler, 2018).
Toxicity There are many Bayesian and frequentist “fixes”,

Rates

but if conditions are not met, experiment is a failure

and should be treated as such.
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First patient for whom > 90% of executions
provide a MLE versus g, ¢

Inference For
Binary
Observations
Following
Adaptive
Dose
Allocation.

Nancy
Flournoy &
Assaf Oron
University of
Missouri &
Institute for

Disease

adaptive 2 R D
gfl):zation — C C D
— CRM

estimation

Conditioning ° ? 0.34 0.68‘1.03 1.39 1.76 2.15 2.57‘3.02 3.51 4.95 4.66

- 0 10 20 30 40 EWOC
Toxicity
Aates There are lots of papers on algorithmic failures in addition to

non existence. (figure by Moler, 2018)
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First Patient of n = 100 for Whom CIREs
Exist versus 3, 0

Inference For
Binary
Observations
Following
Adaptive
Dose
Allocation.

Nancy
Flournoy &
Assaf Oron
University of
Missouri &
Institute for

Disease

Mapping

adaptive
dose
allocation

estimation
A I e s s s s g A N S B A |
Conditionin -
9 ? 0.34 068‘103 1.39 1‘76 215 257‘302 351 4?5 4.66 CRM
Toxicity 0 10 20 30 40 EWOC

Rates

(Moler, 2018)
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Some Basic Notation

Inference For
Binary
Observations
Following

Adaptive n Number of subjects in the study

Dose

Allocation.

ey di <---<dy Doses in the treatment space
TR X(J) Dose for the jth subject, j =1,...,n
e ) T XU = dn

e 0 ifelse.

Np = 2}7:1 om(f) Frequency of allocations to dose Op;

32:2““_e v(i )1 if jth subject has toxicity;
e IO {5
Conditioning Fm = P{ Y(j) = 1|5m(j) = 1} Yn.
A2 Tm = Zj'-’:1 Y(j)om(j) Frequency of toxicities at dose Qpp;
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Observed Toxicity Rates Are Fundamental
Summary Statistics

Inference For
Binary
Observations

jusswall  /sotonic regression methods use observed toxicity rates

Dse directly.

Allocation.

Nancy
u;.%gi%zf Standard likelihood-based methods use observed toxicity
Pl rates indirectly: £ = [[V_, FIm(1 — Fpy)Nn=Tm,

Institute for

s @ Likelihood is a function of dose-specific allocation &
toxicity frequencies { Tm, Nm};
3:%22":9 ® MLE of Fry is Tp/Nm when Fpp, is not a function of
. additional parameters;
Conditioning @ Fisher Information (—E[aa—(:2 log £]) is a first-order linear
Toxicity approximation of Var[MLEs of F] when F is nonlinear.

v

Rates
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The Likelihood
(Rosenberger, Flournoy, Durham, 1994)

Inference For
Binary
Observations
Following

A%a;astieve ‘C[F17---,FM|(N1’T1)""’(

Allocation. m=1

Nancy
Flournoy &
Assaf Oron

University of

LSS 1. Responses are conditionally Bernoulli random variables:

Institute for
Disease

Mapring PLY(j)|dm(j) = 1 & all history] = Fy[1 — F& YOl

adaptive
dose with
aliccation 2. allocation rules that are independent of the past given the

estimation current dose assignment:
oot P[om(j) = 1| history],j = 2, ..., n, does not depend on 6, and
Rates ~ P[om(1) = 1] does not depend 6.

Conditioning

v

Should one condition on allocation frequencies Ny, -.., Ny?
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Toxicity Frequencies Conditional on
Dose-Allocation Frequencies

Inference For
Binary

gl One can plug observed allocation frequencies N, . ..

Followjng
Falns into the likelihood, and treat them as fixed, but truly
Allocation.

aNM

Conditional Density

Assaf Oron
University of f( T1 P Tm‘N1 ooesy NM) - f(Ny,...,Ny)

Nancy

Flournoy &

Missouri &
Institute for

o We have nice expression for numerator.
But for most designs denominator will be unknown.

adaptive
dose

eloeaicn For Markovian up-and-down designs, J

S f(Ny,...,Ny) =7, N, where mm = limp 0o Nm/nYm.
Conditioning
A2 Even in this simple case, conditioning is pretty ugly =

Rates
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Mapping

adaptive
dose
allocation

estimation

Conditioning

Toxicity
Rates

Marginal Density of Markovian
Up-and-Down Dose-Allocation Frequencies

M)(Z’A’/’lz Nm) o (pM_LM)NM

Pm,M—1

P21
M m—1( Bj,j+1 n
{1 + 2om-2 1= (P/m)]

where p;; is

P(treating next subject at ;| current subject is treated at d).
{pi;} can be written in terms of F;, ..., F) for a particular
design =
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e.g., for the Durham-Flournoy Biased Coin
Design

Inference For
Binary

oaina” [l Density of Toxicity | Allocation Frequencies

Adaptive
Dose
Allocation.

Nancy f(T17'--aTm|N17"‘7NM)

Flournoy &

ssa ron M Tm m—Im
UAnivefrs?ty of ~ Hm 1 F (1 — Fm)N E
Missouri & 9
Institute for (Zm_j+1 m) 1— F
e " (b77) [ S o ()]
adaptive where b=T/(1 —T) and T is the target toxicity rate.
ose v
allocation
I The complexity of this simplest of examples makes it clear
ey that conditional inference is unlikely to gain support in
Toxicity practice regardless of conceptional arguments for and

Rates

against.
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Observed Toxicity Rates
Rm — m/Nm,a

Inference For
Binary
Observations
Following
Adaptive
Dose
Allocation.

Nancy Tm|Nm 122 Binomial(Nm, Fm)

Flournoy &

Assaf Oron
University of
Missouri &

Institute for

et @ Binomial distribution requires conditioning on the single
Mapping observed allocation frequency.

adaptive @ Probabilities under this conditioning are not the same

dose
allocation as under the conditional distribution of Rpy|Np.

estimation

Probability of Toxicity

Dose (x)

Conditioning

Toxicity

Bates except in special circumstances, as we will show.
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Dose-Specific Toxicity Rate:

Fm = E[Tm]/ E[Np] # E[Tm/Nm]

Inference For
Binary
OETS;::;"S Nm = Z’\; om(j) Number of allocations to dose dp;

Adapti . . « e
A"Datrs:eve Tm =221 Y(/)0m(/) Number of toxicities at dose dp.
ocation. -

Nancy N
Flournoy &
Assaf Oron _ H H
University of E[Tm] - E : E[Y(j)am(])]
Missouri & i—1
Institute for 1=
Disease

Mapping N
= P{Y()lom(j) = 1}P{om(j) = 1}
j=1

adaptive
dose
allocation

N
estimation =F, Z P{(Sm(]) = 1} = Fny E[Nm]

Conditioning

i—1
Toxicity /
Rates

= Fm = E[Tn]/ E[Nm]. ]
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Amazing Insight Comes Straight from the

Definition of Covariance

Inte;::fyFor Recall Ry, = Tm/Nm-

Observations
TJ?;:F:? Cov[Rm, Nm| = E[RmNm] — E[Rm] E[Nn]
Dosg T
Allocation. —E |:m Nm:| _ E[Rm] E[Nm]
L Nim
S = E[Tm] — E[Rm] E[Nm].
insttte for =
Mapping E[Tm]  Cov[Rm, N
Ii[f?rn] — -
adaptive E[Nm] E[Nm]
gfl):zation —F _ COV[Rm, Nm]
estimation m E[Nm]
Conditioning
Rates " Having allocations depend on outcomes induces bias in
using observed toxicity rate to estimate probability of toxicity.
9
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Bias of Observed Toxicity Rate for
Probability of Toxicity

Inference For
Binary

Observations

i Cov[Rm, Np|
FoIIOW]ng o - _ m,IvNm
Adptc ElAm] = Fm ENm]

Allocation.
SD[R] SD(N
Nancy — —Cor[Rm7 Nm] [EgN ]( )
m

Flournoy &
= —Cor[Rm, Nm] CV(N) SD[R]

Assaf Oron
University of
Missouri &
Institute for
Disease
Mapping

Correlation (Cor) is dimensionless, 0(1).

adaptive

e Coefficient of Variation (CV) is dimensionless, 0(1).

allocation
estimation Bias is same order of magnitude as SD[R]:
Conditioning

Toxicity

B2 N2 , 2
Rates Var[R] =E; |:R,?n] — M _ (Fm — W)

Ei[NZ] E[Npm]
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Inference For
Binary
Observations
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Adaptive
Dose
Allocation.

adaptive
dose
allocation
estimation

Conditioning

Toxicity
Rates

An Exemplary Logistic Dose-Response
Function.

TRANSITION PROBABILITY

LD50=5.6,
LD30=3.9.

,#” px)=F(x), down function
7

q(x)=1-F(x), up function
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Toxicity Rate Bias (R, — Fn) by its

Correlation with Allocation Frequency (N,,)

Inference For
Binary

Correlation vs. Bias, n=30 . .
Correlation vs. Bias, n=120

Observations 02
Following 02
Adaptive
Dose
Allocation. Ay =
0.1 s A
omg 01 A ..
g ot ” N
a + & i
+
0. ry
0.
& ‘A
4 3
+ . " s
= " -
-01 i i s o1 a @
adaptive o Co?rZIauon ° o 05 o0 os
dose desi dose oo
i esign
allocation g 10.0
estimation * LBCD
e A 2:Krow 7.5
Conditioning
= 3:CRM 5.0
Toxicity . ;
Rates + 4:Classic 25
® 5:CCD
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Inference For
Binary
Observations
Following
Adaptive
Dose
Allocation.

adaptive
dose
allocation

estimation

Conditioning

Toxicity
Rates

Observed Toxicity Rate Bias (R, — Fn)

by Dose. Target = LD30=3.9.

Dose vs. Bias, n=120
Dose vs. Bias, n=30

Bias

Bias

-01

design

—— 1:BCD
—— 2:Krow
—— 3:CRM
—— 4:Classic
—— 5:CCD
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Standard Deviation of the Observed Toxicity

Rates by Dose. Target = LD30=3.9.

Inference For
Binary
Observations
Following 03
Adaptive
Dose
Allocation.

Dose vs. SD, n=120
Dose vs. SD, n=30

3 g
['4
01 oL
adaptive S S S i 2 3 4 5 6 7 8 9 10
dose dose dose
allocation design
estimation —— 1:BCD
Conditioning —— 2:Krow
Toxicity —— 3:CRM
Rates
—— 4:Classic
—— 5:CCD
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A Couple Important Open Problems in
Estimating F

Inference For
Binary
Observations
Following
Adaptive
Dose . . .
@ Need a way to adjust estimates of F for bias of

Allocation.
Nancy observed toxicity rates.
Flournoy &
et @ Need better way to estimate variance of observed
pissour & toxicity rates.
Disease
Mapping

E?.’EE::; Don't put faith in estimates of F except in a very close
neighborhood of the target.

estimation

Conditioning

Toxicity
Rates
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Observations
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Adaptive
Dose
Allocation.

adaptive
dose
allocation
estimation

Conditioning

Toxicity
Rates

Thank You!
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Average % Correct MTD Selection from
Random Sample of Curves (Oron, 2017)

Inference For
ob Binarty_l
servations
Following At least four other re-
Adaptive . .
Dose Benchmark view papers arrive at
Allocation. U&DCRM .
700 Interval same conclusion.
Nancy
Flou rnoy & 2 sond Benchmark s+3-plus
Lﬁfgjgﬁs?t;’;]f g VBT N Namely, UD, CRM
e = - and Interval Methods
Di b 96 +3-plus H
pesee 2 o are a toss up with re-
0% 313 Guessing spect to average %
P sow]  Gusssing correct selection.
allocation
10%- . . .
estimation Choice of design will
Ecnaiiicnlng . Finding ACtual MTD Within 10% of Target depend on Other faC-
Toxicity torS
Rates Last Dose for CRM; CIR for UD & :

CCD Interval Design.
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% Allocations to the MTD
(Oron and Hoff, 2012)

Inference For
Binary
Observations
Following
Adaptive
Dose

Allocation. CRM, Normal Scenario

U&D, Normal Scenario

Nancy 0 8
Flournoy & " =
Assaf Oron o °
University of a a —
Missouri & g g
Inst_nute for 59 59
Disease [l g
Mapping B o E o
) g ] g :
adaptive
dose £8 £3
. 3+ 3=
allocation 7 2
estimation 3 3
Conditioning
0 o
Toxicity
Rates 0 2 4 6 [ S A /A [ } 0 2 4 b L A v U
Number of Cohorts Alocated to MTD Number of Coforts Alocated fo MTD
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