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Context: Binary Regression Following
Sequential Informative Selection of Doses

Examples assume P{toxicity} increases with dose.
Statistician view of Phase I Design

Phase I goal: find the dose whose DLT rate is closest to p (could be closest 
from below). MTD can be modeled as a quantile of the DLT-threshold 
distribution.

Develop a design that does this most cost-effectively given constraints. 
Cost might include in-trial DLT count and other metrics.

Consider inverse estimation of a target quantile,
as opposed to a dose-selection (Tsutakawa, 1980).
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Some Adaptive Allocation Procedures

Short Memory
Classical Up-and-Down Design (Markov chain)
Biased Coin Design (BCD, Markov chain)
K-in-a-row (Geometric) (Krow, Markov chain)
3+3 (seat of the pants)

Long Memory
Continual Reassessment Method

(CRM, Bayesian)
EWOC (Bayesian design)
Interval Designs (CCD Frequentist & mTPI Bayesian)
Adaptive Optimal Design (AO, Frequentist & Bayesian)
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Outline: Inference Following Informative
Dose Assignments

1 Model-based versus isotonic regression:
This will warm up the talk and provide context

2 Thoughts about the Likelihood and Conditioning
3 Bias in Observed Toxicity Rates and their Variances:

What can and cannot (?) be done about it.
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Fundamental Challenges Were Recognized
by Robbins (1954) & Wetherill (1963)

1 Parametric Regression – MLE, LSE or Bayes
With F [(xi − α)/β], µ̂ = β̂F−1(Γ) + α̂.

Concentrated allocations yield poor estimates of β̂.
In small studies,

Bayes estimates will depend heavily on priors;
MLEs frequently do not exist.

2 Isotonic Regression
Eliminates need to estimate slope parameter;
Quality of estimate depends on sample sizes at doses
neighboring the target;
Centered Isotonic (CIR) (Oron & Flournoy, 2017).

3 Last dose is the estimated target – SA, CRM, ...
goes with trying to put all subjects on the target dose µ;
if ”successful”, can’t estimate response function slope.
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Consider Simulations from the Logistic
Model: logit(F ) = α + βx

a start-up rule different from the primary design is studied. Finally, we also
study the combined effect of slopes and start-up rules.
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θ β Dose 6 Dose 7 Dose 8
0.01 0.0008 0.2927 0.2928 0.2930
1.01 0.09 0.2714 0.2885 0.3063
2.01 0.17 0.2510 0.2842 0.3199
4.01 0.34 0.2134 0.2757 0.3481
8.01 0.68 0.1505 0.2590 0.4081
12.01 1.02 0.1029 0.2427 0.4723
18.01 1.57 0.0550 0.2186 0.5735
24.01 2.15 0.0274 0.1948 0.6752
28.01 2.57 0.0164 0.1790 0.7398
32.01 3.02 0.0094 0.1630 0.7994

Table 1: Logistic toxicity probabilities for selected angles θ such that
F (7.25) = 0.2929 and F ′(7.25) = tan(θ).

3.1 Compound of ethical and inferential criteria.

We compare the performance of designs taking into account several combined
criteria. Consider a fixed number of patients n and ξn the proportion of
patients allocated in each dose. Consider two criteria: φI(ξn) and φII(ξn)
and graph the pairs of values [φI(ξn), φII(ξn)], for different values of n, and
compare the designs.

Figure 1 displays the toxicity rate (± one time its standard deviation)
when n = 25, 45, 70, 100 versus MSE(CIRE) and the toxicity rate versus
percentage of information lost. Different colors represent different sample
sizes and different symbols represent each of the designs introduced in sub-
section 1.3. Symbols are tied by means of lines that evolve in time. The
main headlines that we can report after inspecting both graphs are:

1. The uniform design is clearly outperformed by the other de-
signs regardless of the criteria. Observe on the left graph that
even though the stability of the toxicity rate is better as the number of
patients increases, the mean value, right graph, is, regardless the num-
ber of patients, around almost 40%, which is ethically unacceptable.
Besides this, the uniform’s MSE(CIRE) is outperformed by all other

11

Logistic toxicity probabilities for selected angles θ such that
F (7.25) = 0.2929 and F ′(7.25) = tan(θ).
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First Patient of n = 100 for Whom MLEs
Exist, i.e., Silvapule Conditions are Met
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Figure 2: Left panel, mean± sd for the first patient for whom Silvapulle‘s
conditions hold and percentage of times that Silvapulle’s conditions hold for
all 100 trial patients. Central and right panels represent expected first patient
for whom at least 90% of trials provide a valid MLE and CIRE, respectively.

0
15

Dose Distribution−design 2RD

beta values

PA
T

IE
N

T
S

1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 100 0.17 0.34 0.85 1.57 2.57

n= 15
n= 25
n= 40

n= 15
n= 25
n= 40

n= 15
n= 25
n= 40

0
15

Dose Distribution−design CCD

beta values

PA
T

IE
N

T
S

1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 100 0.17 0.34 0.85 1.57 2.57

n= 15
n= 25
n= 40

n= 15
n= 25
n= 40

n= 15
n= 25
n= 40

0
15

Dose Distribution−design CRM

beta values

PA
T

IE
N

T
S

1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 100 0.17 0.34 0.85 1.57 2.57

n= 15
n= 25
n= 40

n= 15
n= 25
n= 40

n= 15
n= 25
n= 40

0
15

Dose Distribution−design EWOC

beta values

PA
T

IE
N

T
S

1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 100 0.17 0.34 0.85 1.57 2.57

n= 15
n= 25
n= 40

n= 15
n= 25
n= 40

n= 15
n= 25
n= 40

Figure 3: Distribution of patients depending on the design for θ equal to
0.01, 2.01, 4.01, 10.01, 18.01, 28.01

17

CRM achieve smaller values than the CCD for more than 40 patients.
This means that the CCD overdose more than the CRM. For less than
20 patients, both for TOXI and the ALL measures, the CRM has a
large percentage of toxicities.

0
20

40
60

80
10

0

SILVAPULLE

SLOPES

PA
T

IE
N

T
 −

(+
) 

S
D

0.01 0.05 0.1 0.2 0.5 1 2

UD
2RD
CCD
CRM
EWOC

UD
2RD
CCD
CRM
EWOC

UD
2RD
CCD
CRM
EWOC

UD
2RD
CCD
CRM
EWOC

UD
2RD
CCD
CRM
EWOC

UD
2RD
CCD
CRM
EWOC

UD
2RD
CCD
CRM
EWOC

1 2 3 4 5 6 7

0
20

40
60

80
10

0

90% of MLE calculated

slope

pa
tie

nt

UD
2RD
CCD
CRM
EWOC

1 2 3 4 5 6 7

0
20

40
60

80
10

0

90% of CIRE calculated

case

pa
tie

nt

UD
2RD
CCD
CRM
EWOC

Figure 2: First patient for whom at least 90% of executions provide a valid
MLE or CIRE.
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Figure 3: RMSE of the CIRE for patients within 1 and 40 and for the designs
in section 1.3

17

Dots are percent of time that MLEs exist (Moler, 2018).
There are many Bayesian and frequentist ”fixes”,
but if conditions are not met, experiment is a failure
and should be treated as such.
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Figure 2: Left panel, mean± sd for the first patient for whom Silvapulle‘s
conditions hold and percentage of times that Silvapulle’s conditions hold for
all 100 trial patients. Central and right panels represent expected first patient
for whom at least 90% of trials provide a valid MLE and CIRE, respectively.
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Figure 3: Distribution of patients depending on the design for θ equal to
0.01, 2.01, 4.01, 10.01, 18.01, 28.01
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CRM achieve smaller values than the CCD for more than 40 patients.
This means that the CCD overdose more than the CRM. For less than
20 patients, both for TOXI and the ALL measures, the CRM has a
large percentage of toxicities.
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Figure 2: First patient for whom at least 90% of executions provide a valid
MLE or CIRE.
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Figure 3: RMSE of the CIRE for patients within 1 and 40 and for the designs
in section 1.3
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There are lots of papers on algorithmic failures in addition to
non existence. (figure by Moler, 2018)
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Figure 2: Left panel, mean± sd for the first patient for whom Silvapulle‘s
conditions hold and percentage of times that Silvapulle’s conditions hold for
all 100 trial patients. Central and right panels represent expected first patient
for whom at least 90% of trials provide a valid MLE and CIRE, respectively.
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CRM achieve smaller values than the CCD for more than 40 patients.
This means that the CCD overdose more than the CRM. For less than
20 patients, both for TOXI and the ALL measures, the CRM has a
large percentage of toxicities.
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Figure 2: First patient for whom at least 90% of executions provide a valid
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Figure 3: RMSE of the CIRE for patients within 1 and 40 and for the designs
in section 1.3
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(Moler, 2018)
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Some Basic Notation

n Number of subjects in the study
d1 < · · · < dM Doses in the treatment space
X (j) Dose for the j th subject, j = 1, . . . ,n

δm(j) =

{
1 if X (j) = dm

0 if else.
Nm =

∑n
j=1 δm(j) Frequency of allocations to dose dm;

Y (j) =

{
1 if j th subject has toxicity;
0 if else.

Fm = P{Y (j) = 1|δm(j) = 1} ∀n.
Tm =

∑n
j=1 Y (j)δm(j) Frequency of toxicities at dose dm;
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Observed Toxicity Rates Are Fundamental
Summary Statistics

Isotonic regression methods use observed toxicity rates
directly.

Standard likelihood-based methods use observed toxicity
rates indirectly: L =

∏M
m=1 F Tm

m (1− Fm)Nm−Tm .
Likelihood is a function of dose-specific allocation &
toxicity frequencies {Tm,Nm};
MLE of Fm is Tm/Nm when Fm is not a function of
additional parameters;

Fisher Information (−E[ ∂
2

∂θ2 logL]) is a first-order linear
approximation of Var[MLEs of F ] when F is nonlinear.
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The Likelihood
(Rosenberger, Flournoy, Durham, 1994)

L[F1, . . . ,FM |(N1,T1), . . . , (NM ,Tm)] =
M∏

m=1

F Tm
m (1− Fm)Nm−Tm

Assumptions
1. Responses are conditionally Bernoulli random variables:

P[Y (j)|δm(j) = 1 & all history] = F Y (j)
m [1− F [1−Y (j)]

m ],

with
2. allocation rules that are independent of the past given the
current dose assignment:
P[δm(j) = 1| history], j = 2, . . . ,n, does not depend on θ, and
P[δm(1) = 1] does not depend θ.

Should one condition on allocation frequencies N1, . . . ,NM?
13 / 27
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Toxicity Frequencies Conditional on
Dose-Allocation Frequencies

One can plug observed allocation frequencies N1, . . . ,NM
into the likelihood, and treat them as fixed, but truly

Conditional Density

f (T1, . . . ,Tm|N1, . . . ,NM) = f (N1,T1,...,NM ,Tm)
f (N1,...,NM)

We have nice expression for numerator.
But for most designs denominator will be unknown.

For Markovian up-and-down designs,
f (N1, . . . ,NM) ≈ πN1

1 , . . . , πNN
M , where πm = limn→∞Nm/n ∀m.

Even in this simple case, conditioning is pretty ugly⇒
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Marginal Density of Markovian
Up-and-Down Dose-Allocation Frequencies

f (N1, . . . ,NM) ≈
M∏

m=1

πNm
m

=

(
p1,2
p2,1

)(∑M
m=2 Nm)

· · ·
(

pM−1,M
pM,M−1

)NM[
1 +

∑M
m=2

∏m−1
j=1

(
pj,j+1
pj+1,j

)]n ,

where pi,j is
P(treating next subject at dj | current subject is treated at di).

{pi,j} can be written in terms of F1, . . . ,FM for a particular
design⇒
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e.g., for the Durham-Flournoy Biased Coin
Design

Density of Toxicity | Allocation Frequencies

f (T1, . . . ,Tm|N1, . . . ,NM)

≈
∏M

m=1 F Tm
m (1− Fm)Nm−Tm∏M−1

j=1

(
b 1−Fj

Fj+1

)(∑M
m=j+1 Nm) [

1 +
∑M

m=2
∏m−1

j=1 b
(

1−Fj
Fj+1

)]n
,

where b = Γ/(1− Γ) and Γ is the target toxicity rate.

The complexity of this simplest of examples makes it clear
that conditional inference is unlikely to gain support in
practice regardless of conceptional arguments for and
against.
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Observed Toxicity Rates
Rm = Tm/Nm, Nm ≥ 1; m = 1, . . . ,M

An erroneous presumption is widespread:

Tm|Nm � Binomial(Nm,Fm)

Statistician view of Phase I Design

Phase I goal: find the dose whose DLT rate is closest to p (could be closest 
from below). MTD can be modeled as a quantile of the DLT-threshold 
distribution.

Develop a design that does this most cost-effectively given constraints. 
Cost might include in-trial DLT count and other metrics.

Binomial distribution requires conditioning on the single
observed allocation frequency.
Probabilities under this conditioning are not the same
as under the conditional distribution of Rm|Nm.

E[Tm|Nm] 6= Fm

except in special circumstances, as we will show.
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Dose-Specific Toxicity Rate:
Fm = E[Tm]/ E[Nm] 6= E[Tm/Nm]

Nm =
∑N

j=1 δm(j) Number of allocations to dose dm;

Tm =
∑N

j=1 Y (j)δm(j) Number of toxicities at dose dm.

E[Tm] =
N∑

j=1

E[Y (j)δm(j)]

=
N∑

j=1

P{Y (j)|δm(j) = 1}P{δm(j) = 1}

= Fm

N∑
j=1

P{δm(j) = 1} = Fm E[Nm].

⇒ Fm = E[Tm]/ E[Nm].
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Amazing Insight Comes Straight from the
Definition of Covariance

Recall Rm = Tm/Nm.

Cov[Rm,Nm] = E[RmNm]− E[Rm] E[Nm]

= E
[

Tm

Nm
Nm

]
− E[Rm] E[Nm]

= E[Tm]− E[Rm] E[Nm].

⇒

E[Rm] =
E[Tm]

E[Nm]
− Cov[Rm,Nm]

E[Nm]

= Fm −
Cov[Rm,Nm]

E[Nm]
.

Having allocations depend on outcomes induces bias in
using observed toxicity rate to estimate probability of toxicity.
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Bias of Observed Toxicity Rate for
Probability of Toxicity

E[Rm]− Fm = −Cov[Rm,Nm]

E[Nm]

= −Cor[Rm,Nm]
SD[R] SD(N)

E[Nm]

= −Cor[Rm,Nm] CV(N) SD[R]

Correlation (Cor) is dimensionless, 0(1).
Coefficient of Variation (CV) is dimensionless, 0(1).
Bias is same order of magnitude as SD[R]:

Var[R] = Ei

[
R2

m

]
− Covi [R2

m,N2
m]

Ei [N2
m]

−
(

Fm −
Covi [Rm,Nm]

Ei [Nm]

)2

.
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An Exemplary Logistic Dose-Response
Function.
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LD50=5.6,
LD30=3.9.
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Toxicity Rate Bias (R̄m − Fm) by its
Correlation with Allocation Frequency (Nm)
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Observed Toxicity Rate Bias (R̄m − Fm)
by Dose. Target = LD30=3.9.
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Standard Deviation of the Observed Toxicity
Rates by Dose. Target = LD30=3.9.
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A Couple Important Open Problems in
Estimating F

Need a way to adjust estimates of F for bias of
observed toxicity rates.
Need better way to estimate variance of observed
toxicity rates.

Warning
Don’t put faith in estimates of F except in a very close
neighborhood of the target.
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Average % Correct MTD Selection from
Random Sample of Curves (Oron, 2017)

The “Benchmark” indicates an ideal 
(yet impossible) perfect-information 
scenario (O’Quigley et al. 2002). 
● It is fairly known that CRM is close 

to the benchmark, with Interval 
somewhat behind.

● Many don’t know how poorly 
3+3 performs. In fact, 3+3 is better 
at estimating the 20%-DLT point 
than its official 30% or 33%.

● (“3+3-plus” shown here uses the 
same data, but allows a 2-of-6 
dose to be declared the MTD 
rather than 1-of-6)

● What is missed by most Phase I 
clinicians and statisticians, is that 
U&D is right up there with CRM, 
despite being the simplest of the 4.

Dose-Finding Success Metrics

Last Dose for CRM; CIR for UD &
CCD Interval Design.

At least four other re-
view papers arrive at
same conclusion.

Namely, UD, CRM
and Interval Methods
are a toss up with re-
spect to average %
correct selection.

Choice of design will
depend on other fac-
tors.
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% Allocations to the MTD
(Oron and Hoff, 2012)
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Figure 5: Between-run and between-scenario variability. The histograms depict the ensemble distribution
of n∗, excluding the first cohort. The ensemble size is 1000 runs. Scenarios are Normal (top), Gamma
(middle) and Lognormal (bottom); designs are CRM one-parameter ‘power’ (left) and GU&D (right), both
with cohort size 2. The runs were 16 cohorts long, starting at d2.
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