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The randomization-based perspective of
experimental design

I Long served as the foundation of experimental
design.

I Seminal work by two stalwarts (Neyman 1923,
Fisher 1925, 1935).

I Connection with survey sampling.
I Died down in the later half of the twentieth

century
I Lack of computational resources
I Complicated asymptotics for complex designs
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Potential outcomes - a framework that
facilitates understanding the
randomization perspective

I A framework for drawing statistical inference on causal
effects of interventions.

I Widely used in the medical, biomedical, social and
behavioral sciences.

I Also referred to as “the counterfactuals model” or the
“Neyman-Rubin causal model” (Sekhon 2007) or simply
the “Rubin causal model’ (Holland 1986) in the field of
causal inference.

I Notation introduced by Neyman (1923) and adopted by
Rubin (1974) into a general framework for causal
inference.

Page 3 of 23



Historical perspectives

I Jerzy Neyman: originated the concept (1923) and introduced the
first formal notation

I R. A. Fisher (1919): If we say this boy is tall because he has been
well fed, we are suggesting that he might quite probably have been
worse fed, and that in this case he would been shorter.
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The potential and observed outcomes

Unit (i) Yi (0) Yi (1) Wi Y obs
i = WiYi (1) + (1−Wi )Yi (0)

1 Y1(0) Y1(1) W1 Y obs
1 = Y1(W1)

...
...

...
...

N YN(0) YN(1) WN Y obs
N = YN(WN)

Average Ȳ (0) Ȳ (1)

I Potential outcomes assumed to be fixed.

I Assignment vector W = (W1, . . . ,WN)> (binary stochastic,
generated from a known probability distribution).
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The potential and observed outcomes

Unit (i) Yi (0) Yi (1) Wi Y obs
i = WiYi (1) + (1−Wi )Yi (0)

1 ? Y1(1) W1 = 1 Y obs
1 = Y1(1)

...
...

...
...

N YN(0) ? WN = 0 Y obs
N = YN(0)

Average Ȳ (0) Ȳ (1)

I For each unit, one potential outcome observed and the other
missing.

I For each unit, can we “impute” the missing outcome under certain
hypotheses?
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Fisher randomization test (FRT) in a
completely randomized design (CRD)
setup

Unit Treatment 1 Treatment 2 Treatment 3
1 8 ? ?
2 ? 18 ?
3 ? 12 ?
4 10 ? ?
5 ? ? 9
6 ? ? 5

Mean Y
obs
.1 = 9 Y

obs
.2 = 15 Y

obs
.3 = 7

I Fisher’s sharp null hypothesis is one of “no treatment difference
for any individual.”

H0 : Yi (1) = Yi (2) = Yi (3), i = 1, . . . ,N.

I FRT is a “stochastic proof by contradiction” (Rubin 2004) of
Fisher’s sharp null hypothesis.
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FRT: Test statistic and its computation

Unit Treatment 1 Treatment 2 Treatment 3
1 8 ? ?
2 ? 18 ?
3 ? 12 ?
4 10 ? ?
5 ? ? 9
6 ? ? 5

Mean Y
obs
.1 = 9 Y

obs
.2 = 15 Y

obs
.3 = 7

I Observed W = (1, 2, 2, 1, 3, 3).

I Let’s use F = MST/MSR statistic. Observed value from data is
3.71.

I Next step: derive randomization distribution of F .
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FRT: Impute missing potential outcomes
under H0

Unit Tr 1 Tr 2 Tr 3

1 8 8 8

2 18 18 18

3 12 12 12

4 10 10 10

5 9 9 9

6 5 5 5

Mean Y
obs

.1 = 9 Y
obs

.2 = 15 Y
obs

.3 = 7
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Computing the F statistic for all possible
randomizations

W = (1, 1, 2, 2, 3, 3)′

Unit Tr 1 Tr 2 Tr 3

1 8 8 8

2
18

18 18

3 12
12

12

4 10
10

10

5 9 9 9

6 5 5 5

Mean Y
obs
.1 = 13 Y

obs
.2 = 11 Y

obs
.3 = 7

F = 0.9333.

W = (3, 3, 2, 2, 1, 1)′

Unit Tr 1 Tr 2 Tr 3

1 8 8 8

2 18 18
18

3 12
12

12

4 10
10

10

5 9 9 9

6 5 5 5

Mean Y
obs
.1 = 7 Y

obs
.2 = 11 Y

obs
.3 = 13

F = 0.9333.
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Randomization distribution of F (Frand)
under sharp null

F

F
re

qu
en

cy

0 1 2 3 4 5

0
10

20
30

40 Computed F = 3.71

I Computed p-value = Pr(Frand ≥ Fobs) = 0.10.
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Why I like FRT

I Intuitive - analyze as you randomize. Easy to teach.

I Flexibility and broad applicability

I continuous/binary response
I any test statistic
I a broad class of assignment mechanisms
I multiple factors

I Always “valid” under the sharp null
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Fisher’s null and Neyman’s null

I Fisher’s null: Unit-level treatment effects are equal;
Neyman’s null: Average-level treatment effects are equal.

I Question: Randomization test is interesting, but the
sharp null is boring. A more interesting hypothesis is the
comparison of average treatment effects.

I Answer: Well ... maybe ... but randomization test works
only under the sharp null.

I Question: Can the randomization test be used to test
Neyman’s null? Is F still an appropriate test statistic?
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The infamous debate at the RSS in 1935

I Neyman: So long as the average yields of any treatments are identical, the
question as to whether these treatments affect separate yields on single plots
seems to be uninteresting and academic, and certainly I did not consider
methods for its solution,

I Fisher: It [the null hypothesis that “the treatments were wholly without
effect”] may be foolish, but that is what the Z-test was designed for, and the
only purpose for which it has been used . . . I hope he [Neyman] will invent a
test of significance, and a method of experimentation, which will be as
accurate for questions he considers to be important [testing the average
treatment effect being zero] . . .
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Can FRT be used to test Neyman’s
hypothesis? Some findings for CRD

I Under Fisher’s sharp null, under regularity conditions, the F
statistic is approximately distributed as FJ−1,N−J (known result).

I Under Neyman’s null,

I For balanced designs (N1 = · · · = NJ), E(MSR) ≥ E(MST ) [Using
FRT with F may be conservative].

I Special case: For balanced designs with strict additivity (all effects
equal for all units) E(MSR) = E(MST ) (Kempthorne 1955) - heuristic
justification for using F (required?)

I For unbalanced designs, E(MSR) may be larger or smaller than
E(MST ) depending on the degree and nature of imbalance and the
variances of the potential outcomes under treatments 1, . . . , J.

I Thus using FRT with the F statistic to test Neyman’s null may
not control Type-I error.

I For details, see Ding and Dasgupta (2018), Biometrika.
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Some findings for CRD (contd.)
I Take weighted average of the sample means of the treatment

groups

Ȳ obs
w =

J∑
j=1

Nj

s2
obs(j)

Ȳ obs
. (j)/

J∑
j=1

Nj

s2
obs(j)

I Consider the test statistic

X 2 =
J∑

j=1

Nj

s2
obs(j)

{
Ȳ obs
. (j)− Ȳ obs

w

}2
.

I Sharp null: randomization distribution known; asymptotically
X

.∼ χ2
J−1.

I Average null: sampling distribution is complex; asymptotically

Pr(X 2 ≥ a) ≤ Pr(χ2
J−1 ≥ a).

I Randomization test using X 2 is exact under sharp null and
conservative for the average null.
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Unreplicated balanced RBD

Treatment levels row row
Blocks 1 2 3 · · · J mean variance

1 Y obs
.1 (1) Y obs

.1 (2) Y obs
.1 (3) · · · Y obs

.1 (J) Ȳ obs
.1 (·) s2

1
2 Y obs

.2 (1) Y obs
.2 (2) Y obs

.2 (3) · · · Y obs
.2 (J) Ȳ obs

.2 (·) s2
2

3 Y obs
.3 (1) Y obs

.3 (2) Y obs
.3 (3) · · · Y obs

.3 (J) Ȳ obs
.3 (·) s2

3
...

...

K Y obs
.K (1) Y obs

.K (2) Y obs
.K (3) · · · Y obs

.K (J) Ȳ obs
.K (·) s2

K
column mean Ȳ obs

.. (1) Ȳ obs
.. (2) Ȳ obs

.. (3) · · · Ȳ obs
.. (J) Ȳ obs

.. (·) s2 = K−1s2
k

I No replications, I units per block, J treatments, K blocks,
N = IK = JK .

I Under null hypothesis of equality of average treatment effects,

Neyman (1935):
E {MSR −MST} = 0,

Sabbaghi and Rubin (2014):

E {MSR −MST} = ∆F ≥ 0.
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New results
I The asymptotic randomization distribution of F is a linear

combination of J − 1 IID χ2 variables and there is no guarantee
that it is stochastically dominated by χ2

J−1.

I Define:
δ̂k = (τ̂.k(1, 2) . . . τ̂.k(1, J))>

and the statistic:

Q =

(
K∑

k=1

δ̂k

)>( K∑
k=1

δ̂k δ̂
>
k

)−1( K∑
k=1

δ̂k

)
.

I Let K →∞ and assume certain regularity conditions. Under
Neyman’s null, the asymptotic distribution of Q is stochastically
dominated by a χ2

J−1 random variable; under Fisher’s null, the
asymptotic distribution of Q is χ2

J−1.

I Therefore, the Fisher randomization test using Q will guarantee
the right probability of type-I error for Fisher’s null and will be
asymptotically conservative for Neyman’s null.
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Recap: advantages of
randomization-based inference

I Intuitive - analyze as you randomize.

I Flexibility.

I Model free, but can be extended to model-based
inference using a Bayesian approach (Key idea: obtain a
probabilistic imputation model p

(
Y

mis|Y obs
)

and test
model using posterior predictive checks).

I Bayesian extension permits super-population as well as
finite-population inference.

I Reviving recondite connection with survey sampling.

I Excellent tool for analyzing data from complex modern
BIG experiments, e.g., online experiments on social
networks.
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Some of my recent work on
randomization-based inference

I Dasgupta, T., Pillai, N. and Rubin, D.R. (2015), “Causal Inference for 2K
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I Ding, P. and Dasgupta, T. (2016), “A Potential Tale of Two by Two Tables
from Completely Randomized Experiments”, Journal of the American
Statistical Association, 111, 157–168.

I Ding, P. and Dasgupta, T. (2018) “A randomization-based perspective of
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I Mukerjee, R., Dasgupta, T. and Rubin, D. B.,“Using Standard Tools from
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