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MIXTURE EXPERIMENTS

Experiments with mixtures may occur in many areas of scientific
research (Cornell, 1990), for example:

Building construction: Mix cement, sand and water – measure
the hardness of the resulting concrete
Animal husbandry: The weight gain of chicks depends on the
mix of energy supplements in their diets
Food processing: The taste and texture of a cake depend on the
mix of its ingredients
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MIXTURE EXPERIMENTS

Experiments with mixtures usually investigate how changing the
proportions of the different components affects the response

Let x1, x2, . . . , xq describe the proportions of the q ingredients or
mixture components
Then, xr ≥ 0, r = 1, . . . ,q, and

q∑
r=1

xr = 1

The above constraints are called the ‘natural constraints’ of a
mixture experiment
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EXPERIMENTAL REGION

The experimental region for a mixture experiment with natural
constraints is a regular simplex

 

Figure: Experimental region when q = 3
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MIXTURE EXPERIMENTS

Often, there may be additional constraints on the proportions of the
mixture components

The proportions of flour, butter, sugar and eggs in a cake should
all be bounded away from zero and one!
This leads to additional constraints of the form lr ≤ xr ≤ ur ,
where lr > 0 and ur < 1, r = 1, . . . ,q
The experimental region is then no longer a regular simplex
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EXPERIMENTAL REGION

 

Figure: Experimental region with additional constraints when q = 3
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DESIGN OF EXPERIMENTS

A design point x is a combination of the proportions of the q
ingredients, i.e. x = (x1, x2, . . . , xq)

A design is then the selection of x1, . . . ,xn to be used in the
experiment
We will consider approximate designs of the form

ξ =

{
x1 x2 . . . xm
w1 w2 . . . wm

}
; 0 < wi ≤ 1,

m∑
i=1

wi = 1

xi ∈ X , i = 1, . . . ,m, m ≤ n: support points of ξ.

wi , i = 1, . . . ,m: weights (proportions) corresponding to xis.
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OPTIMAL DESIGN OF EXPERIMENTS

We consider D-optimal designs, which maximise the
determinant, |M(ξ,θ)|, of the information matrix

To compute M(ξ,θ), we need to specify the model
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MODEL

Assume the responses are modelled as

Yi = ηi + εi , i = 1, . . . ,n,

where εi
iid∼ N (0, σ2)

We can then express the mean ηi as a function of the proportions
of the ingredients and an unknown parameter vector θ
η = φ(x1, . . . , xq ,θ)

Note that in many applications there is no mechanistic model
available, and hence empirical models are used
For identifiability, the natural constraint, x1 + x2 + . . .+ xq = 1,
has to be taken into account
Various functional relationships have been suggested in the
literature
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SCHEFFÉ POLYNOMIALS

Scheffé (1958) modified standard polynomial models to incorporate
the natural constraints

In a polynomial of degree 1, η = β0 +
∑q

r=1 βr xr , the intercept is
multiplied by x1 + x2 + . . .+ xq = 1
Simplification yields the Scheffé polynomial of degree 1

η =

q∑
r=1

β∗r xr

where β∗r = β0 + βr
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SCHEFFÉ POLYNOMIALS

Similar arguments and the fact that

x2
r = xr

(
1−

q∑
s=1, s 6=r

xs

)

yield a polynomial of degree 2 as

η =

q∑
r=1

β∗∗r xr +

q−1∑
r=1

q∑
s=r+1

β∗rsxr xs

and so on
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RATIO MODELS (CORNELL, 1990)

First and second order ratio models are given by

η = β0 +

q−1∑
r=1

βr

(
xr

xq

)
and

η = β0 +

q−1∑
r=1

βr

(
xr

xq

)
+

q−1∑
r=1

βrr

(
xr

xq

)2

+

q−2∑
r=1

q−1∑
s=r+1

βrs

(
xr

xq

)(
xs

xq

)
,

respectively, where the proportion xq for the denominator is usually
chosen such that its range, uq − lq , is smallest
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GENERAL BLENDING MODELS

Brown, Donev and Bissett (2015) propose a broader, more flexible,
class of models called General Blending Models (GBM) where

η =

q∑
r=1

βr xr +

q∑
r=1

q∑
s=r

βrs

(
xr

xr + xs

)krs ( xs

xr + xs

)ksr

(xr + xs)mrs

Here, the powers krs and ksr have possible values of 0.5, 1, 1.5, 2, 2.5
or 3, and the powers mrs may attain values 0, 1, 2 or 3

These models often fit well, but have a large number of parameters to
be estimated and long computing times for model fitting
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RESEARCH QUESTION

Can we find a similarly flexible class of models to fit data from
experiments with mixtures, which avoids these drawbacks?
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FRACTIONAL POLYNOMIAL MODELS

Royston and Altman (1994) propose Fractional Polynomial Models
(FPM) where the first and second order models, respectively, are
given by

η = β0 +

q∑
r=1

βr x
(αr )
r

and

η = β0 +

q∑
r=1

βr x
(αr )
r +

q∑
r=1

βrr x
2(αr )
r +

q−1∑
r=1

q∑
s=r+1

βrsx (αr )
r x (αs)

s

For better interpretability, the powers αr are often restricted to a set
such as {−3,−2,−1,−0.5,−1/3,0,1/3,0.5,1,2,3}, where
x (αr )

r = log(xr ) if αr = 0
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FRACTIONAL POLYNOMIAL MODELS

How can we modify FPMs, so they can be applied to experiments
with mixtures?

Similar to the ratio model, we can map xr , the proportion of the
r th component, to the ratio

xr 7−→
(

xr

xq

)
, r = 1, . . . ,q − 1

This approach requires that x1, . . . , xq > 0
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MODIFIED FRACTIONAL POLYNOMIAL MODELS

The Modified Fractional Polynomial (MFP) Models of degree 1 and 2,
respectively, are then

η = β0 +

q−1∑
r=1

βr

(
xr

xq

)αr

and

η = β0 +

q−1∑
r=1

βr

(
xr

xq

)αr

+

q−1∑
r=1

βrr

(
xr

xq

)2αr

+

q−2∑
r=1

q−1∑
s=r+1

βrs

(
xr

xq

)αr(xs

xq

)αs

where the case αr = 0 corresponds to the logarithmic transformation
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MODIFIED FRACTIONAL POLYNOMIAL MODELS

For better interpretability of the results, we can restrict the
powers αr to a set such as
{−3,−2,−1,−0.5,−1/3,0,1/3,0.5,1,2,3}
Simplified versions of the MFP Models, with fewer parameters to
estimate, can be defined by requiring all exponents αr to be
equal, i.e. α1 = . . . = αq−1 = α

The choice of the denominator xq is generally not obvious
We propose to fit the MPF Model for each possible denominator
xr , r = 1, . . . ,q, in turn, and to select the model that provides the
best fit
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MODEL COMPARISONS

So far so good, but are the MFP Models actually useful?

The candidate models for comparison are the Scheffé
polynomials, the ratio models and the General Blending Models
We will use R2, AIC and BIC for model comparisons
For MFP and ratio models, we will use the denominator that
provides the best fit
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CHICK FEEDING EXAMPLE

Cornell (1990) provides data of a chick feeding experiment
The chicks were fed purified diets consisting of energy
supplements that contain protein (x1), fat (x2) and carbohydrate
(x3)
The proportions of these components are constrained by

0.05 ≤ x1 ≤ 0.40, 0.02 ≤ x2 ≤ 0.89, 0.06 ≤ x3 ≤ 0.86

The response is gain in body weight
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CHICK FEEDING EXAMPLE

Model R2 AIC BIC
Scheffé (degree 2) 0.9760 225.34 237.15
Ratio (degree 2) 0.9624 267.23 277.04

divided by x1

GBM 0.9936 232.49 242.31
MFP (degree 2, different αr ) 0.9997 205.57 218.18

divided by x3

Table: Model comparison for the chick feeding data
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MANUFACTURING EXAMPLE

Box and Draper (2007) provide data of a manufacturing
experiment
The response is the burning rate of the experiment
The mixture components are fuel (x1), oxidizer (x2) and binder
(x3)
The proportions of these components are constrained by

0.1 ≤ xr ≤ 0.99, r = 1,2,3
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MANUFACTURING EXAMPLE (1ST DEGREE MODELS)

Model R2 AIC BIC
Scheffé (degree 1) 0.61282 143.09 145.95
Ratio (degree 1) 0.21980 143.70 146.53

MFP (degree 1, same αr ) 0.68824 135.36 139.12
MFP (degree 1, different αr ) 0.68995 133.45 136.67

Table: Model comparison for the manufacturing data (first degree models)
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MANUFACTURING EXAMPLE (2ND DEGREE MODELS)

Model R2 AIC BIC
Scheffé (degree 2) 0.9797 132.16 137.15
Ratio (degree 2) 0.8290 126.95 131.91

GBM 0.9798 127.19 132.14
MFP (degree 2, different αr ) 0.9897 120.00 125.67

Table: Model comparison for the manufacturing data (second degree models)
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CONCLUSION (MODELLING)

The MFP Models provide a good fit to historical data sets (better
than competing models)
They were much quicker to fit than the GBMs
The MFP Models require additional constraints where the
proportions x1, . . . , xq are all positive

Often, the aim of the experiment is finding the optimal expected
response/corresponding setting of the factors
↪→Which model is best for achieving this purpose?
↪→ Investigation needed
How should experiments with mixtures be designed, i.e. which
combinations of proportions should be used in the experiment to
‘best’ answer the research question?
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DESIGNING FOR MFP MODELS

To find optimal designs for the MFP Models we have to deal with
the problem of irregularly shaped design spaces
We used two different approaches
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FINDING A CANDIDATE SET

The XVERT algorithm (Snee and Marquardt, 1974) finds the
extreme vertices of the experimental region
We can use convex combinations of these to fill up the design
space, e.g. starting with face centroids and the overall centroid
We can then use an optimisation algorithm on the resulting
candidate set
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FINDING A CANDIDATE SET

 

Figure: Illustration of finding a candidate set
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CONSTRAINED OPTIMISATION

Alternatively, we can incorporate the constraints on the design
space into the optimisation routine, e.g. in ‘constrOptim’ in R
We found D-optimal designs for the different MFP models based
on the chick feeding example (3 mixture components)
In this relatively simple setting, both methods worked well
For the candidate set approach, we needed large candidate sets
(fine ‘grids’) to ensure the required points were included
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AN OPTIMAL DESIGN

 

Figure: D-optimal design for the 2nd order MFP model (with different
exponents) based on the chick feeding example.
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FUTURE WORK

Open problems for future research:

How robust are optimal designs with respect to misspecifications
of the model parameters, the form of the model and the choice of
component in the denominator?
Often, the aim of the experiment is finding the optimal setting of
the factors, so we should consider different optimality criteria in
this case
We could include process variables in the model, and in the
design problem
For more complicated settings, more sophisticated algorithms
may be needed
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Thank you!
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