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My co-authors

This talk is based on our arXiv:1608.01118 paper:

A supermartingale approach to Gaussian process based

sequential design of experiments.

(v2 arXiv-ed last July; v3 soon, email me if you’re interested)
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Early example I: QUEST and variants

This picture comes from Watson & Pelli (1983). QUEST: A Bayesian adaptive

psychometric method. Perception & Psychophysics, 33, 113–120.

King-Smith (1984), Pelli (1987): tbmk, first examples of (parametric) SUR
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Early example II: active testing

Geman & Jedynak, Shape recognition and Twenty Questions, INRIA RR-2155, 1993

Method named “entropy strategy”, “entropy testing”, “stepwise entropy

reduction” and later “stepwise uncertainty reduction” (Fleuret & G., 1999)
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The origins of SUR (≤ 2009): more refs / less pictures

Versions of the idea have appeared in various places in the 80’s / 90’s

psychometry: King-Smith (1984), Pelli (1987)

Geman and co-authors: shape recognition, image retrieval, etc.

Active learning: MacKay (1992), Cohn et al. (1996), . . .
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psychometry: King-Smith (1984), Pelli (1987)

Geman and co-authors: shape recognition, image retrieval, etc.

Active learning: MacKay (1992), Cohn et al. (1996), . . .

For the sequential design of numerical experiments, the idea was first

proposed by E. Vazquez and co-authors around 2006–2009

optimization (IAGO): Villemonteix (2008), Villemonteix et al (2009), . . .

reliability: Vazquez & Piera-Martinez (2007), Vazquez & B. (2009), . . .
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psychometry: King-Smith (1984), Pelli (1987)

Geman and co-authors: shape recognition, image retrieval, etc.

Active learning: MacKay (1992), Cohn et al. (1996), . . .

For the sequential design of numerical experiments, the idea was first

proposed by E. Vazquez and co-authors around 2006–2009

optimization (IAGO): Villemonteix (2008), Villemonteix et al (2009), . . .

reliability: Vazquez & Piera-Martinez (2007), Vazquez & B. (2009), . . .

Some methods based on utility maximization can be seen as stepwise

uncertainty reduction strategies

the “Bayesian method for seeking the extremum” (Mockus et al., 1978)

the “expected improvement” method (Jones et al, 1998)

the “knowledge gradient policy” (Frazier et al, 2008)
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Setting: computer experiments / nonparametric regression

x ∈ X

Z ∈ R

f : X → R is a computer model for

a system to be designed (engineering),

a physical or biological phenomenon,

. . .

“Computer experiment”

1 experiment = run the program for some x ∈ X

assumed to be time-consuming
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Setting: computer experiments / nonparametric regression

x ∈ X

Z ∈ R

f : X → R is a computer model for

a system to be designed (engineering),

a physical or biological phenomenon,

. . .

“Computer experiment”

1 experiment = run the program for some x ∈ X

assumed to be time-consuming

Observation model in this work:

Zi = f (Xi) + εi

with εi

iid
∼ N (0, τ(Xi)). Special case τ ≡ 0 allowed.
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General principle of SUR strategies (1/2)

1 Adopt a Bayesian framework: choose a prior

Suppose f ∈ S = C (X), with X compact metric, say, X = [0; 1]
d

Prior = probability distribution on S
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General principle of SUR strategies (1/2)

1 Adopt a Bayesian framework: choose a prior

Suppose f ∈ S = C (X), with X compact metric, say, X = [0; 1]
d

Prior = probability distribution on S

unknown function f → stochastic process ξ

2 Choose a measure of uncertainty about the QoI:

Hn = H
(
Pξ

n

)

where

Pξ
n

is the posterior of ξ given Fn = σ (X1, Z1, . . . , Xn, Zn)
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General principle of SUR strategies (1/2)

1 Adopt a Bayesian framework: choose a prior

Suppose f ∈ S = C (X), with X compact metric, say, X = [0; 1]
d

Prior = probability distribution on S

unknown function f → stochastic process ξ

2 Choose a measure of uncertainty about the QoI:

Hn = H
(
Pξ

n

)

where

Pξ
n

is the posterior of ξ given Fn = σ (X1, Z1, . . . , Xn, Zn)

H : M → [0, +∞) is our uncertainty functional

M is a set of measures on S that contains Pξ
0, Pξ

1, . . .

Bect, Bachoc & Ginsbourger Almost sure convergence of SUR strategies CIRM DoE 2018 9 / 34



General principle of SUR strategies (2/2)

3 Select design points in a greedy (“myopic”, or “one-step look-ahead”) way

to minimize, at each step, the expected uncertainty at the next step.
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General principle of SUR strategies (2/2)

3 Select design points in a greedy (“myopic”, or “one-step look-ahead”) way

to minimize, at each step, the expected uncertainty at the next step.

Deduce a SUR sampling criterion:

Jn(x) = En,x (Hn+1)

where En = E (· | Fn) with Xn+1 = x .
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General principle of SUR strategies (2/2)

3 Select design points in a greedy (“myopic”, or “one-step look-ahead”) way

to minimize, at each step, the expected uncertainty at the next step.

Deduce a SUR sampling criterion:

Jn(x) = En,x (Hn+1)

where En = E (· | Fn) with Xn+1 = x .

Define the corresponding SUR strategy (sequential design):

Xn+1 = argminx∈X
Jn(x), n ≥ n0,

where n0 is the size of the initial “exploratory” design.
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Gaussian process priors

From now on, we assume a Gaussian process prior on f .
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Gaussian process priors

From now on, we assume a Gaussian process prior on f .

As a consequence of our observation model

Zi = f (Xi) + εi , εi

iid
∼ N (0, τ(Xi)),

we have the conjugacy property

ξ | Fn ∼ GP
(
ξ̂n, kn

)

(even for sequential designs !)
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Gaussian process priors

From now on, we assume a Gaussian process prior on f .

As a consequence of our observation model

Zi = f (Xi) + εi , εi

iid
∼ N (0, τ(Xi)),

we have the conjugacy property

ξ | Fn ∼ GP
(
ξ̂n, kn

)

(even for sequential designs !)

We can take M = {all Gaussian measures on S = C (X)}
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Uncertainty functionals: a few examples in optimization

Design problem

single-objective, box-constrained optimization

QoI: M(ξ) = max ξ and/or X∗ = argmax ξ
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Uncertainty functionals: a few examples in optimization

Design problem

single-objective, box-constrained optimization

QoI: M(ξ) = max ξ and/or X∗ = argmax ξ

Examples of uncertainty measures for this problem

Hn = En

(
max ξ − M̂n

)
= En (max ξ) − M̂n

with M̂n = max ξ̂n (Mockus et al, 1978; Frazier et al, 2008)

Hn = En (max ξ − Mn) = En (max ξ) − Mn

with Mn = maxi≤n ξ(Xi) (Jones et al, 1998) (noiseless only!)

Hn = −
∑

x∈X
πx

n
log(πx

n
)

with πx
n

= Pn (X∗ = x) (Villemonteix et al, 2009) (discrete X)
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Illustration of the EI criterion (“EGO algorithm”)

Model: GP with Matérn covariance (σ2 = 9, ν = 2, ρ = 0.5)
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Illustration of the EI criterion (“EGO algorithm”)

Model: GP with Matérn covariance (σ2 = 9, ν = 2, ρ = 0.5)
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Illustration of the EI criterion (“EGO algorithm”)

Model: GP with Matérn covariance (σ2 = 9, ν = 2, ρ = 0.5)
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More uncertainty functionals: probability of failure

Problem data

a threshold T ∈ R

a probability distribution PX on X

QoI: θ =
∫
X
1ξ≥T dPX or Γ = {x ∈ X : ξ(x) ≥ T}
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More uncertainty functionals: probability of failure

Problem data

a threshold T ∈ R

a probability distribution PX on X

QoI: θ =
∫
X
1ξ≥T dPX or Γ = {x ∈ X : ξ(x) ≥ T}

Lots of measures of uncertainty have been proposed. . .

(Vazquez & B. 2009; Picheny et al. 2010; B. et al 2012;

Chevalier et al 2014; Azzimonti et al 2016; Walter 2016. . . )

Two examples

Hn = varn (θ)

Hn = En

(
‖1Γ − pn‖2

PX

)
=

∫
pn (1 − pn) dPX

with pn(x) = Pn (ξ(x) ≥ T ).
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Theoretical properties ?

Very little is known about SUR strategies in general. . .

see our arXiv paper for references concerning special cases
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Theoretical properties ?

Very little is known about SUR strategies in general. . .

see our arXiv paper for references concerning special cases

Assume that H = 0 corresponds to no uncertainty

Basic questions of interest are thus

consistency: do we have Hn = H
(
Pξ

n

)
→ 0 ?

convergence rate: if it is so, how fast ?
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Theoretical properties ?

Very little is known about SUR strategies in general. . .

see our arXiv paper for references concerning special cases

Assume that H = 0 corresponds to no uncertainty

Basic questions of interest are thus

consistency: do we have Hn = H
(
Pξ

n

)
→ 0 ?

convergence rate: if it is so, how fast ? (not there yet, sorry about that. . . )

Problem discussed in this talk

Under which condition on H can we guarantee that, using SUR,

Hn = H
(
Pξ

n

)
→ 0 P0-almost surely,

for any prior Pξ
0 ∈ M ?
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1 Introduction: Stepwise Uncertainty Reduction (SUR)

2 The supermartingale property (SMP)

3 A general consistency result

4 Conclusions / Perspectives
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Definition

Recall that

H : M → [0, +∞) and Hn = H
(
Pξ

n

)
,

M is the set of all Gaussian measures on S (more generally: conjugate priors. . . )
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Definition

Recall that

H : M → [0, +∞) and Hn = H
(
Pξ

n

)
,

M is the set of all Gaussian measures on S (more generally: conjugate priors. . . )

Key property

Supermartingale property (SMP)

H is said to have the supermartingale property if, for any prior Pξ
0 ∈ M

and any sequential design X1, X2, . . . , the sequence (Hn) is an

(Fn)-supermartingale, i.e.,

E (Hn+1) ≤ Hn, ∀n ≥ 0.

Fn = σ (X1, Z1, . . . , Xn, Zn)
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A simple example

Consider any variance functional: ∀ν ∈ M,

H(ν) = varν (θ) = Eν

(
(θ − Eνθ)2

︸ ︷︷ ︸
not decreasing (in general)

)

where θ = ϕ(ξ) is a scalar QoI (e.g., θ =
∫
X
1ξ≥T dPX)
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A simple example

Consider any variance functional: ∀ν ∈ M,

H(ν) = varν (θ) = Eν

(
(θ − Eνθ)2

︸ ︷︷ ︸
not decreasing (in general)

)

where θ = ϕ(ξ) is a scalar QoI (e.g., θ =
∫
X
1ξ≥T dPX)

Law of total variance (“Eve’s law”)

varn (θ) = En (varn+1 (θ)) + varn (En+1 (θ))
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A simple example

Consider any variance functional: ∀ν ∈ M,

H(ν) = varν (θ) = Eν

(
(θ − Eνθ)2

︸ ︷︷ ︸
not decreasing (in general)

)

where θ = ϕ(ξ) is a scalar QoI (e.g., θ =
∫
X
1ξ≥T dPX)

Law of total variance (“Eve’s law”)

varn (θ) = En (varn+1 (θ)) + varn (En+1 (θ))

≥ En (varn+1 (θ))

therefore Hn ≥ En (Hn+1), i.e., (Hn) is a supermartingale
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A more general explanation

Consider any “risk-like” uncertainty functional:

H(ν) = inf
d∈D

Eν (L(ξ, d))

where D is a certain “decision space”.
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A more general explanation

Consider any “risk-like” uncertainty functional:

H(ν) = inf
d∈D

Eν (L(ξ, d))

where D is a certain “decision space”.

Assume for simplicity that, ∀n, the infimum is attained at dn ∈ D

Then we have:

Hn+1 = inf
d∈D

En+1 (L(ξ, d)) ≤ En+1 (L(ξ, dn)) ,

and thus

En (Hn+1) ≤ En (En+1 (L(ξ, dn))) = Hn.

Bect, Bachoc & Ginsbourger Almost sure convergence of SUR strategies CIRM DoE 2018 20 / 34



Relationship with concavity (1/2)

Connection pointed out by L. Pronzato with DeGroot (1962). Uncertainty,

Information, and Sequential Experiments. Annals Math. Stat., 33(2):404–419.
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Relationship with concavity (1/2)

Connection pointed out by L. Pronzato with DeGroot (1962). Uncertainty,

Information, and Sequential Experiments. Annals Math. Stat., 33(2):404–419.

Assume for simplicity that H is defined on M1(S)

M1(S) = {all probability measures on S}

remark: M itself is not convex. . .
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Relationship with concavity (1/2)

Connection pointed out by L. Pronzato with DeGroot (1962). Uncertainty,

Information, and Sequential Experiments. Annals Math. Stat., 33(2):404–419.

Assume for simplicity that H is defined on M1(S)

M1(S) = {all probability measures on S}

remark: M itself is not convex. . .

If H satisfies Jensen’s inequality:

E (H(ν)) ≤ H(E(ν))

for all random element ν in M (random measure), then

H has the SMP.
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Relationship with concavity (2/2)

The condition (Jensen’s inequality) is sufficient, but not necessary
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Relationship with concavity (2/2)

The condition (Jensen’s inequality) is sufficient, but not necessary

Example: H(ν) = maxx∈X σ2
ν(x)

H has the SMP, and even more: Hn = H
(
Pξ

n

)
is decreasing
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Relationship with concavity (2/2)

The condition (Jensen’s inequality) is sufficient, but not necessary

Example: H(ν) = maxx∈X σ2
ν(x)

H has the SMP, and even more: Hn = H
(
Pξ

n

)
is decreasing

but it is not even concave on co(M)

To see that it is not concave:

Pick ν1, ν2 ∈ M corresponding to two zero-mean GPs

Consider the mixture: ν = 1
2 ν1 + 1

2 ν2 (no longer the distrib. of a GP !)

Note that σ2
ν(x) = 1

2 σ2
ν1

(x) + 1
2 σ2

ν1
(x) because of zero-mean

Construct variance functions s.t. max σ2
ν1

= max σ2
ν2

> max σ2
ν .
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Maximal expected uncertainty reduction

Assume that H has the SMP
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Maximal expected uncertainty reduction

Assume that H has the SMP

Recall the SUR sampling criterion:

Jn(x) = En,x

(
H

(
Pξ

n+1

))
≤ Hn

and a corresponding SUR sequential design:

Xn+1 ∈ argminx∈X Jn(x), n ≥ n0.
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Maximal expected uncertainty reduction

Assume that H has the SMP

Recall the SUR sampling criterion:

Jn(x) = En,x

(
H

(
Pξ

n+1

))
≤ Hn

and a corresponding SUR sequential design:

Xn+1 ∈ argminx∈X Jn(x), n ≥ n0.

We introduce another functional, denoted by G, s.t.

G
(
Pξ

n

)
= Hn − min Jn ≥ 0

measures the maximal expected uncertainty reduction in one step
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Consequence of the SMP

Theorem (part 1)

Let H denote a measurable uncertainty functional with the

supermartingale property. If

i) (Xn) is SUR sequential design for H.

then G
(
Pξ

n

)
→ 0 almost surely.

The SMP in itself is not enough to prove consistency
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1 Introduction: Stepwise Uncertainty Reduction (SUR)

2 The supermartingale property (SMP)

3 A general consistency result

4 Conclusions / Perspectives

Bect, Bachoc & Ginsbourger Almost sure convergence of SUR strategies CIRM DoE 2018 25 / 34



1 Introduction: Stepwise Uncertainty Reduction (SUR)

2 The supermartingale property (SMP)

3 A general consistency result

4 Conclusions / Perspectives

Bect, Bachoc & Ginsbourger Almost sure convergence of SUR strategies CIRM DoE 2018 26 / 34



Zeros of H and G

Let us define

ZH = {ν ∈ M : H(ν) = 0} ,

ZG = {ν ∈ M : G(ν) = 0} .
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ZG = {ν ∈ M : G(ν) = 0} .

It is always true that ZH ⊂ ZG .
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Zeros of H and G

Let us define

ZH = {ν ∈ M : H(ν) = 0} ,

ZG = {ν ∈ M : G(ν) = 0} .

It is always true that ZH ⊂ ZG .

The converse, however, is not true in general

but was found to be true for all the examples that we studied
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Example: H(ν) = varν (θ) with θ =
∫
X 1ξ≥T dPX
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Example: H(ν) = varν (θ) with θ =
∫
X 1ξ≥T dPX

Let ξ ∼ ν ∈ ZG . Then we can prove (see the paper) that

θ(ξ) − E(θ(ξ)) ⊥ L2(ξ(x)), ∀x ∈ X.
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Example: H(ν) = varν (θ) with θ =
∫
X 1ξ≥T dPX

Let ξ ∼ ν ∈ ZG . Then we can prove (see the paper) that

θ(ξ) − E(θ(ξ)) ⊥ L2(ξ(x)), ∀x ∈ X.

In particular, θ(ξ) − E(θ(ξ)) ⊥ 1ξ(x)≤T , for all x ∈ X, and thus

var (θ(ξ)) =

∫
cov

(
θ(ξ),1ξ(x)≤T

)
µ(dx) = 0.
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Example: H(ν) = varν (θ) with θ =
∫
X 1ξ≥T dPX

Let ξ ∼ ν ∈ ZG . Then we can prove (see the paper) that

θ(ξ) − E(θ(ξ)) ⊥ L2(ξ(x)), ∀x ∈ X.

In particular, θ(ξ) − E(θ(ξ)) ⊥ 1ξ(x)≤T , for all x ∈ X, and thus

var (θ(ξ)) =

∫
cov

(
θ(ξ),1ξ(x)≤T

)
µ(dx) = 0.

thus ZG ⊂ ZH, and therefore ZG = ZH.
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A general consistency result

Theorem (part 1)

Let H denote a measurable uncertainty functional with the

supermartingale property. If

i) (Xn) is SUR sequential design for H.

then G
(
Pξ

n

)
→ 0 almost surely.
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A general consistency result

Theorem

Let H denote a measurable uncertainty functional with the

supermartingale property. If

i) (Xn) is SUR sequential design for H.

then G
(
Pξ

n

)
→ 0 almost surely. If, moreover,

i) ZH = ZG ;
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A general consistency result

Theorem

Let H denote a measurable uncertainty functional with the

supermartingale property. If

i) (Xn) is SUR sequential design for H.

then G
(
Pξ

n

)
→ 0 almost surely. If, moreover,

i) ZH = ZG ;

ii) Hn = H
(
Pξ

n

)
→ H

(
Pξ

∞

)
almost surely,

iii) G
(
Pξ

n

)
→ G

(
Pξ

∞

)
almost surely;
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A general consistency result

Theorem

Let H denote a measurable uncertainty functional with the

supermartingale property. If

i) (Xn) is SUR sequential design for H.

then G
(
Pξ

n

)
→ 0 almost surely. If, moreover,

i) ZH = ZG ;

ii) Hn = H
(
Pξ

n

)
→ H

(
Pξ

∞

)
almost surely,

iii) G
(
Pξ

n

)
→ G

(
Pξ

∞

)
almost surely;

then Hn = H
(
Pξ

n

)
→ 0 almost surely.
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A general consistency result

Theorem

Let H denote a measurable uncertainty functional with the

supermartingale property. If

i) (Xn) is SUR sequential design for H.

then G
(
Pξ

n

)
→ 0 almost surely. If, moreover,

i) ZH = ZG ;

ii) Hn = H
(
Pξ

n

)
→ H

(
Pξ

∞

)
almost surely,

iii) G
(
Pξ

n

)
→ G

(
Pξ

∞

)
almost surely;

then Hn = H
(
Pξ

n

)
→ 0 almost surely.

Remark about ii) and iii): the functionals are not continuous in general, for

any reasonable topology on M. . . (see the paper for more on this issue)
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Conclusion / perspectives

A general approach to establish the almost sure consistency of SUR

strategies is now available
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Conclusion / perspectives

A general approach to establish the almost sure consistency of SUR

strategies is now available

Four examples are covered in detail in the paper

optimization: EI and “knowledge gradient”

reliablity: Hn = varn(θ) and Hn =
∫

pn(1 − pn) dPX

Remark about the EI case: holds for any continuous GP, unlike

previous result by Vazquez & B. (2010).
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Conclusion / perspectives

A general approach to establish the almost sure consistency of SUR

strategies is now available

Four examples are covered in detail in the paper

optimization: EI and “knowledge gradient”

reliablity: Hn = varn(θ) and Hn =
∫

pn(1 − pn) dPX

Remark about the EI case: holds for any continuous GP, unlike

previous result by Vazquez & B. (2010).

Perspective: convergence rate ? (even the most stupid design can be consistent. . . )
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Convergence rate: where do we go from here ?

Parametric models ?

Paninski (2006) claims very strong results (entropy, variance)

Proofs are very sketchy. . .
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Convergence rate: where do we go from here ?

Parametric models ?

Paninski (2006) claims very strong results (entropy, variance)

Proofs are very sketchy. . .

Back to GPs: the “Expected improvement” strategy

Bull (2011): disappointing upper-bound for f ∈ RKHS(k)

Yarotsky (2013): exponentially fast convergence for the

squared-exponential covariance, under some very strong conditions on f

These results are not satisfactory from a Bayesian point of view
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Convergence rate: where do we go from here ?

Parametric models ?

Paninski (2006) claims very strong results (entropy, variance)

Proofs are very sketchy. . .

Back to GPs: the “Expected improvement” strategy

Bull (2011): disappointing upper-bound for f ∈ RKHS(k)

Yarotsky (2013): exponentially fast convergence for the

squared-exponential covariance, under some very strong conditions on f

These results are not satisfactory from a Bayesian point of view

The linear / Gaussian case

Assume ξ ∼ GP, θ =
∫
X

ξdµ and H(ν) = varν(θ)

Then SUR reduces to Orthogonal Matching Pursuit (OMP)

Much can be learned from (greedy) approximation theory
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Thank you

Everything is in the title
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