Uncertainty functionals and the greedy reduction of uncertainty

Julien BECT (a)

Joint work with François BACHOC ^(b) and David GINSBOURGER ^(c,d)

(a) L2S (Gif-sur-Yvette, France)
(b) IMT (Toulouse, France)
(c) Idiap (Martigny, Switzerland)
(d) IMSV (Bern, Switzerland)

Workshop on "Design of Experiments: New Challenges" CIRM, Luminy, Marseille, May 2018

My co-authors

This talk is based on our arXiv:1608.01118 paper:

A supermartingale approach to Gaussian process based sequential design of experiments.

(v2 arXiv-ed last July; v3 soon, email me if you're interested)

1 Introduction: Stepwise Uncertainty Reduction (SUR)

2 The supermartingale property (SMP)

3 A general consistency result

Early example I: QUEST and variants

This picture comes from Watson & Pelli (1983). QUEST: A Bayesian adaptive psychometric method. *Perception & Psychophysics*, 33, 113–120.

Figure 1. Three examples of a Weibull psychometric function. Center curve is the canonical form, flanking curves are for thresholds of -4 and 4 dB. The parameters of all functions are: $\beta = 3.5$, $\gamma = .5$, and $\delta = .01$.

King-Smith (1984), Pelli (1987): tbmk, first examples of (parametric) SUR

Early example II: active testing

Geman & Jedynak, Shape recognition and Twenty Questions, INRIA RR-2155, 1993

Method named "entropy strategy", "entropy testing", "stepwise entropy reduction" and later "stepwise uncertainty reduction" (Fleuret & G., 1999)

The origins of SUR (\leq 2009): more refs / less pictures

- Versions of the idea have appeared in various places in the 80's / 90's
 - psychometry: King-Smith (1984), Pelli (1987)
 - Geman and co-authors: shape recognition, image retrieval, etc.
 - Active learning: MacKay (1992), Cohn et al. (1996), ...

The origins of SUR (\leq 2009): more refs / less pictures

- Versions of the idea have appeared in various places in the 80's / 90's
 - psychometry: King-Smith (1984), Pelli (1987)
 - Geman and co-authors: shape recognition, image retrieval, etc.
 - Active learning: MacKay (1992), Cohn et al. (1996), ...
- For the sequential design of numerical experiments, the idea was first proposed by E. Vazquez and co-authors around 2006–2009
 - optimization (IAGO): Villemonteix (2008), Villemonteix et al (2009), ...
 - reliability: Vazquez & Piera-Martinez (2007), Vazquez & B. (2009), ...

The origins of SUR (\leq 2009): more refs / less pictures

- Versions of the idea have appeared in various places in the 80's / 90's
 - psychometry: King-Smith (1984), Pelli (1987)
 - Geman and co-authors: shape recognition, image retrieval, etc.
 - Active learning: MacKay (1992), Cohn et al. (1996), ...
- For the sequential design of numerical experiments, the idea was first proposed by E. Vazquez and co-authors around 2006–2009
 - optimization (IAGO): Villemonteix (2008), Villemonteix et al (2009), ...
 - reliability: Vazquez & Piera-Martinez (2007), Vazquez & B. (2009), ...
- Some methods based on utility maximization *can be seen* as stepwise uncertainty reduction strategies
 - the "Bayesian method for seeking the extremum" (Mockus et al., 1978)
 - the "expected improvement" method (Jones et al, 1998)
 - the "knowledge gradient policy" (Frazier et al, 2008)

Setting: computer experiments / nonparametric regression

- $f : \mathbb{X} \to \mathbb{R}$ is a computer model for
 - a system to be designed (engineering),
 - a physical or biological phenomenon,
- "Computer experiment"

olimia 🕘

- 1 experiment = run the program for some $x \in \mathbb{X}$
- assumed to be time-consuming

Setting: computer experiments / nonparametric regression

- $f: \mathbb{X} \to \mathbb{R}$ is a computer model for
 - a system to be designed (engineering),
 - a physical or biological phenomenon,
- "Computer experiment"

olimia 🕘

- 1 experiment = run the program for some $x \in \mathbb{X}$
- assumed to be time-consuming
- Observation model in this work:

 $Z_i = f(X_i) + \varepsilon_i$

with $\varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \tau(X_i))$. Special case $\tau \equiv 0$ allowed.

Adopt a Bayesian framework: choose a prior

- Suppose $f \in \mathbb{S} = \mathcal{C}(\mathbb{X})$, with \mathbb{X} compact metric, say, $\mathbb{X} = [0; 1]^d$
- Prior = probability distribution on $\mathbb S$

Adopt a Bayesian framework: choose a prior

- Suppose $f \in \mathbb{S} = \mathcal{C}(\mathbb{X})$, with \mathbb{X} compact metric, say, $\mathbb{X} = [0; 1]^d$
- Prior = probability distribution on $\mathbb S$
- unknown function $f \rightarrow$ stochastic process ξ

Adopt a Bayesian framework: choose a prior

- Suppose $f \in \mathbb{S} = \mathcal{C}(\mathbb{X})$, with \mathbb{X} compact metric, say, $\mathbb{X} = [0; 1]^d$
- Prior = probability distribution on $\mathbb S$
- unknown function $f \rightarrow$ stochastic process ξ

Choose a measure of uncertainty about the Qol:

$$H_n = \mathcal{H}(\mathsf{P}_n^{\xi})$$

where

• P_n^{ξ} is the posterior of ξ given $\mathcal{F}_n = \sigma(X_1, Z_1, \dots, X_n, Z_n)$

Adopt a Bayesian framework: choose a prior

- Suppose $f \in \mathbb{S} = \mathcal{C}(\mathbb{X})$, with \mathbb{X} compact metric, say, $\mathbb{X} = [0; 1]^d$
- Prior = probability distribution on ${\mathbb S}$
- unknown function $f \rightarrow$ stochastic process ξ

Ochoose a measure of uncertainty about the Qol:

$$H_n = \mathcal{H}(\mathsf{P}_n^{\xi})$$

where

- P_n^{ξ} is the posterior of ξ given $\mathcal{F}_n = \sigma(X_1, Z_1, \dots, X_n, Z_n)$
- $\mathcal{H}:\mathbb{M}\to [0,+\infty)$ is our uncertainty functional

Adopt a Bayesian framework: choose a prior

- Suppose $f \in \mathbb{S} = \mathcal{C}(\mathbb{X})$, with \mathbb{X} compact metric, say, $\mathbb{X} = [0; 1]^d$
- Prior = probability distribution on $\mathbb S$
- unknown function $f \rightarrow$ stochastic process ξ

Ochoose a measure of uncertainty about the Qol:

$$H_n = \mathcal{H}(\mathsf{P}_n^{\xi})$$

where

- P_n^{ξ} is the posterior of ξ given $\mathcal{F}_n = \sigma(X_1, Z_1, \dots, X_n, Z_n)$
- $\mathcal{H}:\mathbb{M}\to [0,+\infty)$ is our uncertainty functional
- $\mathbb M$ is a set of measures on $\mathbb S$ that contains $\mathsf P_0^\xi,\,\mathsf P_1^\xi,\,\ldots$

Select design points in a greedy ("myopic", or "one-step look-ahead") way to minimize, at each step, the expected uncertainty at the next step.

- Select design points in a greedy ("myopic", or "one-step look-ahead") way to minimize, at each step, the expected uncertainty at the next step.
 - Deduce a SUR sampling criterion:

 $J_n(x) = \mathsf{E}_{n,x}\left(H_{n+1}\right)$

where $E_n = E(\cdot | \mathcal{F}_n)$ with $X_{n+1} = x$.

- Select design points in a greedy ("myopic", or "one-step look-ahead") way to minimize, at each step, the expected uncertainty at the next step.
 - Deduce a SUR sampling criterion:

$$J_n(x) = \mathsf{E}_{n,x}\left(H_{n+1}\right)$$

where $E_n = E(\cdot | \mathcal{F}_n)$ with $X_{n+1} = x$.

• Define the corresponding SUR strategy (sequential design):

 $X_{n+1} = \operatorname{argmin}_{x \in \mathbb{X}} J_n(x), \quad n \ge n_0,$

where n_0 is the size of the initial "exploratory" design.

• From now on, we assume a Gaussian process prior on f.

• From now on, we assume a Gaussian process prior on f.

• As a consequence of our observation model

$$Z_i = f(X_i) + \varepsilon_i, \qquad \varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \tau(X_i)),$$

we have the conjugacy property

$$\xi \mid \mathcal{F}_n \sim \mathcal{GP}\left(\hat{\xi}_n, k_n\right)$$

(even for sequential designs !)

• From now on, we assume a Gaussian process prior on f.

• As a consequence of our observation model

$$Z_i = f(X_i) + \varepsilon_i, \qquad \varepsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \tau(X_i)),$$

we have the conjugacy property

$$\xi \mid \mathcal{F}_n \sim \mathcal{GP}\left(\hat{\xi}_n, k_n\right)$$

(even for sequential designs !)

• We can take $\mathbb{M} = \{ all \text{ Gaussian measures on } \mathbb{S} = \mathcal{C}(\mathbb{X}) \}$

Uncertainty functionals: a few examples in optimization

Design problem

- single-objective, box-constrained optimization
- QoI: $M(\xi) = \max \xi$ and/or $X^* = \operatorname{argmax} \xi$

Uncertainty functionals: a few examples in optimization

Design problem

- single-objective, box-constrained optimization
- Qol: $M(\xi) = \max \xi$ and/or $X^* = \operatorname{argmax} \xi$
- Examples of uncertainty measures for this problem

•
$$H_n = \mathsf{E}_n \left(\max \xi - \widehat{M}_n \right) = \mathsf{E}_n \left(\max \xi \right) - \widehat{M}_n$$

with $\widehat{M}_n = \max \widehat{\xi}_n$ (Mockus et al, 1978; Frazier et al, 2008)

• $H_n = E_n (\max \xi - M_n) = E_n (\max \xi) - M_n$ with $M_n = \max_{i \le n} \xi(X_i)$ (Jones et al, 1998) (noiseless only!)

•
$$H_n = -\sum_{x \in \mathbb{X}} \pi_n^x \log(\pi_n^x)$$

with $\pi_n^x = P_n(X^* = x)$ (Villemonteix et al, 2009) (discrete X)

More uncertainty functionals: probability of failure

- Problem data
 - a threshold $T \in \mathbb{R}$
 - $\bullet\,$ a probability distribution $\mathsf{P}_{\mathbb{X}}$ on \mathbb{X}
- Qol: $\theta = \int_{\mathbb{X}} \mathbb{1}_{\xi \ge T} \, \mathrm{dP}_{\mathbb{X}}$ or $\Gamma = \{x \in \mathbb{X} : \xi(x) \ge T\}$

More uncertainty functionals: probability of failure

Problem data

- a threshold $\mathcal{T} \in \mathbb{R}$
- $\bullet\,$ a probability distribution $\mathsf{P}_{\mathbb{X}}$ on \mathbb{X}

• Qol:
$$\theta = \int_{\mathbb{X}} \mathbb{1}_{\xi \ge T} d\mathsf{P}_{\mathbb{X}}$$
 or $\mathsf{\Gamma} = \{x \in \mathbb{X} : \xi(x) \ge T\}$

• Lots of measures of uncertainty have been proposed...

(Vazquez & B. 2009; Picheny et al. 2010; B. et al 2012; Chevalier et al 2014; Azzimonti et al 2016; Walter 2016...)

Two examples

•
$$H_n = \operatorname{var}_n(\theta)$$

• $H_n = \operatorname{E}_n\left(\|\mathbb{1}_{\Gamma} - p_n\|_{P_X}^2\right) = \int p_n (1 - p_n) \, \mathrm{d}P_X$
with $p_n(x) = \operatorname{P}_n(\xi(x) \ge T)$.

- Very little is known about SUR strategies in general...
 - see our arXiv paper for references concerning special cases

- Very little is known about SUR strategies in general...
 - see our arXiv paper for references concerning special cases
- Assume that $\mathcal{H} = 0$ corresponds to no uncertainty

- Very little is known about SUR strategies in general...
 - see our arXiv paper for references concerning special cases
- Assume that $\mathcal{H} = 0$ corresponds to no uncertainty
- Basic questions of interest are thus
 - consistency: do we have $H_n = \mathcal{H}(\mathsf{P}_n^{\xi}) \to 0$?
 - convergence rate: if it is so, how fast ?

- Very little is known about SUR strategies in general...
 - see our arXiv paper for references concerning special cases
- Assume that $\mathcal{H} = 0$ corresponds to no uncertainty
- Basic questions of interest are thus
 - consistency: do we have $H_n = \mathcal{H}(\mathsf{P}_n^{\xi}) \to 0$?
 - convergence rate: if it is so, how fast ? (not there yet, sorry about that...)

Problem discussed in this talk

Under which condition on ${\mathcal H}$ can we guarantee that, using SUR,

$$H_n = \mathcal{H}(\mathsf{P}_n^{\xi}) \to 0$$
 P_0 -almost surely,

for any prior $\mathsf{P}_0^\xi \in \mathbb{M}$?

15 / 34

Introduction: Stepwise Uncertainty Reduction (SUR)

2 The supermartingale property (SMP)

3 A general consistency result

Definition

Recall that

- $\mathcal{H}: \mathbb{M} \to [0, +\infty)$ and $H_n = \mathcal{H}(\mathsf{P}_n^{\xi})$,
- \mathbb{M} is the set of all Gaussian measures on \mathbb{S} (more generally: conjugate priors...)

Definition

Recall that

- $\mathcal{H}: \mathbb{M} \to [0, +\infty)$ and $H_n = \mathcal{H}(\mathsf{P}^{\xi}_n)$,
- \mathbb{M} is the set of all Gaussian measures on \mathbb{S} (more generally: conjugate priors...)
- Key property

Supermartingale property (SMP)

 \mathcal{H} is said to have the supermartingale property if, for any prior $\mathsf{P}_0^{\xi} \in \mathbb{M}$ and any sequential design X_1, X_2, \ldots , the sequence (H_n) is an (\mathcal{F}_n) -supermartingale, i.e.,

$$\mathsf{E}(H_{n+1}) \leq H_n, \quad \forall n \geq 0.$$

$$\mathcal{F}_n = \sigma\left(X_1, Z_1, \ldots, X_n, Z_n\right)$$

A simple example

• Consider any variance functional: $\forall \nu \in \mathbb{M}$,

$$\mathcal{H}(\nu) = \mathsf{var}_{\nu}\left(\theta\right) = \mathsf{E}_{\nu}\Big(\underbrace{\left(\theta - \mathsf{E}_{\nu}\theta\right)^{2}}_{}\Big)$$

not decreasing (in general)

where
$$heta=arphi(\xi)$$
 is a scalar QoI (e.g., $heta=\int_{\mathbb{X}} 1\!\!1_{\xi\geq {\mathcal T}} \mathrm{d}\mathsf{P}_{\mathbb{X}})$

A simple example

• Consider any variance functional: $\forall \nu \in \mathbb{M}$,

$$\mathcal{H}(\nu) = \operatorname{var}_{\nu}(\theta) = \mathsf{E}_{\nu}\Big(\underbrace{(\theta - \mathsf{E}_{\nu}\theta)^{2}}_{}\Big)$$

not decreasing (in general)

where
$$heta=arphi(\xi)$$
 is a scalar QoI (e.g., $heta=\int_{\mathbb{X}} 1\!\!1_{\xi\geq \mathcal{T}}\mathrm{d}\mathsf{P}_{\mathbb{X}})$

• Law of total variance ("Eve's law")

$$\operatorname{var}_{n}(\theta) = \operatorname{E}_{n}(\operatorname{var}_{n+1}(\theta)) + \operatorname{var}_{n}(\operatorname{E}_{n+1}(\theta))$$

A simple example

• Consider any variance functional: $\forall \nu \in \mathbb{M}$,

$$\mathcal{H}(\nu) = \operatorname{var}_{\nu}(\theta) = \mathsf{E}_{\nu}\left(\underbrace{(\theta - \mathsf{E}_{\nu}\theta)^{2}}_{}\right)$$

not decreasing (in general)

where
$$heta=arphi(\xi)$$
 is a scalar QoI (e.g., $heta=\int_{\mathbb{X}} 1\!\!1_{\xi\geq \mathcal{T}}\mathrm{d}\mathsf{P}_{\mathbb{X}})$

• Law of total variance ("Eve's law")

$$\operatorname{var}_{n}(\theta) = \mathsf{E}_{n}(\operatorname{var}_{n+1}(\theta)) + \operatorname{var}_{n}(\mathsf{E}_{n+1}(\theta))$$
$$\geq \mathsf{E}_{n}(\operatorname{var}_{n+1}(\theta))$$

• therefore $H_n \geq E_n(H_{n+1})$, i.e., (H_n) is a supermartingale

A more general explanation

• Consider any "risk-like" uncertainty functional:

```
\mathcal{H}(\nu) = \inf_{d \in \mathbb{D}} \mathsf{E}_{\nu} \left( L(\xi, d) \right)
```

where ${\mathbb D}$ is a certain "decision space".

A more general explanation

• Consider any "risk-like" uncertainty functional:

$$\mathcal{H}(\nu) = \inf_{d \in \mathbb{D}} \mathsf{E}_{\nu} \left(L(\xi, d) \right)$$

where ${\mathbb D}$ is a certain "decision space".

- Assume for simplicity that, orall n, the infimum is attained at $d_n \in \mathbb{D}$
- Then we have:

$$H_{n+1} = \inf_{d \in \mathbb{D}} \mathsf{E}_{n+1} \left(L(\xi, d) \right) \le \mathsf{E}_{n+1} \left(L(\xi, d_n) \right),$$

and thus

$$\mathsf{E}_n\left(H_{n+1}\right) \leq \mathsf{E}_n\left(\mathsf{E}_{n+1}\left(L(\xi,d_n)\right)\right) = H_n.$$

Relationship with concavity (1/2)

 Connection pointed out by L. Pronzato with DeGroot (1962). Uncertainty, Information, and Sequential Experiments. Annals Math. Stat., 33(2):404–419.

Relationship with concavity (1/2)

- Connection pointed out by L. Pronzato with DeGroot (1962). Uncertainty, Information, and Sequential Experiments. Annals Math. Stat., 33(2):404–419.
- Assume for simplicity that \mathcal{H} is defined on $\mathbb{M}_1(\mathbb{S})$
 - $\mathbb{M}_1(\mathbb{S}) = \{ all \text{ probability measures on } \mathbb{S} \}$
 - remark: M itself is not convex...

Relationship with concavity (1/2)

- Connection pointed out by L. Pronzato with DeGroot (1962). Uncertainty, Information, and Sequential Experiments. Annals Math. Stat., 33(2):404–419.
- Assume for simplicity that \mathcal{H} is defined on $\mathbb{M}_1(\mathbb{S})$
 - $\mathbb{M}_1(\mathbb{S}) = \{ all \text{ probability measures on } \mathbb{S} \}$
 - remark: \mathbb{M} itself is not convex...
- If \mathcal{H} satisfies Jensen's inequality:

$$E(\mathcal{H}(\boldsymbol{\nu})) \leq \mathcal{H}(E(\boldsymbol{\nu}))$$

for all random element u in \mathbb{M} (random measure), then

 ${\mathcal H}$ has the SMP.

21 / 34

• The condition (Jensen's inequality) is sufficient, but not necessary

• The condition (Jensen's inequality) is sufficient, but not necessary

• Example:
$$\mathcal{H}(\nu) = \max_{x \in \mathbb{X}} \sigma_{\nu}^2(x)$$

• \mathcal{H} has the SMP, and even more: $H_n = \mathcal{H}(\mathsf{P}_n^{\xi})$ is decreasing

• The condition (Jensen's inequality) is sufficient, but not necessary

• Example:
$$\mathcal{H}(\nu) = \max_{x \in \mathbb{X}} \sigma_{\nu}^2(x)$$

- \mathcal{H} has the SMP, and even more: $H_n = \mathcal{H}(\mathsf{P}_n^{\xi})$ is decreasing
- but it is not even concave on $co(\mathbb{M})$
- To see that it is not concave:
 - Pick ν_1 , $\nu_2 \in \mathbb{M}$ corresponding to two zero-mean GPs
 - Consider the mixture: $\nu = \frac{1}{2}\nu_1 + \frac{1}{2}\nu_2$ (no longer the distrib. of a GP !)
 - Note that $\sigma_{\nu}^2(x) = \frac{1}{2}\sigma_{\nu_1}^2(x) + \frac{1}{2}\sigma_{\nu_1}^2(x)$ because of zero-mean
 - Construct variance functions s.t. $\max \sigma_{\nu_1}^2 = \max \sigma_{\nu_2}^2 > \max \sigma_{\nu}^2$.

Maximal expected uncertainty reduction

• Assume that \mathcal{H} has the SMP

Maximal expected uncertainty reduction

- Assume that \mathcal{H} has the SMP
- Recall the SUR sampling criterion:

$$J_n(x) = \mathsf{E}_{n,x}\left(\mathcal{H}\left(\mathsf{P}_{n+1}^{\xi}\right)\right) \leq H_n$$

and a corresponding SUR sequential design:

$$X_{n+1} \in \operatorname{argmin}_{x \in \mathbb{X}} J_n(x), \quad n \ge n_0.$$

Maximal expected uncertainty reduction

- Assume that \mathcal{H} has the SMP
- Recall the SUR sampling criterion:

$$J_n(x) = \mathsf{E}_{n,x}\left(\mathcal{H}\left(\mathsf{P}_{n+1}^{\xi}\right)\right) \leq H_n$$

and a corresponding SUR sequential design:

$$X_{n+1} \in \operatorname{argmin}_{x \in \mathbb{X}} J_n(x), \quad n \ge n_0.$$

 \bullet We introduce another functional, denoted by $\mathcal{G}, \mbox{ s.t. }$

$$\mathcal{G}\left(\mathsf{P}_{n}^{\xi}\right)=H_{n}-\min J_{n}\geq0$$

measures the maximal expected uncertainty reduction in one step

Theorem (part 1)

Let $\ensuremath{\mathcal{H}}$ denote a measurable uncertainty functional with the

supermartingale property. If

i) (X_n) is SUR sequential design for \mathcal{H} .

then $\mathcal{G}(\mathsf{P}_n^{\xi}) \to 0$ almost surely.

The SMP in itself is not enough to prove consistency

Introduction: Stepwise Uncertainty Reduction (SUR)

• Let us define

$$\mathbb{Z}_{\mathcal{H}} = \{ \nu \in \mathbb{M} : \mathcal{H}(\nu) = 0 \},$$

 $\mathbb{Z}_{\mathcal{G}} = \{ \nu \in \mathbb{M} : \mathcal{G}(\nu) = 0 \}.$

• Let us define

$$\mathbb{Z}_{\mathcal{H}} = \{ \nu \in \mathbb{M} : \mathcal{H}(\nu) = 0 \},$$

 $\mathbb{Z}_{\mathcal{G}} = \{ \nu \in \mathbb{M} : \mathcal{G}(\nu) = 0 \}.$

• It is always true that $\mathbb{Z}_{\mathcal{H}} \subset \mathbb{Z}_{\mathcal{G}}$.

• Let us define

$$\mathbb{Z}_{\mathcal{H}} = \{ \nu \in \mathbb{M} : \mathcal{H}(\nu) = 0 \},$$

 $\mathbb{Z}_{\mathcal{G}} = \{ \nu \in \mathbb{M} : \mathcal{G}(\nu) = 0 \}.$

- It is always true that $\mathbb{Z}_{\mathcal{H}} \subset \mathbb{Z}_{\mathcal{G}}$.
- The converse, however, is not true in general
 - but was found to be true for all the examples that we studied

Example:
$$\mathcal{H}(\nu) = \operatorname{var}_{\nu}(\theta)$$
 with $\theta = \int_{\mathbb{X}} \mathbb{1}_{\xi \geq T} \mathrm{dP}_{\mathbb{X}}$

Example:
$$\mathcal{H}(\nu) = \operatorname{var}_{\nu}(\theta)$$
 with $\theta = \int_{\mathbb{X}} \mathbb{1}_{\xi \geq T} \mathrm{dP}_{\mathbb{X}}$

• Let $\xi \sim \nu \in \mathbb{Z}_{\mathcal{G}}$. Then we can prove (see the paper) that $\theta(\xi) - \mathsf{E}(\theta(\xi)) \perp L^2(\xi(x)), \quad \forall x \in \mathbb{X}.$
Example:
$$\mathcal{H}(\nu) = \mathsf{var}_{\nu}(\theta)$$
 with $\theta = \int_{\mathbb{X}} \mathbb{1}_{\xi \geq T} \mathrm{dP}_{\mathbb{X}}$

• Let $\xi \sim \nu \in \mathbb{Z}_{\mathcal{G}}$. Then we can prove (see the paper) that

$$\theta(\xi) - \mathsf{E}(\theta(\xi)) \perp L^2(\xi(x)), \quad \forall x \in \mathbb{X}.$$

• In particular, $\theta(\xi) - \mathsf{E}(\theta(\xi)) \perp \mathbb{1}_{\xi(x) \leq T}$, for all $x \in \mathbb{X}$, and thus

$$\operatorname{var}\left(\theta(\xi)\right) \ = \ \int \operatorname{cov}\left(\theta(\xi), \mathbb{1}_{\xi(x) \leq T}\right) \ \mu(\mathrm{d}x) \ = \ 0.$$

Example:
$$\mathcal{H}(\nu) = \mathsf{var}_{\nu}(\theta)$$
 with $\theta = \int_{\mathbb{X}} \mathbb{1}_{\xi \geq T} \mathrm{dP}_{\mathbb{X}}$

• Let $\xi \sim \nu \in \mathbb{Z}_{\mathcal{G}}$. Then we can prove (see the paper) that

$$\theta(\xi) - \mathsf{E}(\theta(\xi)) \perp L^2(\xi(x)), \quad \forall x \in \mathbb{X}.$$

• In particular, $\theta(\xi) - \mathsf{E}(\theta(\xi)) \perp \mathbb{1}_{\xi(x) \leq T}$, for all $x \in \mathbb{X}$, and thus $\operatorname{var}(\theta(\xi)) = \int \operatorname{cov}\left(\theta(\xi), \mathbb{1}_{\xi(x) \leq T}\right) \mu(\mathrm{d}x) = 0.$

• thus $\mathbb{Z}_{\mathcal{G}} \subset \mathbb{Z}_{\mathcal{H}}$, and therefore $\mathbb{Z}_{\mathcal{G}} = \mathbb{Z}_{\mathcal{H}}$.

Theorem (part 1)

Let \mathcal{H} denote a measurable uncertainty functional with the supermartingale property. If

- i) (X_n) is SUR sequential design for \mathcal{H} .
- then $\mathcal{G}(\mathsf{P}_n^{\xi}) \to 0$ almost surely.

Theorem

Let $\ensuremath{\mathcal{H}}$ denote a measurable uncertainty functional with the supermartingale property. If

i) (X_n) is SUR sequential design for \mathcal{H} .

then $\mathcal{G}(\mathsf{P}^{\xi}_n) \to 0$ almost surely. If, moreover,

i) $\mathbb{Z}_{\mathcal{H}} = \mathbb{Z}_{\mathcal{G}};$

Theorem

Let $\ensuremath{\mathcal{H}}$ denote a measurable uncertainty functional with the supermartingale property. If

i) (X_n) is SUR sequential design for \mathcal{H} .

then $\mathcal{G}(\mathsf{P}^{\xi}_n) \to 0$ almost surely. If, moreover,

- i) $\mathbb{Z}_{\mathcal{H}} = \mathbb{Z}_{\mathcal{G}};$
- ii) $H_n = \mathcal{H}(\mathsf{P}^\xi_n) \to \mathcal{H}(\mathsf{P}^\xi_\infty)$ almost surely,
- iii) $\mathcal{G}(\mathsf{P}_n^{\xi}) \to \mathcal{G}(\mathsf{P}_{\infty}^{\xi})$ almost surely;

Theorem

Let $\ensuremath{\mathcal{H}}$ denote a measurable uncertainty functional with the supermartingale property. If

i) (X_n) is SUR sequential design for \mathcal{H} .

then $\mathcal{G}(\mathsf{P}^{\xi}_n) \to 0$ almost surely. If, moreover,

i)
$$\mathbb{Z}_{\mathcal{H}} = \mathbb{Z}_{\mathcal{G}};$$

ii)
$$H_n = \mathcal{H}(\mathsf{P}^\xi_n) o \mathcal{H}(\mathsf{P}^\xi_\infty)$$
 almost surely,

iii) $\mathcal{G}(\mathsf{P}^{\xi}_{n}) \to \mathcal{G}(\mathsf{P}^{\xi}_{\infty})$ almost surely;

then $H_n = \mathcal{H}(\mathsf{P}_n^{\xi}) \to 0$ almost surely.

Theorem

Let $\ensuremath{\mathcal{H}}$ denote a measurable uncertainty functional with the supermartingale property. If

i) (X_n) is SUR sequential design for \mathcal{H} .

then $\mathcal{G}(\mathsf{P}^{\xi}_n) \to 0$ almost surely. If, moreover,

i)
$$\mathbb{Z}_{\mathcal{H}} = \mathbb{Z}_{\mathcal{G}};$$

ii)
$$H_n = \mathcal{H}(\mathsf{P}^\xi_n) o \mathcal{H}(\mathsf{P}^\xi_\infty)$$
 almost surely,

iii) $\mathcal{G}(\mathsf{P}^{\xi}_n) \to \mathcal{G}(\mathsf{P}^{\xi}_{\infty})$ almost surely;

then $H_n = \mathcal{H}(\mathsf{P}_n^{\xi}) \to 0$ almost surely.

Remark about ii) and iii): the functionals are not continuous in general, for any reasonable topology on \mathbb{M} ...(see the paper for more on this issue)

Introduction: Stepwise Uncertainty Reduction (SUR)

2 The supermartingale property (SMP)

3 A general consistency result

• A general approach to establish the almost sure consistency of SUR strategies is now available

- A general approach to establish the almost sure consistency of SUR strategies is now available
- Four examples are covered in detail in the paper
 - optimization: EI and "knowledge gradient"
 - reliablity: $H_n = \operatorname{var}_n(\theta)$ and $H_n = \int p_n(1-p_n) \, \mathrm{dP}_{\mathbb{X}}$
- Remark about the EI case: holds for any continuous GP, unlike previous result by Vazquez & B. (2010).

- A general approach to establish the almost sure consistency of SUR strategies is now available
- Four examples are covered in detail in the paper
 - optimization: EI and "knowledge gradient"
 - reliablity: $H_n = \operatorname{var}_n(\theta)$ and $H_n = \int p_n(1-p_n) \, \mathrm{dP}_{\mathbb{X}}$
- Remark about the El case: holds for any continuous GP, unlike previous result by Vazquez & B. (2010).
- Perspective: convergence rate ? (even the most stupid design can be consistent...)

Convergence rate: where do we go from here ?

• Parametric models ?

- Paninski (2006) claims very strong results (entropy, variance)
- Proofs are very sketchy...

Convergence rate: where do we go from here ?

- Parametric models ?
 - Paninski (2006) claims very strong results (entropy, variance)
 - Proofs are very sketchy...
- Back to GPs: the "Expected improvement" strategy
 - Bull (2011): disappointing upper-bound for $f \in \text{RKHS}(k)$
 - Yarotsky (2013): exponentially fast convergence for the squared-exponential covariance, under some very strong conditions on *f*
 - These results are not satisfactory from a Bayesian point of view

Convergence rate: where do we go from here ?

- Parametric models ?
 - Paninski (2006) claims very strong results (entropy, variance)
 - Proofs are very sketchy...
- Back to GPs: the "Expected improvement" strategy
 - Bull (2011): disappointing upper-bound for $f \in \text{RKHS}(k)$
 - Yarotsky (2013): exponentially fast convergence for the squared-exponential covariance, under some very strong conditions on *f*
 - These results are not satisfactory from a Bayesian point of view
- The linear / Gaussian case
 - Assume $\xi \sim \mathcal{GP}$, $\theta = \int_{\mathbb{X}} \xi d\mu$ and $\mathcal{H}(\nu) = \mathsf{var}_{\nu}(\theta)$
 - Then SUR reduces to Orthogonal Matching Pursuit (OMP)
 - Much can be learned from (greedy) approximation theory

Everything is in the title