
EXPERIMENTS FOR DETERMINING

NON-ISOTHERMAL KINETIC RATES

Anthony Atkinson, 30th April 2018

Joint work with Belmiro Duarte, Coimbra



Department of Statistics
London School of Economics

London WC2A 2AE, UK

a.c.atkinson@lse.ac.uk



History and Motivation

I The optimal design of experiments for the nonlinear models
arising in chemical kinetics was introduced by Box and Lucas
(1959).

I Box had been working in the dyestuffs division of ICI at Blakeley
near Manchester.

I At that time dyestuff manufacture was a batch process: mix the
ingredients, stir, heat, wait and see what transpires.

I Accordingly, the designs in Box and Lucas specify a set of
conditions (sometimes temperature) and a time at which a single
observation is taken. This paradigm is firmly entrenched in the
statistical literature on optimum design.

I However, in many industrial experiments it is possible to take a
series of non-intrusive readings as the reaction proceeds.

I What are the comparative properties of such designs?



Structure

I The kinetic model

I Locally D-optimum design (4 batches)

I Two batches and many observations

I An extended equivalence theorem

I One batch and varying temperature

I Conclusions

I Throughout the focus is on D-optimum designs



Two Consecutive First-Order Reactions
I The reaction scheme is

A→ B→ C.

with rates k1(T) and k2(T)

I With first-order kinetics the concentrations [A], [B] and [C] are
given by

d[A]

dt
= −k1(T)[A], (1)

d[B]

dt
= k1(T)[A]− k2(T)[B], (2)

d[C]

dt
= k2(T)[B]. (3)

At t = 0, [A] = 1, [B] = [C] = 0. Measure [B]

I The kinetic rates follow the Arrhenius law ki(T) ∝ exp(Ea,i/T),
with T the absolute temperature. This may be written

ki(T) = θi,1 exp [−θi,2 (T0/T − 1)] , i ∈ {1, 2}.

I The higher the temperature, the faster the reaction.



The Concentration of B

I If T is held constant, the solution for the concentration of B is

E[B(t)] =
k1(T)

k1(T)− k2(T)
[exp(−k2(T)t)− exp(−k1(T)t)] (4)

I Rises from zero to a maximum and then gradually declines to
zero.

I Find locally D-optimum designs by measuring [B(t)] assuming
i.i.d. errors.

I In (4)
ki(T) = θi,1 exp [−θi,2 (T0/T − 1)] , i ∈ {1, 2}.

Take θ1,1 = 0.7, θ1,2 = 21.875, θ2,1 = 0.2, θ2,2 = 28.175 with
T0 = 320.

I Design Region t ∈ H : T ∈ Z. Throughout Z = [310, 330]. Look at
effect of H on the three strategies.



The “Box-Lucas” Design

I One reading per batch. Z = [310, 330] and H = [0, 20].

I The Box-Lucas optimum design is

ξref
D =

 0.618 3.137 2.544 15.921
330.00 330.00 310.00 310.00

1/4 1/4 1/4 1/4

 .

I Design spans Z, but not H. Readings on two batches at T = 330
at relatively short times and two at T = 310 at longer times.

I “Reference Design” for exploring effect of changing H.

I Look at Z = [0, tUP] with tUP = {18, 16, 14, 12, 10, 8, 6}.
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Support points of designs with four batches as tUP increases. The
values close to the support points are the respective temperatures



The Effect of Experimental Duration
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I The pairs (ti,Ti) of the first three support points are very close
for all tUP.

I t4 < tUP when tUP ≥ 16 and equals tUP, tUP < 16.

I For tUP ≤ 12 the temperature of the last observation is not the
minimum and starts increasing as H becomes smaller. All other
temperatures are unchanged.



Design Efficiency and Duration
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Design Optimality

I Are these designs D-optimum?

I Theory for linear models

yi = θT f (xi) + εi.

The parameter vector θ is p× 1, with f (xi) a known function of
the explanatory variables xi.

I For nonlinear models expand in a Taylor series around some
value θ0

I The information matrix for the design ξ with n support points is

M(ξ) =
n∑

i=1

wif (xi)f (xi)
T = FTWF, (5)

where F is the n× p extended design matrix, with ith row f T (xi)
and W is a diagonal matrix of weights.



D-optimality

I D-optimum designs, minimizing the generalized variance of the
estimates of θ, maximize the determinant |FTWF| over the
design region X through choice of the optimum design ξ∗. In the
locally optimum design above wi = 0.25, (i = 1, . . . , 4).

I That this design is D-optimum can be shown by use of the
“general equivalence theorem” for D-optimality (Kiefer and
Wolfowitz, 1960) which provides conditions for the optimality of a
design ξ which depend on the sensitivity function

d(x, ξ) = f T (x)M−1(ξ)f (x). (6)

For the optimum design, d̄(x, ξ∗) the maximum value of the
sensitivity function over X , equals p, the number of parameters
in the linear predictor. These values occur at the points xi of
support of the design.



Sensitivity Function

I Sensitivity function of the D-optimum design with four batches
obtained for H = [0, 20] and Z = [310.0, 330.0].

I The maxima have a value of 4.



Two Batches and Many Observations

I Two batches. Measure [B(t)] frequently; measurements are
cheap and non-intrusive.

I Measurements are taken with a constant frequency at a set of
pre-defined time instants, ti, i ∈ {1, · · · ,N}. The interval
between consecutive measurements is ∆t = tUP/(N − 1).

I Design problem. Choose temperatures T1 and T2.

I Same grid of observational values for the two temperatures.
(The grid for the upper temperature will be too coarse and that
for the lower too fine).



Optimum Two Batch Design
I In all numerical tests N = 21, although the duration of the

experiment depends on tUP.

I The time points were equally spaced ∆t = tUP/(N − 1) units
distant from each other.

I For H = [0, 20] the optimum design is

ξbatch
D =


0 1 · · · 20

310.00 310.00 · · · 310.00
330.00 330.00 · · · 330.00
1/21 1/21 · · · 1/21

 .

I The optimum temperatures for the experiments coincide with the
lower and upper bounds.

I The efficiency of ξbatch
D relative to ξref

D for the four batch design is
0.1130.

I These are efficiencies calculated from measures ξ. The two
batch experiment requires about 10 times more observations
than that for four batches (surprisingly little difference).



Design Efficiency and Duration
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I Effect of changing H: optimum designs and efficiencies relative
to ξbatch

D .

I Except for extreme H, temperatures are 310 and 330.

I For H = [0, 6], T = 311 provides greater information about k2 at
the end of the trial.



Extended Equivalence Theorem

I For given H the design region is Z = [310, 330]

I At the point i ∈ X obtain N = 21 readings
I Let Si denote the ith set of observations, taken at times ti1, ti2, . . . , tiN and let

dAVE(i, ξ) =
∑
j∈Si

d(tij, ξ)/N.

Further, let d̄AVE(ξ) be the maximum over X of dAVE(i, ξ).

I The Equivalence Theorem states the equivalence of the following three
conditions on ξ∗:

1. The design ξ∗ maximizes |M(ξ)|;
2. The design ξ∗ minimizes d̄AVE(ξ);
3. The value of d̄AVE(ξ∗) = p, this maximum occurring at the points of

support of the design.
As a consequence of 3, we obtain the further condition:

4. For any non-optimum design the value of d̄AVE(ξ) > p.

I See Atkinson (2016)



Sensitivity Function
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I Average of the sensitivity function for the two-batch D-optimum
design ξbatch

D (N = 21, H = [0, 20] and Z = [310, 330]).
I The design is D-optimum (p = 4).
I The figure confirms that the upper temperature in the optimum

design is < 330K.



One Batch with Varying Temperature

I All information is extracted from a single batch experiment of
length H = [0, tUP].

I The temperature can be manipulated at regular time points and
is constant between changes.

I We assume that the changes in temperature for implementing
the optimal profile are instantaneous. Contrarily, the measured
response [B(t)] varies continuously and its dynamics depend
upon the time as well as on current values of control and state
variables.

I Because of the changes in temperature, a system of ODEs is
required to be integrated numerically together with the equations
for the parameter sensitivities.

I An example of classical optimal control. It would be more
realistic to use B-splines (Uciński and Bogacka, 2004), rather
than a piecewise linear temperature profile



One Batch, Varying Temperature, Coarse Grid

The optimum design for the coarse grid H = [0, 20]

ξvarT
D =



0 1 2 3 4 5 6
322.18 310.00 310.00 310.00 310.00 310.00 310.00
1/21 1/21 1/21 1/21 1/21 1/21 1/21

7 8 9 10 11 12 13
310.00 310.00 310.00 310.00 310.00 310.00 330.00
1/21 1/21 1/21 1/21 1/21 1/21 1/21

14 15 16 17 19 20
330.00 330.00 310.00 310.00 310.00 310.00
1/21 1/21 1/21 1/21 1/21 1/21


.

I Hi, lo, hi, lo: 322, 310, 330, 310.

I Not quite “bang-bang” control (not 330 initially).



Concentration and Temperature Profiles
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I Dynamic D-optimum designs for different H by changing tUP

(N = 21, Z = [310, 330])

I (a) Concentration [B(t)] and (b) temperature profiles.

I All temperature profiles have a low final period.

I The high temperature about 2/3 of the way through reduces [A]
and provides information on the second reaction B→ C



Efficiencies
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Sensitivity Function
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I Analyze the optimality of this design with the extended
equivalence theorem.

I The set of optimum temperatures Ti, i ∈ [N] is Topt. Each Ti ∈ Z,
so the design region has dimension N = 21.

I We look at the subset of profiles, for the same grid of times, from
increasing the observations in Topt by an amount ∆T providing
they belong to Z.

I Plot shows average sensitivity function for ξvarT
D (N = 21,

H = [0, 20] and ∆T ∈ [−4, 4]).



Conclusion 1

Table: Relative D-optimum efficiency for four batch designs under the
three strategies for H = [0, tUP].

Min. No. tUP

Rule Batches 6 8 10 12 14 16 18 20
Locally optimum 4 2.27 2.87 3.36 3.74 3.94 4.00 4.00 4.00

Two batches 2 7.36 8.55 8.65 8.12 7.30 6.40 5.53 4.75
Temp. profile 1 4.76 6.78 7.51 7.24 6.29 5.54 4.67 3.86

I The table gives a comparison of the relative efficiencies of the
three designs for experiments with four batches (the minimum
for the locally optimum design).

I Despite the second and third designs producing 21
measurements per batch, rather than one, at their most efficient,
that is for tUP = 10, these designs are only about twice as
informative as the locally optimal design. If measurement were
the major cost, an unlikely scenario, the locally optimal design
would be preferred.



Conclusion 2

Table: Relative D-efficiency for four batch designs under the three
strategies for H = [0, tUP].

Min. No. tUP

Rule Batches 6 8 10 12 14 16 18 20
Locally optimal 4 2.27 2.87 3.36 3.74 3.94 4.00 4.00 4.00
Two batches 2 7.36 8.55 8.65 8.12 7.30 6.40 5.53 4.75
Temp. profile 1 4.76 6.78 7.51 7.24 6.29 5.54 4.67 3.86

I Two disadvantages of the locally optimum design are that it
requires more batches and takes longer (tUP = 16, rather than
10). A further disadvantage is that the efficiency of the locally
optimum design depends upon the parameter values being close
to the value θ0 used to find the optimum design. With a series of
readings, dependence of efficiency on the prior value is reduced.

I An advantage of the second and third designs is the reduced
number of batches required. If sufficient accuracy could be
obtained from readings on a single batch, then the experiment
with varying temperature profile would be preferred. However,
the design with two batches is simpler to run.



Conclusion 3

I There are many other reasonable measurement strategies

I Experiments with two batches could have different sets of
measurement points at the upper and lower temperatures.

I Sampling could be more frequent at the beginning of each run of
a batch.

I We have focused on the two strategies that appear most
frequently in the literature.

I Chapter 7 of Fedorov and Leonov (2014) describes cost optimal
designs for repeated dose scheduling in clinical trials.
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