Coarse Embeddings into $c_0(\Gamma)$

Th. Schlumprecht (joint with Petr Hájek)

Luminy, March 2018

The Separable Case

Th.Schlumprecht Coarse Embeddings into $c_0(\Gamma)$

・ロト・御ト・注下・注下・ 正・ のくの

Aharoni (1974): There is a $K \ge 1$, so that every separable metric space (M, d) *K*-bi-Lipschitzly embeds into c_0 , *i.e.*, there is a map $f : M \rightarrow c_0$ so that:

$$d(x,y) \leq \|f(x) - f(y)\|_{c_0} \leq Kd(x,y)$$
, for all $x, y \in M$.

Moreover, $K \geq 2$ (using ℓ_1).

Aharoni (1974): There is a $K \ge 1$, so that every separable metric space (M, d) *K*-bi-Lipschitzly embeds into c_0 , *i.e.*, there is a map $f: M \rightarrow c_0$ so that:

$$d(x,y) \leq \|f(x) - f(y)\|_{c_0} \leq K d(x,y)$$
, for all $x, y \in M$.

Moreover, $K \geq 2$ (using ℓ_1).

Kalton & Lancien (2008): K = 2.

Aharoni (1974): There is a $K \ge 1$, so that every separable metric space (M, d) *K*-bi-Lipschitzly embeds into c_0 , *i.e.*, there is a map $f : M \rightarrow c_0$ so that:

$$d(x,y) \leq \|f(x) - f(y)\|_{c_0} \leq Kd(x,y)$$
, for all $x, y \in M$.

Moreover, $K \geq 2$ (using ℓ_1).

Kalton & Lancien (2008): K = 2.

Question: Is there a non separable version of Aharoni's result? More precisely, which metric spaces or Banach spaces can be bi-Lipschitzly embedded into $c_0(\text{dens}(M))$? dens $(M) = \min\{\aleph \in \text{Card} : \exists M' \subset M, |M'| = \aleph\}.$ **Aharoni (1974)**: There is a $K \ge 1$, so that every separable metric space (M, d) *K*-bi-Lipschitzly embeds into c_0 , *i.e.*, there is a map $f : M \rightarrow c_0$ so that:

$$d(x,y) \leq \|f(x) - f(y)\|_{c_0} \leq Kd(x,y)$$
, for all $x, y \in M$.

Moreover, $K \geq 2$ (using ℓ_1).

Kalton & Lancien (2008): K = 2.

Question: Is there a non separable version of Aharoni's result? More precisely, which metric spaces or Banach spaces can be bi-Lipschitzly embedded into $c_0(\text{dens}(M))$? $\text{dens}(M) = \min\{\aleph \in \text{Card} : \exists M' \subset M, |M'| = \aleph\}.$ **Answer**: not many, at least if density is large enough.

Criteria for Embeddability into $c_0(\Gamma)$

▲御▶▲臣▶▲臣▶ 臣 めんぐ

Theorem (Pelant, Holicky, Kalenda 2008: (a) \iff (b), Swift, 2016: (a) \iff (c) \iff (d) \iff (e))

Theorem (Pelant, Holicky, Kalenda 2008: (a) \iff (b), Swift, 2016: (a) \iff (c) \iff (d) \iff (e))

For a Banach space X the following are equivalent:

• X uniformly embeds into $c_0(\Gamma)$, for some set Γ ,

Theorem (Pelant, Holicky, Kalenda 2008: (a) \iff (b),

Swift, 2016: (a) \iff (c) \iff (d) \iff (e))

- **()** X uniformly embeds into $c_0(\Gamma)$, for some set Γ ,
- X satisfies the Uniform Stone Property (USP),

Theorem (Pelant, Holicky, Kalenda 2008: (a) \iff (b),

Swift, 2016: (a) \iff (c) \iff (d) \iff (e))

- **()** X uniformly embeds into $c_0(\Gamma)$, for some set Γ ,
- X satisfies the Uniform Stone Property (USP),
- X satisfies the Coarse Stone Property (CSP),

Theorem (Pelant, Holicky, Kalenda 2008: (a) \iff (b), Swift, 2016: (a) \iff (c) \iff (d) \iff (e))

- **()** X uniformly embeds into $c_0(\Gamma)$, for some set Γ ,
- X satisfies the Uniform Stone Property (USP),
- X satisfies the Coarse Stone Property (CSP),
- X coarsely embeds into $c_0(\Gamma)$, for some set Γ ,

Theorem (Pelant, Holicky, Kalenda 2008: (a) \iff (b), Swift, 2016: (a) \iff (c) \iff (d) \iff (e))

- **1** X uniformly embeds into $c_0(\Gamma)$, for some set Γ ,
- X satisfies the Uniform Stone Property (USP),
- X satisfies the Coarse Stone Property (CSP),
- X coarsely embeds into $c_0(\Gamma)$, for some set Γ ,
- **(a)** *X* bi-Lipschitzly embeds into $c_0(\Gamma)$, for some set Γ .

Let \mathcal{U} and \mathcal{V} be covers of a metric space (M, d),

'문▶ ★ 문▶

Let \mathcal{U} and \mathcal{V} be covers of a metric space (M, d), \mathcal{U} uniformly bounded if $\sup_{U \in \mathcal{U}} \operatorname{diam}(U) < \infty$,

글 > < 글

Let \mathcal{U} and \mathcal{V} be covers of a metric space (M, d), \mathcal{U} uniformly bounded if $\sup_{U \in \mathcal{U}} \operatorname{diam}(U) < \infty$, \mathcal{U} uniform if $\exists r > 0 \forall x \in U \exists U \in \mathcal{U}$: $B_r(x) \subset U$,

,

Th.Schlumprecht Coarse Embeddings into $c_0(\Gamma)$

Let \mathcal{U} and \mathcal{V} be covers of a metric space (M, d), \mathcal{U} uniformly bounded if $\sup_{U \in \mathcal{U}} \operatorname{diam}(U) < \infty$, \mathcal{U} uniform if $\exists r > 0 \ \forall x \in U \ \exists U \in \mathcal{U} : B_r(x) \subset U$, \mathcal{U} point finite if $\forall x \in M \quad |\{U \in \mathcal{U} : x \in \mathcal{U}\}| < \infty$,

Let \mathcal{U} and \mathcal{V} be covers of a metric space (M, d), \mathcal{U} uniformly bounded if $\sup_{U \in \mathcal{U}} \operatorname{diam}(U) < \infty$, \mathcal{U} uniform if $\exists r > 0 \ \forall x \in U \ \exists U \in \mathcal{U} : B_r(x) \subset U$, \mathcal{U} point finite if $\forall x \in M \quad |\{U \in \mathcal{U} : x \in \mathcal{U}\}| < \infty$,

 \mathcal{V} refinement of \mathcal{U} if $\forall V \in \mathcal{V} \exists U \in \mathcal{U}$ $V \subset U$,

Let \mathcal{U} and \mathcal{V} be covers of a metric space (M, d),

 \mathcal{U} uniformly bounded if $\sup_{U \in \mathcal{U}} \operatorname{diam}(U) < \infty$,

 \mathcal{U} uniform if $\exists r > 0 \ \forall x \in U \ \exists U \in \mathcal{U} : B_r(x) \subset U$,

 \mathcal{U} point finite if $\forall x \in M \quad |\{U \in \mathcal{U} : x \in \mathcal{U}\}| < \infty$,

 \mathcal{V} refinement of \mathcal{U} if $\forall V \in \mathcal{V} \exists U \in \mathcal{U} \quad V \subset U$,

(M, d) has (USP) if every uniform cover has a point wise finite uniform refinement,

Let \mathcal{U} and \mathcal{V} be covers of a metric space (M, d),

 \mathcal{U} uniformly bounded if $\sup_{U \in \mathcal{U}} \operatorname{diam}(U) < \infty$,

 \mathcal{U} uniform if $\exists r > 0 \ \forall x \in U \ \exists U \in \mathcal{U} : B_r(x) \subset U$,

 \mathcal{U} point finite if $\forall x \in M \quad |\{U \in \mathcal{U} : x \in \mathcal{U}\}| < \infty$,

 \mathcal{V} refinement of \mathcal{U} if $\forall V \in \mathcal{V} \exists U \in \mathcal{U}$ $V \subset U$,

(M, d) has (USP) if every uniform cover has a point wise finite uniform refinement,

(M, d) has (CSP) if every uniformly bounded cover is the refinement of some point wise finite uniformly bounded cover.

Let \mathcal{U} and \mathcal{V} be covers of a metric space (M, d),

 \mathcal{U} uniformly bounded if $\sup_{U \in \mathcal{U}} \operatorname{diam}(U) < \infty$,

 \mathcal{U} uniform if $\exists r > 0 \ \forall x \in U \ \exists U \in \mathcal{U} : B_r(x) \subset U$,

 \mathcal{U} point finite if $\forall x \in M \quad |\{U \in \mathcal{U} : x \in \mathcal{U}\}| < \infty$,

 \mathcal{V} refinement of \mathcal{U} if $\forall V \in \mathcal{V} \exists U \in \mathcal{U}$ $V \subset U$,

(M, d) has (USP) if every uniform cover has a point wise finite uniform refinement,

(M, d) has (CSP) if every uniformly bounded cover is the refinement of some point wise finite uniformly bounded cover.

For (M_1, d_1) , (M_2, d_2) metric spaces and $f : M_1 \to M_2$, let $\rho_f, w_f : (0, \infty) \to [0, \infty]$, "best" so that $\rho_f(d_1(x, y)) \leq d_2(f(x), f(y)) \leq w_f(d_1(x, y)).$

Let \mathcal{U} and \mathcal{V} be covers of a metric space (M, d),

 \mathcal{U} uniformly bounded if $\sup_{U \in \mathcal{U}} \operatorname{diam}(U) < \infty$,

 \mathcal{U} uniform if $\exists r > 0 \ \forall x \in U \ \exists U \in \mathcal{U} : B_r(x) \subset U$,

 \mathcal{U} point finite if $\forall x \in M \quad |\{U \in \mathcal{U} : x \in \mathcal{U}\}| < \infty$,

 \mathcal{V} refinement of \mathcal{U} if $\forall V \in \mathcal{V} \exists U \in \mathcal{U} \quad V \subset U$,

(M, d) has (USP) if every uniform cover has a point wise finite uniform refinement,

(M, d) has (CSP) if every uniformly bounded cover is the refinement of some point wise finite uniformly bounded cover.

For (M_1, d_1) , (M_2, d_2) metric spaces and $f : M_1 \to M_2$, let $\rho_f, w_f : (0, \infty) \to [0, \infty]$, "best" so that

 $\rho_f(d_1(x,y)) \leq d_2(f(x),f(y)) \leq w_f(d_1(x,y)).$

f is called *uniform embedding*: $\forall t > 0: 0 < \rho(t)$ and $\lim_{t\to 0} w_t(t) = 0$,

Let \mathcal{U} and \mathcal{V} be covers of a metric space (M, d),

 \mathcal{U} uniformly bounded if $\sup_{U \in \mathcal{U}} \operatorname{diam}(U) < \infty$,

 \mathcal{U} uniform if $\exists r > 0 \ \forall x \in U \ \exists U \in \mathcal{U} : B_r(x) \subset U$,

 \mathcal{U} point finite if $\forall x \in M \quad |\{U \in \mathcal{U} : x \in \mathcal{U}\}| < \infty$,

 \mathcal{V} refinement of \mathcal{U} if $\forall V \in \mathcal{V} \exists U \in \mathcal{U} \quad V \subset U$,

(M, d) has (USP) if every uniform cover has a point wise finite uniform refinement,

(M, d) has (CSP) if every uniformly bounded cover is the refinement of some point wise finite uniformly bounded cover.

For (M_1, d_1) , (M_2, d_2) metric spaces and $f : M_1 \to M_2$, let $\rho_f, w_f : (0, \infty) \to [0, \infty]$, "best" so that

 $\rho_f(d_1(x,y)) \leq d_2(f(x),f(y)) \leq w_f(d_1(x,y)).$

f is called *uniform embedding*: $\forall t > 0 : 0 < \rho(t)$ and $\lim_{t\to 0} w_f(t) = 0$,

f is *coarse embedding*: $\forall t > 0 : w_f(t) < \infty$ and $\lim_{t \to \infty} \rho_f(t) = \infty$.

Definition

Let \aleph be a cardinal number (we think of the cardinal numbers being certain ordinals, and thus $\aleph = \{ \alpha \in \text{Ord} : \alpha \in \aleph \}$)

Definition

Let \aleph be a cardinal number (we think of the cardinal numbers being certain ordinals, and thus $\aleph = \{ \alpha \in \text{Ord} : \alpha \in \aleph \} \}$ We say it has Property (P), if for $n \in \mathbb{N}$, a set Γ , and a map $\sigma : [\aleph]^n = \{ A \subset \aleph : |A| = n \} \to \Gamma$ (at least) one of the following statements is true:

Definition

Let \aleph be a cardinal number (we think of the cardinal numbers being certain ordinals, and thus $\aleph = \{ \alpha \in \text{Ord} : \alpha \in \aleph \})$ We say it has Property (P), if for $n \in \mathbb{N}$, a set Γ , and a map $\sigma : [\aleph]^n = \{ A \subset \aleph : |A| = n \} \to \Gamma$ (at least) one of the following statements is true:

$$\exists s, t \in [\aleph]^n \quad s \cap t = \emptyset \text{ and } \sigma(s) = \sigma(t), \qquad (\mathsf{P}_1(\aleph))$$

$$\exists s \in [\aleph]^{n-1} \quad \left| \sigma \left(\left\{ s \cup \{\gamma\} : \gamma \in \aleph \setminus s \right\} \right) \right| = \infty. \tag{P_2(\aleph)}$$

Definition

Let \aleph be a cardinal number (we think of the cardinal numbers being certain ordinals, and thus $\aleph = \{ \alpha \in \text{Ord} : \alpha \in \aleph \})$ We say it has Property (P), if for $n \in \mathbb{N}$, a set Γ , and a map $\sigma : [\aleph]^n = \{ A \subset \aleph : |A| = n \} \to \Gamma$ (at least) one of the following statements is true:

$$\exists s, t \in [\aleph]^n \quad s \cap t = \emptyset \text{ and } \sigma(s) = \sigma(t), \qquad (\mathsf{P}_1(\aleph))$$

$$\exists s \in [\aleph]^{n-1} \quad \left| \sigma \left(\left\{ s \cup \{\gamma\} : \gamma \in \aleph \setminus s \right\} \right) \right| = \infty. \tag{P_2(\aleph)}$$

Definition

Let \aleph be a cardinal number (we think of the cardinal numbers being certain ordinals, and thus $\aleph = \{ \alpha \in \text{Ord} : \alpha \in \aleph \})$ We say it has Property (P), if for $n \in \mathbb{N}$, a set Γ , and a map $\sigma : [\aleph]^n = \{ A \subset \aleph : |A| = n \} \rightarrow \Gamma$ (at least) one of the following statements is true:

$$\exists s, t \in [\aleph]^n \quad s \cap t = \emptyset \text{ and } \sigma(s) = \sigma(t), \tag{P}_1(\aleph)$$

$$\exists \boldsymbol{s} \in [\aleph]^{n-1} \quad \left| \sigma \left(\left\{ \boldsymbol{s} \cup \{\gamma\} : \gamma \in \aleph \setminus \boldsymbol{s} \right\} \right) \right| = \infty. \tag{P_2(\aleph)}$$

We say it has Property (Q), if for $n \in \mathbb{N}$, any set Γ , and any $\sigma : [\aleph]^n \to \Gamma$ one of the following statements is true:

Definition

Let \aleph be a cardinal number (we think of the cardinal numbers being certain ordinals, and thus $\aleph = \{ \alpha \in \text{Ord} : \alpha \in \aleph \})$ We say it has Property (P), if for $n \in \mathbb{N}$, a set Γ , and a map $\sigma : [\aleph]^n = \{ A \subset \aleph : |A| = n \} \to \Gamma$ (at least) one of the following statements is true:

$$\exists s, t \in [\aleph]^n \quad s \cap t = \emptyset \text{ and } \sigma(s) = \sigma(t), \tag{P}_1(\aleph)$$

$$\exists \boldsymbol{s} \in [\aleph]^{n-1} \quad \left| \sigma \left(\left\{ \boldsymbol{s} \cup \{\gamma\} : \gamma \in \aleph \setminus \boldsymbol{s} \right\} \right) \right| = \infty. \tag{P_2(\aleph)}$$

We say it has Property (Q), if for $n \in \mathbb{N}$, any set Γ , and any $\sigma : [\aleph]^n \to \Gamma$ one of the following statements is true:

$$\exists (s_j) \in [\aleph]^n \quad (s_j) \text{ pw. disj. and } \sigma(s_i) = \sigma(s_j), i \neq j \qquad (\mathsf{Q}_1(\aleph)) \\ \exists s \in [\aleph]^{n-1} \quad \left| \sigma(\{s \cup \{\gamma\} : \gamma \in \aleph \setminus s\}) \right| = \infty. \qquad (\mathsf{Q}_2(\aleph))$$

Coarse Embeddings into $c_{\Omega}(\Gamma)$

200

We define

▲口 > ▲母 > ▲臣 > ▲臣 > ―臣 - のへの

We define $\aleph_{\omega} = \sup_{n \in \mathbb{N}} \aleph_n$, with \aleph_n *n*-th smallest infinite cardinal, $(\aleph_0 = |\mathbb{N}|, \aleph_{n+1} = \min\{\aleph \in \text{Card} : \aleph > \aleph_n\})$

< ロ > < 同 > < 回 > < 回 > < 回 > <

We define $\aleph_{\omega} = \sup_{n \in \mathbb{N}} \aleph_n$, with \aleph_n *n*-th smallest infinite cardinal, $(\aleph_0 = |\mathbb{N}|, \aleph_{n+1} = \min\{\aleph \in \text{Card} : \aleph > \aleph_n\})$

Theorem (Pelant & Rödl 1992)

If $P(\aleph)$ holds then $\ell_p(\aleph) \nleftrightarrow_{unif} c_0(\Gamma)$.

Moreover $P(\aleph_{\omega})$ holds.

We define $\aleph_{\omega} = \sup_{n \in \mathbb{N}} \aleph_n$, with \aleph_n *n*-th smallest infinite cardinal, $(\aleph_0 = |\mathbb{N}|, \aleph_{n+1} = \min\{\aleph \in \text{Card} : \aleph > \aleph_n\})$

Theorem (Pelant & Rödl 1992)

If $P(\aleph)$ holds then $\ell_p(\aleph) \nleftrightarrow_{unif} c_0(\Gamma)$. Moreover $P(\aleph_{\omega})$ holds.

Theorem (Hájek & S, 2017)

Assume $P(\aleph)$ holds and X is a Banach space with nontrivial cotype and dens(X) $\geq \aleph$. Then X $\nleftrightarrow_{coarsely/unif} c_0(\Gamma)$.

Moreover, if X has a symmetric basis, dens(X) $\geq \aleph$, and

 $X \hookrightarrow_{coarsley} c_0(\Gamma)$ then X is isomorphic to $c_0(dens(X))$.

- ▲ 문 → - ▲ 문 →

Proof of Pelant's and Rödl's result for $\ell_2(\aleph)$, using Swift's criteria: Claim: $M = \left\{ \sum_{\substack{\gamma \in s \\ x_s}} e_{\gamma} : s \subset \aleph_{\omega} \text{ finite } \right\} \subset \ell_2(\aleph)$ does not have (CSP).

Claim: $M = \left\{ \sum_{\gamma \in s} e_{\gamma} : s \subset \aleph_{\omega} \text{ finite } \right\} \subset \ell_2(\aleph) \text{ does not have (CSP).}$

Assume *M* has (CSP), and $U = \{B_2(x) : x \in M\}$.

Then \mathcal{U} refines a point finite covering \mathcal{V} with $r = \sup_{V \in \mathcal{V}} \operatorname{diam}(V) < \infty$. Choose $n \in \mathbb{N}$, with $\sqrt{n} > r$, pick for every $s \in [\aleph]^n$ a $V_s \in \mathcal{V}$, so that $x_s \in B_2(x_s) \subset V_s$, and consider

$$\sigma: [\aleph]^n \ni \boldsymbol{s} \mapsto \boldsymbol{V}_{\boldsymbol{s}}.$$

Claim: $M = \left\{ \sum_{\gamma \in s} e_{\gamma} : s \subset \aleph_{\omega} \text{ finite } \right\} \subset \ell_2(\aleph) \text{ does not have (CSP).}$

Assume *M* has (CSP), and $U = \{B_2(x) : x \in M\}$.

Then \mathcal{U} refines a point finite covering \mathcal{V} with $r = \sup_{V \in \mathcal{V}} \operatorname{diam}(V) < \infty$. Choose $n \in \mathbb{N}$, with $\sqrt{n} > r$, pick for every $s \in [\aleph]^n$ a $V_s \in \mathcal{V}$, so that $x_s \in B_2(x_s) \subset V_s$, and consider

$$\sigma: [\aleph]^n \ni \boldsymbol{s} \mapsto \boldsymbol{V}_{\boldsymbol{s}}.$$

• If $s \cap t = \emptyset \Rightarrow \sigma(s) \neq \sigma(t)$ (diam(V_s) $\leq r$), thus P_1 not satisfied.

Claim: $M = \left\{ \sum_{\gamma \in s} e_{\gamma} : s \subset \aleph_{\omega} \text{ finite } \right\} \subset \ell_2(\aleph) \text{ does not have (CSP).}$

Assume *M* has (CSP), and $U = \{B_2(x) : x \in M\}$.

Then \mathcal{U} refines a point finite covering \mathcal{V} with $r = \sup_{V \in \mathcal{V}} \operatorname{diam}(V) < \infty$. Choose $n \in \mathbb{N}$, with $\sqrt{n} > r$, pick for every $s \in [\aleph]^n$ a $V_s \in \mathcal{V}$, so that $x_s \in B_2(x_s) \subset V_s$, and consider

$$\sigma: [\aleph]^n \ni \boldsymbol{s} \mapsto \boldsymbol{V}_{\boldsymbol{s}}.$$

• If $s \cap t = \emptyset \Rightarrow \sigma(s) \neq \sigma(t)$ (diam(V_s) $\leq r$), thus P_1 not satisfied.

• If
$$s \in [\aleph]^{n-1}$$
 and $S = \sigma(\{s \cup \{\gamma\} : \gamma < \aleph\})$, then $x_s \in B_2(x_{s \cup \{\gamma\}}) \subset V_{s \cup \{\gamma\}}$, for all $\gamma < \aleph$, thus *S* finite. Thus P_2 is not satisfied.

C(K) spaces, which are precluded from being coarsely embedded into $c_0(\Gamma)$

For a cardinal number \aleph , consider

$$\begin{split} [\aleph]^{\leq n} &= \{F \subset \aleph : |F| \leq n\} \equiv \{f : \aleph \to \{0, 1\}, |\mathsf{supp}(f)| \leq n\} \subset \{0, 1\}^{\aleph} \\ \mathcal{K}_{\aleph, n} &= [\aleph]^{\leq n} \text{ with product topology, } \mathcal{K}_{\aleph} := \mathsf{Alex. compct.} \left(\bigoplus_{n=1}^{\infty} \mathcal{K}_{\aleph, n} \right) \\ \mathsf{Note: CB}(\mathcal{K}_{\aleph}) &= \omega_0 + 1, \end{split}$$

Deville, Godefroy, Zizler, 1990: $CB(K) < \omega_0 \Rightarrow C(K) \equiv_{Lip} c_0(\Gamma)$.

C(K) spaces, which are precluded from being coarsely embedded into $c_0(\Gamma)$

For a cardinal number \aleph , consider

$$\begin{split} [\aleph]^{\leq n} &= \{F \subset \aleph : |F| \leq n\} \equiv \{f : \aleph \to \{0, 1\}, |\mathsf{supp}(f)| \leq n\} \subset \{0, 1\}^{\aleph} \\ \mathcal{K}_{\aleph, n} &= [\aleph]^{\leq n} \text{ with product topology, } \mathcal{K}_{\aleph} := \mathsf{Alex. compct.} \left(\bigoplus_{n=1}^{\infty} \mathcal{K}_{\aleph, n} \right) \\ \mathsf{Note: CB}(\mathcal{K}_{\aleph}) &= \omega_0 + 1, \end{split}$$

Deville, Godefroy, Zizler, 1990: $CB(K) < \omega_0 \Rightarrow C(K) \equiv_{Lip} c_0(\Gamma)$.

Theorem (Pelant, Holicky, Kalenda 2008)

If \aleph satisfies $Q(\aleph)$, then $C(K_{\aleph}) \nleftrightarrow_{uniformly/coarsely} c_0(\Gamma)$. There are "large cardinal numbers" (which only exist assuming further set axioms) which satisfy $Q(\aleph)$.

C(K) spaces, which are precluded from being coarsely embedded into $c_0(\Gamma)$

For a cardinal number ℵ, consider

$$\begin{split} [\aleph]^{\leq n} &= \{F \subset \aleph : |F| \leq n\} \equiv \{f : \aleph \to \{0, 1\}, |\mathsf{supp}(f)| \leq n\} \subset \{0, 1\}^{\aleph} \\ \mathcal{K}_{\aleph, n} &= [\aleph]^{\leq n} \text{ with product topology, } \mathcal{K}_{\aleph} := \mathsf{Alex. compct.} \left(\bigoplus_{n=1}^{\infty} \mathcal{K}_{\aleph, n} \right) \\ \mathsf{Note: CB}(\mathcal{K}_{\aleph}) &= \omega_0 + 1, \end{split}$$

Deville, Godefroy, Zizler, 1990: $CB(K) < \omega_0 \Rightarrow C(K) \equiv_{Lip} c_0(\Gamma)$.

Theorem (Pelant, Holicky, Kalenda 2008)

If \aleph satisfies $Q(\aleph)$, then $C(K_{\aleph}) \nleftrightarrow_{uniformly/coarsely} c_0(\Gamma)$. There are "large cardinal numbers" (which only exist assuming further set axioms) which satisfy $Q(\aleph)$.

Theorem (Hajek & S)

 $P(\aleph)$ and $Q(\aleph)$ are equivalent, for any infinite cardinal number. Thus, $Q(\aleph_{\omega})$ holds and consequently $C(K_{\aleph_{\omega}}) \nleftrightarrow_{uniformly/coarsely} c_0(\Gamma)$.

Assume that $n \in \mathbb{N} \ \sigma : [\aleph]^n \to \mathcal{C}$, for which neither $Q_1(\aleph)$ nor $Q_2(\aleph)$ is satisfied, and thus:

Assume that $n \in \mathbb{N} \ \sigma : [\aleph]^n \to C$, for which neither $Q_1(\aleph)$ nor $Q_2(\aleph)$ is satisfied, and thus:

a) There is no c ∈ C, so that σ⁻¹(c) contains an infinite sequence (s_j) of pairwise disjoint elements of [ℵ]ⁿ.

Assume that $n \in \mathbb{N} \ \sigma : [\aleph]^n \to C$, for which neither $Q_1(\aleph)$ nor $Q_2(\aleph)$ is satisfied, and thus:

- a) There is no c ∈ C, so that σ⁻¹(c) contains an infinite sequence (s_j) of pairwise disjoint elements of [ℵ]ⁿ.
- b) For all $s \in [\aleph]^{n-1}$ the set $\sigma(\{s \cup \{\gamma\} : \gamma \in \aleph \setminus s\})$ is finite.

Assume that $n \in \mathbb{N}$ $\sigma : [\aleph]^n \to C$, for which neither $Q_1(\aleph)$ nor $Q_2(\aleph)$ is satisfied, and thus:

- a) There is no c ∈ C, so that σ⁻¹(c) contains an infinite sequence (s_i) of pairwise disjoint elements of [ℵ]ⁿ.
- b) For all $s \in [\aleph]^{n-1}$ the set $\sigma(\{s \cup \{\gamma\} : \gamma \in \aleph \setminus s\})$ is finite.

Then there exists a set \tilde{C} and a map $\tilde{\sigma} : [\aleph]^n \to \tilde{C}$, which still satisfies (b) and moreover

c) For all $\tilde{c} \in \tilde{C}$ there is a $\beta(\tilde{c}) \in \aleph$ so that

$$\tilde{\sigma}^{-1}(\tilde{c}) \subset H_{\beta(c)} = \{ s \in [\aleph]^n : \beta(c) \in s \}.$$

Assume that $n \in \mathbb{N}$ $\sigma : [\aleph]^n \to C$, for which neither $Q_1(\aleph)$ nor $Q_2(\aleph)$ is satisfied, and thus:

- a) There is no c ∈ C, so that σ⁻¹(c) contains an infinite sequence (s_i) of pairwise disjoint elements of [ℵ]ⁿ.
- b) For all $s \in [\aleph]^{n-1}$ the set $\sigma(\{s \cup \{\gamma\} : \gamma \in \aleph \setminus s\})$ is finite.

Then there exists a set \tilde{C} and a map $\tilde{\sigma} : [\aleph]^n \to \tilde{C}$, which still satisfies (b) and moreover

c) For all $\tilde{c} \in \tilde{C}$ there is a $\beta(\tilde{c}) \in \aleph$ so that

$$\tilde{\sigma}^{-1}(\tilde{c}) \subset H_{\beta(c)} = \{ s \in [\aleph]^n : \beta(c) \in s \}.$$

Condition (c) now implies that any two disjoint $s, t \in [\aleph]^n$ must have different images under $\tilde{\sigma}$, and thus $\tilde{\sigma}$ witnesses that $P(\aleph)$ is not satisfied.

$$\sigma^{-1}(c) \subset \bigcup_{j=1}^{m_c} \{ s \in [\aleph]^n : s_j^{(c)} \cap s \neq \emptyset \} = \bigcup_{j=1}^{m_c} \bigcup_{\beta \in s_j^{(c)}} H_{\beta}.$$

- A B M A B M

$$\sigma^{-1}(\boldsymbol{c}) \subset \bigcup_{j=1}^{m_c} \{\boldsymbol{s} \in [\aleph]^n : \boldsymbol{s}_j^{(\boldsymbol{c})} \cap \boldsymbol{s} \neq \emptyset\} = \bigcup_{j=1}^{m_c} \bigcup_{\beta \in \boldsymbol{s}_j^{(\boldsymbol{c})}} H_{\beta}.$$

Choose
$$\tilde{\mathcal{C}} = \{(c, i, \beta) : c \in \mathcal{C}, i \in \{1, 2, \dots, m_c\}, \beta \in s_j^{(c)}\},\$$

$$\sigma^{-1}(c) \subset \bigcup_{j=1}^{m_c} \{ s \in [\aleph]^n : s_j^{(c)} \cap s \neq \emptyset \} = \bigcup_{j=1}^{m_c} \bigcup_{\beta \in s_j^{(c)}} H_{\beta}.$$

Choose $\tilde{C} = \{(c, i, \beta) : c \in C, i \in \{1, 2, ..., m_c\}, \beta \in s_j^{(c)}\}$, and $\tilde{\sigma} : [\aleph]^n \to \tilde{C}$, with $\tilde{\sigma}(s) = (c, i, \beta)$ so that

$$c = \sigma(c), i = \min\{j : s \cap s_j^{(c)} \neq \emptyset\}, \beta = \min(s \cap s_i^{(c)}).$$

$$\sigma^{-1}(c) \subset \bigcup_{j=1}^{m_c} \{ s \in [\aleph]^n : s_j^{(c)} \cap s \neq \emptyset \} = \bigcup_{j=1}^{m_c} \bigcup_{\beta \in s_j^{(c)}} H_{\beta}.$$

Choose $\tilde{C} = \{(c, i, \beta) : c \in C, i \in \{1, 2, ..., m_c\}, \beta \in s_j^{(c)}\}$, and $\tilde{\sigma} : [\aleph]^n \to \tilde{C}$, with $\tilde{\sigma}(s) = (c, i, \beta)$ so that

$$c = \sigma(c), i = \min\{j : s \cap s_j^{(c)} \neq \emptyset\}, \beta = \min(s \cap s_i^{(c)}).$$

(b) is still satisfied since for $c \in C$, $\{\tilde{c} : \tilde{c}_1 = c\}$ is finite, and

$$\sigma^{-1}(c) \subset \bigcup_{j=1}^{m_c} \{ s \in [\aleph]^n : s_j^{(c)} \cap s \neq \emptyset \} = \bigcup_{j=1}^{m_c} \bigcup_{\beta \in s_j^{(c)}} H_{\beta}.$$

Choose $\tilde{C} = \{(c, i, \beta) : c \in C, i \in \{1, 2, ..., m_c\}, \beta \in s_j^{(c)}\}$, and $\tilde{\sigma} : [\aleph]^n \to \tilde{C}$, with $\tilde{\sigma}(s) = (c, i, \beta)$ so that

$$c = \sigma(c), i = \min \{j : s \cap s_j^{(c)} \neq \emptyset \}, \beta = \min (s \cap s_i^{(c)}).$$

(b) is still satisfied since for $c \in C$, $\{\tilde{c} : \tilde{c}_1 = c\}$ is finite, and (c) is satisfied since $\tilde{\sigma}^{-1}(c, j, \beta) \subset H_{\beta}$.

Questions

Th.Schlumprecht Coarse Embeddings into $c_0(\Gamma)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

1) What happens in the gap $[\aleph_1, \aleph_{\omega})$? Avart, Komjáth, Łuczak, Rödl, 2009: $P(\aleph)$ does not hold for $\aleph = \aleph_k, k \in \mathbb{N}.$

So in order to preclude Banach spaces of lower density to be embedded into $c_0(\Gamma)$, another approach is needed.

1) What happens in the gap $[\aleph_1, \aleph_{\omega})$? Avart, Komjáth, Łuczak, Rödl, 2009: $P(\aleph)$ does not hold for $\aleph = \aleph_k, k \in \mathbb{N}.$

So in order to preclude Banach spaces of lower density to be embedded into $c_0(\Gamma)$, another approach is needed.

 Assume that a non separable Banach space X embeds into some c₀(Γ), does this imply that X contains an isomorphic copy of c₀(ℵ₁)? 1) What happens in the gap $[\aleph_1, \aleph_{\omega})$? Avart, Komjáth, Łuczak, Rödl, 2009: $P(\aleph)$ does not hold for $\aleph = \aleph_k, k \in \mathbb{N}.$

So in order to preclude Banach spaces of lower density to be embedded into $c_0(\Gamma)$, another approach is needed.

- Assume that a non separable Banach space X embeds into some c₀(Γ), does this imply that X contains an isomorphic copy of c₀(ℵ₁)?
- 3) Does ℓ_{∞} coarsely embed into any $c_0(\Gamma)$? (Yes assuming $\aleph_{\omega} \leq c$)