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The Separable Case

Aharoni (1974): There is a K > 1, so that every separable metric
space (M, d) K-bi-Lipschitzly embeds into cy, i.e., there is a map
f: M — ¢ so that:

d(x,y) < [f(x) = f(¥)lle, < Kd(x, y), forall x,y € M.

Moreover, K > 2 (using ¢4).
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The Separable Case

Aharoni (1974): There is a K > 1, so that every separable metric
space (M, d) K-bi-Lipschitzly embeds into cy, i.e., there is a map
f: M — ¢ so that:

d(x,y) < [If(x) = f(¥)lle < Kd(x,y), forall x,y € M.
Moreover, K > 2 (using ¢4).

Kalton & Lancien (2008): K = 2.

Question: Is there a non separable version of Aharoni’s result? More
precisely, which metric spaces or Banach spaces can be
bi-Lipschitzly embedded into ¢y(dens(M))?

dens(M) = min{X € Card : IM' Cc M, |M'| = R}.
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The Separable Case

Aharoni (1974): There is a K > 1, so that every separable metric
space (M, d) K-bi-Lipschitzly embeds into cy, i.e., there is a map
f: M — ¢ so that:

d(x,y) < [f(x) = f(¥)lle, < Kd(x, y), forall x,y € M.

Moreover, K > 2 (using ¢4).
Kalton & Lancien (2008): K = 2.

Question: Is there a non separable version of Aharoni’s result? More
precisely, which metric spaces or Banach spaces can be
bi-Lipschitzly embedded into ¢y(dens(M))?

dens(M) = min{X € Card : IM' Cc M, |M'| = R}.

Answer: not many, at least if density is large enough.
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Criteria for Embeddability into cy(I)
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Criteria for Embeddability into cy(I)

Theorem (Pelant, Holicky, Kalenda 2008: (a) < (b),
Swift, 2016: (a) <= (¢) < (d) < (e))

For a Banach space X the following are equivalent:
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Criteria for Embeddability into cy(I)

Theorem (Pelant, Holicky, Kalenda 2008: (a) < (b),
Swift, 2016: (a) <= (¢) < (d) < (e))

For a Banach space X the following are equivalent:
@ X uniformly embeds into ¢yo(T"), for some setT,
@ X satisfies the Uniform Stone Property (USP),
© X satisfies the Coarse Stone Property (CSP),

Q@ X coarsely embeds into cy(I), for some setT,

@ X bi-Lipschitzly embeds into cy(T"), for some set T .
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Topological Notation:

Let &/ and V be covers of a metric space (M, d),
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Topological Notation:

Let &/ and V be covers of a metric space (M, d),

U uniformly bounded if sup ¢, diam(U) < oo,

U uniformif Ir>0vxeU3Uel: B(x)C U,

U pointfiniteif YxeM |[{UelU:x elU}| < oo,

V refinement ofU ifVVeV3aUeU V cCU,

(M, d) has (USP) if every uniform cover has a point wise finite
uniform refinement,

(M, d) has (CSP) if every uniformly bounded cover is the refinement
of some point wise finite uniformly bounded cover.

For (My, d1), (Mz, d>) metric spaces and f: My — M, let
pf, Wi = (0,00) — [0, o0, “best” so that
pi(ch(x, y)) < da(f(x), f(y)) < wi(dh (X, y)).
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Topological Notation:

Let &/ and V be covers of a metric space (M, d),

U uniformly bounded if sup ¢, diam(U) < oo,

U uniformif Ir>0vxeU3Uel: B(x)C U,

U pointfiniteif YxeM |[{UelU:x elU}| < oo,

V refinement ofU ifVVeV3aUeU V cCU,

(M, d) has (USP) if every uniform cover has a point wise finite
uniform refinement,

(M, d) has (CSP) if every uniformly bounded cover is the refinement
of some point wise finite uniformly bounded cover.

For (My, d1), (Mz, d>) metric spaces and f: My — M, let
pf, Wi = (0,00) — [0, o0, “best” so that
pr(01(%,)) < Ge(f(x), F(y)) < wi(ch(x. ).
f is called uniform embedding: ¥t> 0: 0 < p(t) and lim;_,o w¢(t) = O,
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Topological Notation:

Let &/ and V be covers of a metric space (M, d),

U uniformly bounded if sup ¢, diam(U) < oo,

U uniformif Ir>0vxeU3Uel: B(x)C U,

U pointfiniteif YxeM |[{UelU:x elU}| < oo,

V refinement ofU ifVVeV3aUeU V cCU,

(M, d) has (USP) if every uniform cover has a point wise finite
uniform refinement,

(M, d) has (CSP) if every uniformly bounded cover is the refinement
of some point wise finite uniformly bounded cover.

For (My, d1), (Mz, d>) metric spaces and f: My — M, let
pf, Wi = (0,00) — [0, o0, “best” so that
pr(0h(%,)) < a(f(x), F()) < wi(ch(x. y)).
f is called uniform embedding: ¥t> 0: 0 < p(t) and lim;_,o w¢(t) = O,
fis coarse embedding: Vt>0 : ws(t) <oo and lim;_, o, pr(t) = oc.
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Two combinatorial properties of cardinal numbers

Let X be a cardinal number (we think of the cardinal numbers being
certain ordinals, and thus X = {a. € Ord : « € X})
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Two combinatorial properties of cardinal numbers

Definition

Let X be a cardinal number (we think of the cardinal numbers being
certain ordinals, and thus X = {a. € Ord : « € X})

We say it has Property (P), if for n € N, a set I', and a map
o:[N]"={AcCX:|A =n} —T (at least) one of the following
statements is true:
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Two combinatorial properties of cardinal numbers

Definition

Let X be a cardinal number (we think of the cardinal numbers being
certain ordinals, and thus X = {a. € Ord : « € X})

We say it has Property (P), if for n € N, a set I', and a map
o:[N]"={AcCX:|A =n} —T (at least) one of the following
statements is true:

ds,t e [R]" snt=0ando(s) =o(t), (P1(R))
Ise N Jo({su{r}:veR\s})| =cc. (P2(R))

We say it has Property (Q), if for n € N, any set I', and any
o : [N]" — T one of the following statements is true:

3(sj) € [N]" (s;) pw. disj. and o(s;) = o(s)),i # J (Q1(N))
Ise N |o({su{r}:yeR\s})| =0 (Qa2(N))
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We define
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We define R, = sup,cy Rp, with X, n-th smallest infinite cardinal,
(No = |IN], Ry = min{R € Card : X > R,})
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We define R, = sup,cy Rp, with X, n-th smallest infinite cardinal,
(No = |IN], Ry = min{R € Card : X > R,})

Theorem (Pelant & Rédl 1992)

If P(R) holds then £5(R) + ynir Co(T).
Moreover P(X,,) holds.
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We define R, = sup,cy Rp, with X, n-th smallest infinite cardinal,
(No = |IN], Ry = min{R € Card : X > R,})

Theorem (Pelant & Rédl 1992)
If P(R) holds then £5(R) + ynir Co(T).
Moreover P(X,,) holds.

Theorem (Hajek & S, 2017)

Assume P(R) holds and X is a Banach space with nontrivial cotype
and dens(X) > N.

Then X 5 coarsely junit Co(T)-

Moreover, if X has a symmetric basis, dens(X) > X, and

X —coarsiey Co(I") then X is isomorphic to co(dens(X)).

A\
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Proof of Pelant’s and RddlI’s result for £2(X), using Swift’s criteria:
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Proof of Pelant’s and RddlI’s result for £2(X), using Swift’s criteria:
Claim: M = {Z e, s C R, finite } C f3(R) does not have (CSP).

YES
——
Xs
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Proof of Pelant’s and RddlI’s result for £2(X), using Swift’s criteria:
Claim: M = {Z e, : s C X, finite } C £2(R) does not have (CSP).

YES
——

Assume M has (ESJSP), and U = {By(x) : x € M}.
Then U refines a point finite covering V with r=sup,,, diam(V) < cc.
Choose n € N, with \/n > r, pick for every s € [R]" a V; € V, so that
Xs € Bo(xs) C Vs, and consider

o:[R]"> s~ Ve
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Proof of Pelant’s and RddlI’s result for £2(X), using Swift’s criteria:
Claim: M = {Z e, : s C X, finite } C £2(R) does not have (CSP).

YES
——

Assume M has (ESJSP), and U = {By(x) : x € M}.
Then U refines a point finite covering V with r=sup,,, diam(V) < cc.
Choose n € N, with \/n > r, pick for every s € [R]" a V; € V, so that
Xs € Bo(xs) C Vs, and consider

o:[R]"> s~ Ve

@ lfsnt=0= o(s) # o(t) (diam(Vs) < r), thus Py not satisfied.
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Proof of Pelant’s and RddlI’s result for £2(X), using Swift’s criteria:
Claim: M = {Z e, : s C X, finite } C £2(R) does not have (CSP).

YES
——

Xs
Assume M has (CSP), and U = {Bx(x) : x € M}.
Then U refines a point finite covering V with r=sup,,, diam(V) < cc.
Choose n € N, with \/n > r, pick for every s € [R]" a V; € V, so that
Xs € Bax(xs) C Vs, and consider
o:[R]"> s~ Ve
@ lfsnt=0= o(s) # o(t) (diam(Vs) < r), thus Py not satisfied.
e lfscN""and S=o({sU{y}:v < R}), then
Xs € Ba(Xsugyy) C Visugqy, forall v < R, thus S finite.
Thus P; is not satisfied.
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C(K) spaces, which are precluded from being

coarsely embedded into ¢y(I")

For a cardinal number X, consider
[N]S"={FcCN:|F|<n}={f:X—{0,1},|supp(f)| < n} c {0,1}*"
Kx,n = [R]=" with product topology, Ky := Alex. compct.( &5, Ky n)
Note: CB(Kx) = wo + 1,

Deville, Godefroy, Zizler, 1990: CB(K) < wo = C(K) =jp co().
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For a cardinal number X, consider
[N]S"={FcCN:|F|<n}={f:X—{0,1},|supp(f)| < n} c {0,1}*"
Kx,n = [R]=" with product topology, Ky := Alex. compct.( &5, Ky n)
Note: CB(Kx) = wo + 1,

Deville, Godefroy, Zizler, 1990: CB(K) < wo = C(K) =jp co().

Theorem (Pelant, Holicky, Kalenda 2008)

If X satisfies Q(N)1 then C(KN) ?L)uniformly/coarsely CO(r)-
There are “large cardinal numbers” ( which only exist assuming

further set axioms) which satisfy Q(R).
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C(K) spaces, which are precluded from being

coarsely embedded into ¢y(I")

For a cardinal number X, consider
[N]S"={FcCN:|F|<n}={f:X—{0,1},|supp(f)| < n} c {0,1}*"
Kx,n = [R]=" with product topology, Ky := Alex. compct.( &5, Ky n)
Note: CB(Kx) = wo + 1,

Deville, Godefroy, Zizler, 1990: CB(K) < wo = C(K) =jp co().

Theorem (Pelant, Holicky, Kalenda 2008)

If X satisfies Q(N)1 then C(KN) ?L)uniformly/coarsely CO(r)-

There are “large cardinal numbers” ( which only exist assuming
further set axioms) which satisfy Q(R).

Theorem (Hajek & S)
P(X) and Q(X) are equivalent, for any infinite cardinal number.
Thus, Q(X,,) holds and consequently C(Kx,,) % unitormly /coarsely Co(I').
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Re-colouring argument

Assume that n € N o : [N]" — C, for which neither Q;(X) nor Qx(R) is
satisfied, and thus:
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Assume that n € N o : [N]" — C, for which neither Q;(X) nor Qx(R) is
satisfied, and thus:

a) Thereis no ¢ € C, so that o='(c) contains an infinite sequence
(s)) of pairwise disjoint elements of [X]".
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Re-colouring argument

Assume that n € N o : [N]" — C, for which neither Q;(X) nor Qx(R) is
satisfied, and thus:

a) Thereis no ¢ € C, so that o='(c) contains an infinite sequence
(s)) of pairwise disjoint elements of [X]".

b) Forall s € [R]"" the set o({sU {7} : v € X\ s}) is finite.
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Re-colouring argument

Assume that n € N o : [N]" — C, for which neither Q;(X) nor Qx(R) is
satisfied, and thus:

a) Thereis no ¢ € C, so that o='(c) contains an infinite sequence
(s)) of pairwise disjoint elements of [X]".
b) Forall s € [R]"~! the set o({sU {7} : v € X\ s}) is finite.
Then there exists a set ¢ and a map & : [X]” — C, which still satisfies
(b) and moreover

c) Forall ¢ € C there is a 5(¢) € X so that

571(8) C Ha(e) = {s € [N]": B(c) € s}.
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Re-colouring argument

Assume that n € N o : [N]" — C, for which neither Q;(X) nor Qx(R) is
satisfied, and thus:

a) Thereis no ¢ € C, so that o='(c) contains an infinite sequence
(s)) of pairwise disjoint elements of [X]".
b) Forall s € [R]"~! the set o({sU {7} : v € X\ s}) is finite.
Then there exists a set ¢ and a map & : [X]” — C, which still satisfies
(b) and moreover

c) Forall ¢ € C there is a 5(¢) € X so that
571(8) C Ha(e) = {s € [N]": B(c) € s}.

Condition (c) now implies that any two disjoint s, t € [X]” must have
different images under &, and thus & witnesses that P(R) is not
satisfied.
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For ceC choose finite and maximal sequence (s}"))]’-”;1 c o '(c),
consisting of pairwise disjoint elements.
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For ceC choose finite and maximal sequence (s}"))]’-”;1 c o '(c),
consisting of pairwise disjoint elements.
This implies that

U{se[N]”- Jns#0 }:Lj U Hs.
)

j=1 ,BES}C
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For ceC choose finite and maximal sequence (sj("‘))j’-”;1 c o '(c),
consisting of pairwise disjoint elements.
This implies that

U{se[N]”- Y s # 0} = U U Hs.

Choose € = {(c,i,8) :ceC,ie{1,2,...,m},B € s}c)},
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For ceC choose finite and maximal sequence (s ) ", C o7 '(c),
consisting of pairwise disjoint elements.
This implies that

Mme

U{se[N]”- ‘ns20y=1J U Hs
)

J=1 ﬁes}c

Choose € = {(c,i,8) :ceC,ie{1,2,...,m},B € s}c)}, and
5 : [N]" = C, with 5(s) = (¢, i, 8) so that

c=o(c), i=min{j: sns® # (7)}, B=min (s s©).
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For ceC choose finite and maximal sequence (s ) ", C o7 '(c),
consisting of pairwise disjoint elements.
This implies that

U{se[N]”- Y s # 0} = U U Hs.
)

J=1 ﬁes}c

Choose € = {(c,i,8) :ceC,ie{1,2,...,m},B € s}c)}, and
5 : [N]" = C, with 5(s) = (¢, i, 8) so that

c=o(c), i=min{j: sns® # (7)}, B=min (s s©).

(b) is still satisfied since for ¢ € C, {¢: ¢; = c} is finite, and
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For ceC choose finite and maximal sequence (s ) ", C o7 '(c),
consisting of pairwise disjoint elements.
This implies that

U{se[N]”- Y s # 0} = U U Hs.
)

j=1 ,BES}C

Choose € = {(c,i,8) :ceC,ie{1,2,...,m},B € s}c)}, and
5 : [N]" = C, with 5(s) = (¢, i, 8) so that

c=a(c), i=min{j: s £ 0}, s=min (s s).

(b) is still satisfied since for ¢ € C, {¢: ¢; = c} is finite, and
(c) is satisfied since 5~ '(c, j, B) C H;.
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Questions

1) What happens in the gap [X1,X,,)?
Avart, Komjath, kuczak, Rédl, 2009: P(X) does not hold for
N =N, keN.
So in order to preclude Banach spaces of lower density to be
embedded into ¢y(I'), another approach is needed.
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N =N, keN.
So in order to preclude Banach spaces of lower density to be
embedded into ¢y(I'), another approach is needed.

2) Assume that a non separable Banach space X embeds into
some cy(I), does this imply that X contains an isomorphic copy
of Co(R+)?
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Questions

1) What happens in the gap [X1,X,,)?
Avart, Komjath, kuczak, Rédl, 2009: P(X) does not hold for
N =N, keN.
So in order to preclude Banach spaces of lower density to be
embedded into ¢y(I'), another approach is needed.

2) Assume that a non separable Banach space X embeds into
some cy(I), does this imply that X contains an isomorphic copy
of Co(R+)?

3) Does /., coarsely embed into any co(I)? (Yes assuming X, < ¢)
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