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Ribe’s theorem
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For all finite dimensional E C X and ¢ > 0, E linearly embeds into Y
with constant (1 + ¢)K, and vice versa.
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© Differentiation and ultrapower argument due to Heinrich and
Mankiewicz
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Ribe’s theorem
Start with E = span(X,-),f':1 C X. Acombinatorial argument that depends only on n.

Mpy = {z”: kix; : ki € Z, |kj| < m} \ {0}

i=1

the set of lattice points of size (2m + 1)"
SMp: the scaled lattices with step size s € N

u+ sMp, scaled and translated by v € M



The formula

Ribe’s theorem

Let e > 0. Fix
my = mo(n, €) (1)

so that {x/||x| : 0 # x € M, } forms an /n-dense set in the unit
sphere of E.

If £ is afinite lattice of the form u + s My, define a function ¢, on
SMpm, by

oc(y) = fﬁ‘ S (60x +y) — 6(x)),

xeLl
where |£]| = (2m+ 1)".



¢, is nearly linear
Ribe’s theorem
Lemma

Lete > 0, and mg = my(n, e) be as above. Then there exists
m' = m'(e, mg, K) such that for every s and every finite lattice L of the
form u + sMpy withm > m', ¢, satisfies

for every x = s3_7_, kiXi € SMp,. In particular, the linear operator
T : E — Y defined by T.(sx;) = ¢.(sx;) for1 < i < n satisfies

be(X) =D kide(sx)

i=1

< ef|x]

[¢c(x) — Tex|| < ef|x]]

for every x € SMp,.

Proof. Given x € M, if L is large then £ and its translate x + L
coincide except for a very small percentage.



So for instance

lpc(sXi + X)) — (X)) — dc(5X)]|

= g 3 (0l + 53 +x) ()

xeL

|£|Z d(sxi + x) — p(x |£|Z (sx; + x) — ¢(x)) |

XEL XEL

= IIEZ(¢(SX/+SX/+X) ¢(sXi + X)) |£|Z (sxj + x) — ¢(x)) |

XEL XEL
= e 3 (elsn ) - 6(x) ||Z (8% +X) = 6(x))|
| |Xesm+£ xeL
eKl||sx
2Knmq

- (x+L)AL| c
if SUPxesrm — 121 < 2Romp-




Invertibility

Ribe’s theorem

Lemma

Lete >0, my = my(n,e) and m" = m'(mg, n, e, K) be as above. Then
for all m > m'’ there is a step size s’ and an M = M(Mp,, m) such that
for every finite lattice L' of size greater than (2M + 1)" there exists a
Sublattice £ C L' of size (2m + 1)" and step s < s’ such that for every
y € Mp, there exists a norm one functional u* in Y* such that

(U™, o(x + sy) — ¢(x)) = slyll/2

forevery x € L.
In particular, ||¢.(sy)|| > s|ly||/2 forall y € Mpm,.




Diagonal lattices

For a > 0 lattice L is a-close to the diagonal if for some a € N every
element of £ is of the form "7 ,(a + k;)x; where |§| < a.

Lemma

Let0 < a < 1, andifr > 2 assume a < %(2%2 —1). Let
(ai,...,an) € Z" be of the form a; = a+ k; with|g| <a,andletk € Z
with |%| < a. Ifyj = (a1,...,8;+ k,...,ap) forj=1,....n, then

1_
Hillr = Iy llr] < 482 k(r — 1)n7—".




Eliminating F

Let
XAySF

where 7 is a projection onto finite dim F. Let £ be a finite lattice of size
(2m+1)" with step s which is a-close to the diagonal.
Suppose that ¢ additionally satisfies the following.

Forevery y,zin L,
Imod(y) — Tp(2)|| < €'sm whenever H\yH - ||Z||’ < 4. 32’(r —1)ams.
Then for every 1 <i,j < n, ¢, satisfies

[mr(sx;) — mor(sx)| < €'s.



Krivine stabilization

Theorem (Odell-Rosenthal-Schlumprecht, '93)

Let f be a real-valued uniformly continuous function defined on the unit
sphere of a Banach space X with a basis (e;)?2,. Then there is a
constant Ay such that for every € > 0 and for every integer k there is a
block sequence ( yj)/’.‘:1 of (ej)72, with the property that [f(y) — Xo| < €
for every y in span(y;)/_, with |ly[| = 1.




Krivine stabilization

For a uniformly continous ¢ fix a function ¢4 such that for all ¢ > 0,
[¢(x) — @(¥)Il < e whenever [|x — y|| < dy(e).

Theorem

Let ¢ be a uniformly continuous map from a ball Bx(p) of radius p > 0
in a Banach space X with a basis (€;)7°, into a finite dimensional real
normed space F. Then for all ' > 0 and for every integer k there is a
block sequence ( yj)/’.‘:1 of (e;)7° with the property that for all

¥,z € Bx(p) with |[12]| = |ly[l| < 65(<") we have [|6(y) — #(2)] < <’




