Ribe's theorem and Krivine stabilization

Bünyamin Sarı

University of North Texas

CIRM-March 5-9, 2018

Ribe's theorem

Suppose $\phi : X \to Y$ is a bijection which is Lipschitz for large distances, i.e., There exist K_d such that

$$||x - y|| \le ||\phi(x) - \phi(y)|| \le K_d ||x - y||, ||x - y|| \ge d$$

Then *X* and *Y* have the same local structure.

Ribe's theorem

Suppose $\phi : X \to Y$ is a bijection which is Lipschitz for large distances, i.e., There exist K_d such that

$$||x - y|| \le ||\phi(x) - \phi(y)|| \le K_d ||x - y||, ||x - y|| \ge d$$

Then *X* and *Y* have the same local structure.

For all finite dimensional $E \subset X$ and $\varepsilon > 0$, E linearly embeds into Y with constant $(1 + \varepsilon)K_{\infty}$, and vice versa.

Ribe's original proof

- Ribe's original proof
- The proof in Benyamini-Lindenstrauss (based on a presentation by Enflo of the original proof)

- Ribe's original proof
- The proof in Benyamini-Lindenstrauss (based on a presentation by Enflo of the original proof)
- Bourgain's proof (known as the discretization theorem, see Giladi, Naor, Schechtman, '12)

- Ribe's original proof
- The proof in Benyamini-Lindenstrauss (based on a presentation by Enflo of the original proof)
- Bourgain's proof (known as the discretization theorem, see Giladi, Naor, Schechtman, '12)
- Oifferentiation and ultrapower argument due to Heinrich and Mankiewicz

Ribe's theorem

Ribe's theorem

Start with $E = \overline{\mathrm{span}}(x_i)_{i=1}^n \subset X$. A combinatorial argument that depends only on n.

Ribe's theorem

Start with $E = \overline{\mathrm{span}}(x_i)_{i=1}^n \subset X$. A combinatorial argument that depends only on *n*.

$$\mathcal{M}_m = \left\{\sum_{i=1}^n k_i x_i : k_i \in \mathbb{Z}, |k_i| \le m\right\} \setminus \{\mathbf{0}\}$$

the set of lattice points of size $(2m + 1)^n$

Ribe's theorem

Start with $E = \overline{\mathrm{span}}(x_i)_{i=1}^n \subset X$. A combinatorial argument that depends only on *n*.

$$\mathcal{M}_m = \left\{ \sum_{i=1}^n k_i x_i : k_i \in \mathbb{Z}, |k_i| \le m \right\} \setminus \{\mathbf{0}\}$$

the set of lattice points of size $(2m + 1)^n$

 $s\mathcal{M}_m$: the scaled lattices with step size $s \in \mathbb{N}$

Ribe's theorem

Start with $E = \overline{\mathrm{span}}(x_i)_{i=1}^n \subset X$. A combinatorial argument that depends only on *n*.

$$\mathcal{M}_m = \left\{ \sum_{i=1}^n k_i x_i : k_i \in \mathbb{Z}, |k_i| \le m \right\} \setminus \{\mathbf{0}\}$$

the set of lattice points of size $(2m + 1)^n$

 $s\mathcal{M}_m$: the scaled lattices with step size $s \in \mathbb{N}$

 $u + s\mathcal{M}_m$ scaled and translated by $u \in \mathcal{M}$

The formula

Ribe's theorem

Let $\varepsilon > 0$. Fix

$$m_0 = m_0(n,\varepsilon) \tag{1}$$

so that $\{x/||x|| : 0 \neq x \in M_{m_0}\}$ forms an ε/n -dense set in the unit sphere of *E*.

If \mathcal{L} is a finite lattice of the form $u + s\mathcal{M}_m$, define a function $\phi_{\mathcal{L}}$ on $s\mathcal{M}_{m_0}$ by

$$\phi_{\mathcal{L}}(\mathbf{y}) = \frac{1}{|\mathcal{L}|} \sum_{\mathbf{x} \in \mathcal{L}} (\phi(\mathbf{x} + \mathbf{y}) - \phi(\mathbf{x})),$$

where $|\mathcal{L}| = (2m + 1)^n$.

$\phi_{\mathcal{L}}$ is nearly linear

Ribe's theorem

Lemma

Let $\varepsilon > 0$, and $m_0 = m_0(n, \varepsilon)$ be as above. Then there exists $m' = m'(\varepsilon, m_0, K)$ such that for every s and every finite lattice \mathcal{L} of the form $u + s\mathcal{M}_m$ with $m \ge m'$, $\phi_{\mathcal{L}}$ satisfies

$$\left\| \phi_{\mathcal{L}}(\boldsymbol{x}) - \sum_{i=1}^{n} k_i \phi_{\mathcal{L}}(\boldsymbol{s} \boldsymbol{x}_i) \right\| \leq \varepsilon \| \boldsymbol{x} \|$$

for every $x = s \sum_{i=1}^{n} k_i x_i \in s\mathcal{M}_{m_0}$. In particular, the linear operator $T_{\mathcal{L}} : E \to Y$ defined by $T_{\mathcal{L}}(sx_i) = \phi_{\mathcal{L}}(sx_i)$ for $1 \le i \le n$ satisfies

$$\|\phi_{\mathcal{L}}(\boldsymbol{x}) - T_{\mathcal{L}}\boldsymbol{x}\| \leq \varepsilon \|\boldsymbol{x}\|$$

for every $x \in s\mathcal{M}_{m_0}$.

Proof. Given $x \in M$, if \mathcal{L} is large then \mathcal{L} and its translate $x + \mathcal{L}$ coincide except for a very small percentage.

So for instance

$$\begin{split} &\|\phi_{\mathcal{L}}(\mathbf{s}\mathbf{x}_{i}+\mathbf{s}\mathbf{x}_{j})-\phi_{\mathcal{L}}(\mathbf{s}\mathbf{x}_{i})-\phi_{\mathcal{L}}(\mathbf{s}\mathbf{x}_{j})\|\\ &= \|\frac{1}{|\mathcal{L}|}\sum_{x\in\mathcal{L}}\left(\phi(\mathbf{s}\mathbf{x}_{i}+\mathbf{s}\mathbf{x}_{j}+\mathbf{x})-\phi(\mathbf{x})\right)\\ &-\frac{1}{|\mathcal{L}|}\sum_{x\in\mathcal{L}}\left(\phi(\mathbf{s}\mathbf{x}_{i}+\mathbf{s}\mathbf{x}_{j}+\mathbf{x})-\phi(\mathbf{x})\right)-\frac{1}{|\mathcal{L}|}\sum_{x\in\mathcal{L}}\left(\phi(\mathbf{s}\mathbf{x}_{j}+\mathbf{x})-\phi(\mathbf{x})\right)\|\\ &= \|\frac{1}{|\mathcal{L}|}\sum_{x\in\mathcal{L}}\left(\phi(\mathbf{s}\mathbf{x}_{i}+\mathbf{s}\mathbf{x}_{j}+\mathbf{x})-\phi(\mathbf{s}\mathbf{x}_{i}+\mathbf{x})\right)-\frac{1}{|\mathcal{L}|}\sum_{x\in\mathcal{L}}\left(\phi(\mathbf{s}\mathbf{x}_{j}+\mathbf{x})-\phi(\mathbf{x})\right)\|\\ &= \|\frac{1}{|\mathcal{L}|}\sum_{x\in\mathcal{S}\mathbf{x}_{i}+\mathcal{L}}\left(\phi(\mathbf{s}\mathbf{x}_{j}+\mathbf{x})-\phi(\mathbf{x})\right)-\frac{1}{|\mathcal{L}|}\sum_{x\in\mathcal{L}}\left(\phi(\mathbf{s}\mathbf{x}_{j}+\mathbf{x})-\phi(\mathbf{x})\right)\|\\ &< \frac{\varepsilon K\|\mathbf{s}\mathbf{x}_{j}\|}{2Knm_{0}}\end{split}$$

 $\text{if } \sup_{x \in s\mathcal{M}_{m_0}} \tfrac{|(x+\mathcal{L}) \bigtriangleup \mathcal{L}|}{|\mathcal{L}|} < \tfrac{\varepsilon}{2Knm_0}.$

Invertibility Ribe's theorem

Lemma

Let $\varepsilon > 0$, $m_0 = m_0(n, \varepsilon)$ and $m' = m'(m_0, n, \varepsilon, K)$ be as above. Then for all $m \ge m'$ there is a step size s' and an $M = M(\mathcal{M}_{m_0}, m)$ such that for every finite lattice \mathcal{L}' of size greater than $(2M + 1)^n$ there exists a sublattice $\mathcal{L} \subset \mathcal{L}'$ of size $(2m + 1)^n$ and step $s \le s'$ such that for every $y \in \mathcal{M}_{m_0}$ there exists a norm one functional u^* in Y^* such that

$$\langle u^*, \phi(\pmb{x} + \pmb{s} \pmb{y}) - \phi(\pmb{x})
angle \geq \pmb{s} \|\pmb{y}\|/2$$

for every $x \in \mathcal{L}$. In particular, $\|\phi_{\mathcal{L}}(sy)\| \ge s \|y\|/2$ for all $y \in \mathcal{M}_{m_0}$.

Diagonal lattices

For $\alpha > 0$ lattice \mathcal{L} is α -close to the diagonal if for some $a \in \mathbb{N}$ every element of \mathcal{L} is of the form $\sum_{i=1}^{n} (a + k_i) x_i$ where $|\frac{k_i}{a}| < \alpha$.

Lemma

Let $0 < \alpha < \frac{1}{4}$, and if r > 2 assume $\alpha < \frac{1}{3}(2^{\frac{1}{r-2}} - 1)$. Let $(a_1, \ldots, a_n) \in \mathbb{Z}^n$ be of the form $a_i = a + k_i$ with $|\frac{k_i}{a}| < \alpha$, and let $k \in \mathbb{Z}$ with $|\frac{k}{a}| < \alpha$. If $y_j = (a_1, \ldots, a_j + k, \ldots, a_n)$ for $j = 1, \ldots, n$, then $|||y_j||_r - ||y_{j'}||_r| < 4\alpha 3^{2r} k(r-1) n^{\frac{1}{r}-1}$.

Eliminating F

Let

$$X \stackrel{\phi}{\to} Y \stackrel{\pi}{\to} F$$

where π is a projection onto finite dim *F*. Let \mathcal{L} be a finite lattice of size $(2m+1)^n$ with step *s* which is α -close to the diagonal. Suppose that ϕ additionally satisfies the following.

For every y, z in \mathcal{L} ,

$$\|\pi\phi(\mathbf{y}) - \pi\phi(\mathbf{z})\| < \varepsilon' \mathrm{sm} \ whenever \ \left|\|\mathbf{y}\| - \|\mathbf{z}\|\right| < 4 \cdot 3^{2r}(r-1)\alpha \mathrm{ms}.$$

Then for every $1 \le i, j \le n, \phi_{\mathcal{L}}$ satisfies

$$\|\pi\phi_{\mathcal{L}}(\mathbf{s}\mathbf{x}_i) - \pi\phi_{\mathcal{L}}(\mathbf{s}\mathbf{x}_j)\| < \varepsilon'\mathbf{s}.$$

Krivine stabilization

Theorem (Odell-Rosenthal-Schlumprecht, '93)

Let f be a real-valued uniformly continuous function defined on the unit sphere of a Banach space X with a basis $(e_i)_{i=1}^{\infty}$. Then there is a constant λ_0 such that for every $\varepsilon > 0$ and for every integer k there is a block sequence $(y_j)_{j=1}^k$ of $(e_i)_{i=1}^{\infty}$ with the property that $|f(y) - \lambda_0| < \varepsilon$ for every y in span $(y_j)_{i=1}^k$ with ||y|| = 1.

Krivine stabilization

For a uniformly continous ϕ fix a function δ_{ϕ} such that for all $\varepsilon > 0$, $\|\phi(x) - \phi(y)\| < \varepsilon$ whenever $\|x - y\| < \delta_{\phi}(\varepsilon)$.

Theorem

Let ϕ be a uniformly continuous map from a ball $B_X(\rho)$ of radius $\rho > 0$ in a Banach space X with a basis $(e_i)_{i=1}^{\infty}$ into a finite dimensional real normed space F. Then for all $\varepsilon' > 0$ and for every integer k there is a block sequence $(y_j)_{j=1}^k$ of $(e_i)_{i=1}^{\infty}$ with the property that for all $y, z \in B_X(\rho)$ with $|||z|| - ||y||| < \delta_{\phi}(\varepsilon')$ we have $||\phi(y) - \phi(z)|| < \varepsilon'$.