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Definition
Let M be a metric space, X be a Banach space, and f :M → X.

We say that f is a bi-Lipschitz embedding of M into X if there exists a
constant C so that for all u, v ∈M

‖f(u)− f(v)‖X ≤ dM (u, v) ≤ C‖f(u)− f(v)‖X .

The smallest possible C is called the distortion of f .
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Methods of embedding finite metric spaces into
non-superreflexive Banach spaces

The method used by Bourgain (1986) for trees and by Johnson and
Schechtman (2009) for binary diamonds and Laakso graphs, uses the
following classical cornerstone result

Theorem (Pták 59, Singer 62, Pełczyński 62, James 64,
Milman-Milman 65)
A Banach space X is not reflexive if and only if

there exists θ with 0 < θ < 1 and a sequence (xn) in X such that for
any finitely supported scalar sequence (an) we have

θ sup
j

∣∣∣∑
n≤j

an

∣∣∣ ≤ ∥∥∥∑
n

anxn

∥∥∥
X
≤
∑
n

|an|
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Suppose that there exists an embedding f :M → c00 so that for all u, v
in M

‖f(u)− f(v)‖1 ≤ dM (u, v) ≤ C‖f(u)− f(v)‖s (1)

If X is not reflexive, define ϕ :M → X by

ϕ(u) =
∞∑
i=1

(f(u))ixi

Then

θ‖f(u)− f(v)‖s ≤ ‖ϕ(u)− ϕ(v)‖X ≤ ‖f(u)− f(v)‖1

and thus
‖ϕ(u)− ϕ(v)‖X ≤ ‖f(u)− f(v)‖1 ≤ dM (u, v)

≤ C‖f(u)− f(v)‖s ≤
C

θ
‖ϕ(u)− ϕ(v)‖X

This method of construction of an embedding is based on the
factorization between the summing basis and the unit vector basis of
`1, and I will refer to it as the factorization method.
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In 2017 M. Ostrovskii and BR developed a new method of construction
of low-distortion embeddings into all non-superreflexive spaces.

We used to show that all finitely branching diamond and Laakso
graphs embed into all non-superreflexive spaces with distortion not
exceeding 8 + ε, independently of the number of branching.

This method is based on the theory of equal-signs-additive (ESA)
sequences developed by Brunel and Sucheston (1975-1976).

I will outline this embedding method at the end of the talk.

The first goal of the talk is to prove that embeddings of multibranching
diamonds with distortions bounded independently of the number of
branches cannot be constructed using the factorization method.
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Let Dn,k be a k-branching diamond with n levels (definition in a
moment). We prove

Theorem (M. Ostrovskii, BR)
For all C > 1 there exists k(C) ∈ N so that if for some k ∈ N and every
n ∈ N there exists an embedding fn : Dn,k → c00 so that ∀u, v ∈ Dn,k

‖fn(u)− fn(v)‖1 ≤ dDn,k(u, v) ≤ C‖fn(u)− fn(v)‖s (s-`1)

then k ≤ k(C).

Note that this result does not exclude the possibility that
∀k ∈ N ∃C = C(k) <∞ so that ∀n ∈ N ∃fn : Dn,k → c00 that satisfies
condition (s-`1).
This result only implies that if such numbers C(k) exist for all k ∈ N
then they would not be uniformly bounded.
We do not know whether such numbers C(k) exist for all k ∈ N, or
even whether C(3) exists (Johnson and Schechtman (2009) proved
that C(2) exists).
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Definition of multi-branching diamonds
For any integer k ≥ 2, we define D1,k to be the graph consisting of
(k + 2) vertices, two of which are called top and bottom and are joined
by k independent paths of length 2, i.e. D1,k is the complete bipartite
graph K2,k.
For any n ∈ N, if Dn−1,k is already defined, the graph Dn,k is obtained
from Dn−1,k by replacing each edge in Dn−1,k by a copy of D1,k.
We equip Dn,k with the shortest path distance.
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Outline of a proof of the theorem

Step 1. Fix k ∈ N. Suppose that ∀n ∈ N ∃fn : Dn,k → c00 so that

‖fn(u)− fn(v)‖1 ≤ dDn,k(u, v) ≤ C‖fn(u)− fn(v)‖s (s-`1)

Then there exists a “vertically-faithful” embedding of D1,k into c00,
that is, ∃g : D1,k → c00 so that g(v−1) = 0, g(vi) = xi and ∀i, j ≤ k

 

‖xi − x−1‖1 ≈
1

2
‖x0‖1

‖xi − x0‖1 ≈
1

2
‖x0‖1

and
‖xi−xj‖s ≥

1

C
‖xi−xj‖1 ≥

1

C2
‖x0‖1

————————–
Idea/method goes back to
Matoušek (1989,1999),
Lee, Raghavendra (2010),
Mendel, Naor (2013)
“self-improvement argument”,

coarse differentiation (Eskin, Fisher, Whyte 2006)
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Outline of a proof of the theorem
Step 2. Refinement of the form of the embedding g

By Step 1, ∃g : D1,k → c00 so that g(v−1) = 0, g(vi) = xi and ∀i, j ≤ k
‖xi‖1 ≈ ‖xi − x0‖1 ≈ 1

2‖x0‖1 ‖xi − xj‖s ≥ 1
C ‖xi − xj‖1 ≥

1
C2 ‖x0‖1

We improve g so that it resembles closely a standard embedding of the
binary diamond D1,2 into `1,
that is, for some N ∈ N, the top vertex of D1,k is mapped onto a vector
in `N1 whose every coordinate is 1 or −1,
and all “middle” vertices of D1,k are mapped onto elements of `N1 such
that their pairwise `∞-distance does not exceed 1,
their pairwise summing norm distance is at least αN , where α = 1

2C2 ,
and the “vertical faithfulness” is preserved, so

There exist N ∈ N and elements zi ∈ c00, for i ∈ {1, . . . , k}, so that
∀i ∈ {1, . . . , k} supp(zi) ⊆ {1, . . . , N},
∀i, j ∈ {1, . . . , k} ∀m ∈ {1, . . . , N} |zim − zjm| ≤ 1,

∀i, j ∈ {1, . . . , k}, i 6= j, ‖zi − zj‖s ≥ αN ≥ 2.
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Outline of a proof of the theorem
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1
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Outline of a proof of the theorem

Main Step We use the Ramsey theorem to show that

For every α ∈ (0, 1), there exists a natural number k(α), so that

if there exist k,N ∈ N, and {zi}ki=1 ⊂ c00 with

∀i ∈ {1, . . . , k} supp(zi) ⊆ {1, . . . , N},
∀i, j ∈ {1, . . . , k} ∀m ∈ {1, . . . , N} |zim − zjm| ≤ 1,

∀i, j ∈ {1, . . . , k}, i 6= j, ‖zi − zj‖s ≥ αN ≥ 2,

then
k ≤ k(α).
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Sketch of proof of the Main Step
For every i, j ∈ {1, . . . , k} with i 6= j, we will denote by r(i, j) the

smallest index that witnesses the fact that ‖zi − zj‖s ≥ αN ,
that is, the smallest integer in {1, . . . , N} such that

αN ≤
∣∣∣ r(i,j)∑
m=1

(zim − zjm)
∣∣∣ < αN + 1,

First, we prove that for every triple of pairwise distinct numbers
i, j, l ∈ {1, . . . , k} the values of indices r(i, j), r(i, l), r(j, l) cannot stay
together, and at least two of them are separated by a positive distance
proportional to N , independent of the triple i, j, l.

.
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that is, the smallest integer in {1, . . . , N} such that

αN ≤
∣∣∣ r(i,j)∑
m=1

(zim − zjm)
∣∣∣ < αN + 1,

Next, we prove that if, say, for all triples 1 ≤ i < j < l ≤ k, the
maximum of r(i, j), r(i, l), r(j, l) is always attained at r(j, l), then,
for all i, j, the values of r(i, j) have to grow by a fixed amount with
every increase of i and j. Thus r(k − 1, k) is larger than r(1, 2) by an
amount proportional to N and k.
Since r(k − 1, k) ≤ N , this leads to a bound on the size of k.

Similarly, k is bounded if the maximum of r(i, j), r(i, l), r(j, l) is always
equal to r(i, j), or always equal to r(i, l).
This leads to a 3-coloring of triples from {1, . . . , k}, and by the Ramsey
theorem, we can find a subset of [k] with monochromatic triples.
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For every 1 ≤ i < j < l ≤ k we define

MAXijl = max{r(i, j), r(i, l), r(j, l)}

minijl = min{r(i, j), r(i, l), r(j, l)}

Lemma

For every pairwise distinct triple of numbers i, j, l ∈ {1, . . . , k} we have:

MAXijl −minijl ≥
αN − 1

2
≥ αN

4
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Let τ(i), τ(j) and τ(l) be the sums of the coordinates of zi, zj , zl, resp.,
up to the term number r(i, j). That is, for example,

τ(l) =

r(i,j)∑
m=1

zlm

By the definition of r(i, j), we have

αN ≤ |τ(i)− τ(j)| < αN + 1.

Say, |τ(l)− τ(i)| ≤ |τ(l)− τ(j)|.

 

 

 

 

 

 

 

Case 1: |τ(l)− τ(i)| ≤ αN+1
2

That is:
∣∣∣ r(i,j)∑
m=1

(zim − zlm)
∣∣∣ ≤ αN+1

2 .

But
∣∣∣ r(i, l)∑
m=1

(zim − zlm)
∣∣∣ ≥ αN .

Thus∣∣∣ r(i,l)∑
m=r(i,j)

(zim − zlm)
∣∣∣ ≥ αN−1

2

Since for all m, |zim − zlm| ≤ 1,

|r(i, j)− r(i, l)| ≥
∣∣∣ r(i,l)∑
m=r(i,j)

(zim − zlm)
∣∣∣ ≥ αN − 1

2
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m=1
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2 .
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2
≥ αN

4
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Thus for every pairwise distinct triple of numbers i, j, l ∈ {1, . . . , k} we
have:

MAXijl −minijl ≥
αN − 1

2
≥ αN

4
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We are now ready for the final step of the proof.

We will color triples (i, j, l) ∈ {1, . . . , k}3 with 1 ≤ i < j < l ≤ k as

– red - if MAXijl = r(j, l) ,

– blue - if MAXijl = r(i, j), and r(i, j) > r(j, l) ,

– green - if MAXijl = r(i, l), and r(i, l) > max{r(i, j), r(j, l)} .

By the Ramsey Theorem, for every s ∈ N, there exists a natural
number R3(s, 3), so that for all k ≥ R3(s, 3) the set {1, . . . , k} contains
a subset B with card(B) ≥ s such that every triple (i, j, l) ∈ B3 is of the
same color.

We will show that the cardinality s of any set with monochromatic
triples is bounded above by a number independent of N .

We consider the three possible colors separately.

Randrianantoanina (Miami University) Difference in embedding methods March 6, 2018 19 / 31



We are now ready for the final step of the proof.
We will color triples (i, j, l) ∈ {1, . . . , k}3 with 1 ≤ i < j < l ≤ k as

– red - if MAXijl = r(j, l) ,

– blue - if MAXijl = r(i, j), and r(i, j) > r(j, l) ,

– green - if MAXijl = r(i, l), and r(i, l) > max{r(i, j), r(j, l)} .

By the Ramsey Theorem, for every s ∈ N, there exists a natural
number R3(s, 3), so that for all k ≥ R3(s, 3) the set {1, . . . , k} contains
a subset B with card(B) ≥ s such that every triple (i, j, l) ∈ B3 is of the
same color.

We will show that the cardinality s of any set with monochromatic
triples is bounded above by a number independent of N .

We consider the three possible colors separately.

Randrianantoanina (Miami University) Difference in embedding methods March 6, 2018 19 / 31



We are now ready for the final step of the proof.
We will color triples (i, j, l) ∈ {1, . . . , k}3 with 1 ≤ i < j < l ≤ k as

– red - if MAXijl = r(j, l) ,

– blue - if MAXijl = r(i, j), and r(i, j) > r(j, l) ,

– green - if MAXijl = r(i, l), and r(i, l) > max{r(i, j), r(j, l)} .

By the Ramsey Theorem, for every s ∈ N, there exists a natural
number R3(s, 3), so that for all k ≥ R3(s, 3) the set {1, . . . , k} contains
a subset B with card(B) ≥ s such that every triple (i, j, l) ∈ B3 is of the
same color.

We will show that the cardinality s of any set with monochromatic
triples is bounded above by a number independent of N .

We consider the three possible colors separately.

Randrianantoanina (Miami University) Difference in embedding methods March 6, 2018 19 / 31



We are now ready for the final step of the proof.
We will color triples (i, j, l) ∈ {1, . . . , k}3 with 1 ≤ i < j < l ≤ k as

– red - if MAXijl = r(j, l) ,

– blue - if MAXijl = r(i, j), and r(i, j) > r(j, l) ,

– green - if MAXijl = r(i, l), and r(i, l) > max{r(i, j), r(j, l)} .

By the Ramsey Theorem, for every s ∈ N, there exists a natural
number R3(s, 3), so that for all k ≥ R3(s, 3) the set {1, . . . , k} contains
a subset B with card(B) ≥ s such that every triple (i, j, l) ∈ B3 is of the
same color.

We will show that the cardinality s of any set with monochromatic
triples is bounded above by a number independent of N .

We consider the three possible colors separately.

Randrianantoanina (Miami University) Difference in embedding methods March 6, 2018 19 / 31



We are now ready for the final step of the proof.
We will color triples (i, j, l) ∈ {1, . . . , k}3 with 1 ≤ i < j < l ≤ k as

– red - if MAXijl = r(j, l) ,

– blue - if MAXijl = r(i, j), and r(i, j) > r(j, l) ,

– green - if MAXijl = r(i, l), and r(i, l) > max{r(i, j), r(j, l)} .

By the Ramsey Theorem, for every s ∈ N, there exists a natural
number R3(s, 3), so that for all k ≥ R3(s, 3) the set {1, . . . , k} contains
a subset B with card(B) ≥ s such that every triple (i, j, l) ∈ B3 is of the
same color.

We will show that the cardinality s of any set with monochromatic
triples is bounded above by a number independent of N .

We consider the three possible colors separately.

Randrianantoanina (Miami University) Difference in embedding methods March 6, 2018 19 / 31



First suppose that every triple in B3 is red .

 

 

 

Then, by Lemma,

r(2, 3) ≥ αN +
αN

4

since both r(1, 2), r(1, 3) ≥ αN
 

 

Similarly, for all t > 2

r(2, t) ≥ αN +
αN

4

 

 

Thus, for all t > 3

r(3, t) ≥ αN + 2 · αN
4

By Induction r(s− 1, s) ≥ αN + (s− 2) · αN
4
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Hence
N ≥ r(s− 1, s) ≥ s · αN

4

Thus s ≤
⌊
4
α

⌋
, i.e., if all triples in B3 are red , we have

card(B) ≤
⌊
4

α

⌋
.

The case when all triples in B3 are blue can be considered in the
same way, we just list the elements in B in the decreasing order. Thus
the same estimate for card(B) is valid also in this case.
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When all triples in B3 are green , we start in the middle of B.

 

 

If |w − t| > 1 then, by Lemma,

r(t, w) ≥ αN +
αN

4

since both r(t, u), r(u,w) ≥ αN
 

Similarly, if |w − t| > 3 then

r(t, w) ≥ αN + 2 · αN
4

By Induction we get that

If |w − t| > 2q then

r(bt, bu) ≥ αN + q · αN
4

Hence

N ≥ r(1, s) ≥
(⌊

log2 |s− 1|
⌋
+ 2
) αN

4
≥ (log2 s) ·

αN

4
.
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Thus log2 s ≤
⌈
4
α

⌉
, i.e. when all triples in B3 are green we have

card(B) ≤ 2d
4
αe

Together with the estimates for the cases of red and blue triples, by
the Ramsey theorem, this implies that

k ≤ k(α) def
= R3

(
2d

4
αe, 3

)
which ends the proof of

Theorem
For all C > 1 there exists k(C) ∈ N so that if for some k ∈ N and every
n ∈ N there exists an embedding fn : Dn,k → c00 so that ∀u, v ∈ Dn,k

‖fn(u)− fn(v)‖1 ≤ dDn,k(u, v) ≤ C‖fn(u)− fn(v)‖s

then k ≤ k(C), where k(C) def
= R3

(
2d8C

2e, 3
)
.
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If time permits...
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Theorem (Brunel, Sucheston 1975)
For each non-superreflexive space X there exists a Banach space E
with an ESA basis such that E is finitely representable in X.
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Definition (Brunel, Sucheston 1975)
A sequence {en} is called
• equal signs additive (ESA) if for any finitely non-zero sequence {ai}
of real numbers such that sign ak = sign ak+1,∥∥∥ k−1∑

i=1

aiei + (ak + ak+1)ek +

∞∑
i=k+2

aiei

∥∥∥ =
∥∥∥ ∞∑
i=1

aiei

∥∥∥.
• subadditive (SA) if for any finitely non-zero sequence {ai}∥∥∥ k−1∑

i=1

aiei + (ak + ak+1)ek +

∞∑
i=k+2

aiei

∥∥∥ ≤ ∥∥∥ ∞∑
i=1

aiei

∥∥∥.
• invariant under spreading (IS) if for any finitely non-zero sequence
{ai} and any increasing (ki)i∥∥∥ ∞∑

i=1

aiei

∥∥∥ =
∥∥∥ ∞∑
i=1

aieki

∥∥∥.
Theorem (Brunel, Sucheston 1975) ESA ⇐⇒ (SA and IS)
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An embedding of D1,k into a space with an ESA basis.

We will work with elements whose coordinates are 0 and ±1. We shall
write +1 as + and −1 as −, and omit zeros at the end, e.g. we write
(+ +−−) instead of (+ +−−, 0, 0, 0, . . . )
Note that the element (++−−) has two metric midpoints (0 +−0) and
(+00−) whose distance from each other is

‖(+00−)− (0−+0)‖ = ‖(+−+−)‖
≥ ‖(0 +−0)‖ = ‖(+00−)‖

=
1

2
‖(+ +−−)‖

This gives a vertically faithful
embedding of D1,2 into E

I
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To embed D1,k we map the bottom of D1,k to 0, and the top to

x0 = (+ +−− |++−−|++−−|++−−|....|++−−|0000 . . . ),

where the sequence contains 2k blocks of (+ +−−).

Note that x0 has many well separated metric midpoints.
Namely, for 1 ≤ i ≤ k, we can define an element mi by

ν-th block of mi =

{
0 +−0 if ri(ν) = 1,

+00− if ri(ν) = −1,

where r1, . . . , rk are the Rademachers on {1, 2, 3, . . . , 2k}.
By ESA, ∀i

‖mi‖ =
1

2
‖x0‖

and
‖mi −mj‖ ≥

1

4
‖x0‖

Thus for any k we have a vertically faithful embedding of D1k into E.
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This method can be iterated, but it does get technical.

I will just show one iteration, i.e. how to embed D2k into E.

The top of D2,k will be mapped onto an element similar to

x0 = (+ +−− |++−−|++−−|++−−|....|++−−|0000 . . . )

but we will use more blocks and each block will be bigger.
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For D2,k each block will be

h = (+ +++−−−−)

We will use two “good”
midpoints of h:

h+ = (00 + +−−00)
and

h− = (+ + 0000−−)

and their “good” midpoints

(000 +−000)︸ ︷︷ ︸
h++

, (00 + 00− 00)︸ ︷︷ ︸
h+−

,

(0 + 0000− 0)︸ ︷︷ ︸
h−+

, (+000000−)︸ ︷︷ ︸
h−−

Note that ‖h++‖ = 1
4‖h‖ ,

and ‖h+ + h−+‖ = 3
4‖h‖ .

Thus one block gives multiple options for
isometric embedding of vertical paths that
connect the bottom and top of the graph.
 

 

Multiple blocks give even more options
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h−−

Note that ‖h++‖ = 1
4‖h‖ ,

and ‖h+ + h−+‖ = 3
4‖h‖ .

Thus one block gives multiple options for
isometric embedding of vertical paths that
connect the bottom and top of the graph.
 

 

Multiple blocks give even more options
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Thank you.
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