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Definition
Let M be a metric space, X be a Banach space, and f : M — X.

We say that f is a bi-Lipschitz embedding of M into X if there exists a
constant C' so that for all u,v € M

1 (w) = F(v)llx < du(u,v) < Cf[f(u) = f(v)llx.

The smallest possible C' is called the distortion of f.
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Methods of embedding finite metric spaces into
non-superreflexive Banach spaces

The method used by Bourgain (1986) for trees and by Johnson and
Schechtman (2009) for binary diamonds and Laakso graphs, uses the
following classical cornerstone result

Theorem (Ptak 59, Singer 62, Petczynski 62, James 64,
Milman-Milman 65)

A Banach space X is not reflexive if and only if

there exists 6 with 0 < 6 < 1 and a sequence (z,,) in X such that for
any finitely supported scalar sequence (a,,) we have

Hsup‘Zan < HZanmn . §Z|an|
7 n<g n n
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Methods of embedding finite metric spaces into
non-superreflexive Banach spaces

The method used by Bourgain (1986) for trees and by Johnson and

Schechtman (2009) for binary diamonds and Laakso graphs uses the
following classical cornerstone result

Theorem (Ptak 59, Singer 62, Petczynski 62, James 64,
Milman-Milman 65)

A Banach space X is not reflexive if and only if

there exists 6 with 0 < 6 < 1 and a sequence (z,,) in X such that for
any finitely supported scalar sequence (a,,) we have
an

HE anTy <§ |an|
n<j

summing norm ||a||s ”alll £1 norm

0 sup

v
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Suppose that there exists an embedding f : M — ¢y so that for all u, v
in M

1f(w) = f()ll < dn(u,v) < C[f(u) = f(0)lls (1)
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Suppose that there exists an embedding f : M — ¢ so that for all u, v
in M

1f(w) = f()llr < dum(u,v) < Cllf(u) = F(v)ls (1)
If X is not reflexive, define ¢ : M — X by
o(u) =Y (f(w))i;
=1
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Suppose that there exists an embedding f : M — ¢ so that for all u, v
in M

1f(w) = f()llr < dum(u,v) < Cllf(u) = F(v)ls (1)
If X is not reflexive, define ¢ : M — X by
o(u) =Y (f(w))i;
=1

Then

011 f(u) = F()lls < llp(u) = )lx < [1f(u) = fF(0)]a
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Suppose that there exists an embedding f : M — ¢ so that for all u, v
in M

1 (u) = F(W)l1 < du(u,v) < C[[f (u) = F(v)ls (1)
If X is not reflexive, define ¢ : M — X by
p(w) =D (f(u))i;
=1
Then
0I|.f (u) = f()lls < llo(w) = o(0)llx < || f(w) = (o)l
and thus

o) — o@)lx < 1£@) — FW)l < dar(u,v)
< O1f @) — F@)ls < Cllo) — p@)];
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Suppose that there exists an embedding f : M — ¢gg so that for all u, v
in M

1f(w) = f()llr < dum(u,v) < Cllf(u) = F(v)ls (1)
If X is not reflexive, define ¢ : M — X by
o(u) = (f(u))iz;
i=1
Then
0|1f (u) = f()lls < llo(u) —e)llx < [If(w) = F(v)l1
and thus
lo(w) = e(V)llx < I f(w) = fF()ll1 < dpm(u,v)
< Ollf () - FW)lls < S llow) — o)l

This method of construction of an embedding is based on the
factorization between the summing basis and the unit vector basis of
/1, and | will refer to it as the factorization method.

Randrianantoanina (Miami University) Difference in embedding methods March 6, 2018 5/ 31




In 2017 M. Ostrovskii and BR developed a new method of construction
of low-distortion embeddings into all non-superreflexive spaces.

We used to show that all finitely branching diamond and Laakso
graphs embed into all non-superreflexive spaces with distortion not
exceeding 8 + ¢, independently of the number of branching.
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In 2017 M. Ostrovskii and BR developed a new method of construction
of low-distortion embeddings into all non-superreflexive spaces.

We used to show that all finitely branching diamond and Laakso
graphs embed into all non-superreflexive spaces with distortion not
exceeding 8 + ¢, independently of the number of branching.

This method is based on the theory of equal-signs-additive (ESA)
sequences developed by Brunel and Sucheston (1975-1976).
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In 2017 M. Ostrovskii and BR developed a new method of construction
of low-distortion embeddings into all non-superreflexive spaces.

We used to show that all finitely branching diamond and Laakso
graphs embed into all non-superreflexive spaces with distortion not
exceeding 8 + ¢, independently of the number of branching.

This method is based on the theory of equal-signs-additive (ESA)
sequences developed by Brunel and Sucheston (1975-1976).

| will outline this embedding method at the end of the talk.
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In 2017 M. Ostrovskii and BR developed a new method of construction
of low-distortion embeddings into all non-superreflexive spaces.

We used to show that all finitely branching diamond and Laakso
graphs embed into all non-superreflexive spaces with distortion not
exceeding 8 + ¢, independently of the number of branching.

This method is based on the theory of equal-signs-additive (ESA)
sequences developed by Brunel and Sucheston (1975-1976).

| will outline this embedding method at the end of the talk.
The first goal of the talk is to prove that embeddings of multibranching

diamonds with distortions bounded independently of the number of
branches cannot be constructed using the factorization method.
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Let D, ;, be a k-branching diamond with n levels (definition in a
moment). We prove
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Let D, ;, be a k-branching diamond with n levels (definition in a
moment). We prove

Theorem (M. Ostrovskii, BR)

For all C > 1 there exists k(C) € N so that if for some k € N and every
n € N there exists an embedding f,, : D, — coo S0 thatVu,v € Dy, j,

[fn(u) = fa(0)lls < dp,, , (u,v) < Cf[fn(u) = fa()lls  (s-61)

thenk < k(C).

Randrianantoanina (Miami University) Difference in embedding methods March 6, 2018 7/31



Let D, ;, be a k-branching diamond with n levels (definition in a
moment). We prove

Theorem (M. Ostrovskii, BR)

For all C > 1 there exists k(C) € N so that if for some k € N and every
n € N there exists an embedding f,, : D, — coo S0 thatVu,v € Dy, j,

[fn(u) = fa(0)lls < dp,, , (u,v) < Cf[fn(u) = fa()lls  (s-61)

thenk < k(C).

Note that this result does not exclude the possibility that
Vk € N3C = C(k) < oo so that Vn € N 3f,, : D,, , — coo that satisfies
condition (s-¢1).
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Let D, ;, be a k-branching diamond with n levels (definition in a
moment). We prove

Theorem (M. Ostrovskii, BR)

For all C > 1 there exists k(C) € N so that if for some k € N and every
n € N there exists an embedding f,, : D, — coo S0 thatVu,v € Dy, j,

1fn(w) = fa(0)ll1 < dp, , (u,0) < Cf[fa(w) = fa(v)lls  (5-41)
then k < k(C).

Note that this result does not exclude the possibility that

Vk e N3C = C(k) < co so that Vn € N 3f,, : D, , — coo that satisfies
condition (s-¢1).

This result only implies that if such numbers C(k) exist for all K € N
then they would not be uniformly bounded.
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Let D, ;, be a k-branching diamond with n levels (definition in a
moment). We prove

Theorem (M. Ostrovskii, BR)

For all C > 1 there exists k(C) € N so that if for some k € N and every
n € N there exists an embedding f,, : D, — coo S0 thatVu,v € Dy, j,

1fn(w) = fa(0)ll1 < dp, , (u,0) < Cf[fa(w) = fa(v)lls  (5-41)
then k < k(C).

Note that this result does not exclude the possibility that

Vk e N3C = C(k) < co so that Vn € N 3f,, : D, , — coo that satisfies
condition (s-¢1).

This result only implies that if such numbers C (k) exist for all k € N
then they would not be uniformly bounded.

We do not know whether such numbers C (k) exist for all k € N, or
even whether C(3) exists (Johnson and Schechtman (2009) proved
that C(2) exists).
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Definition of multi-branching diamonds

For any integer k£ > 2, we define D j, to be the graph consisting of

(k + 2) vertices, two of which are called top and bottom and are joined
by k independent paths of length 2, i.e. D, is the complete bipartite
graph K .

Forany n € N, if D,,_; ; is already defined, the graph D,, ;. is obtained
from D,,_; ; by replacing each edge in D,,_; ; by a copy of D; 4.

We equip D, ;. with the shortest path distance.

. D2,k
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Outline of a proof of the theorem
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Outline of a proof of the theorem
- Fix £ € N. Suppose that Vn € N 3f,, : D,, , = coo SO that

1fn(w) = fa(0)llr < dp, (4, 0) < Cf[fn(u) = fu(0)lls  (s-t1)
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Outline of a proof of the theorem
- Fix £ € N. Suppose that Vn € N 3f,, : D,, , = coo SO that

[ fn(w) = fr(0) L < dp,  (u,v) < Ol fa(w) = fu(@)lls  (s-f1)
Then there exists a “vertically-faithful” embedding of D, ;, into cqo,
thatis, 3¢ : Dy, — coo so that g(v—1) =0, g(v;) = z; and Vi, j < k

v |zi — z-1]l1 = §H$0H1

1
lz; — w01 ~ §||$0||1
and

1
lzi=aslle 2 llos—o;l1 > llaolls

U1
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Outline of a proof of the theorem
- Fix £ € N. Suppose that Vn € N 3f,, : D,, , = coo SO that

1fn(w) = fa(0)llr < dp, (4, 0) < Cf[fn(u) = fu(0)lls  (s-t1)

Then there exists a “vertically-faithful” embedding of D, ;, into cqo,
that is, 39 : D1 — coo so that g(v—_1) =0, g(v;) = x; and Vi, j < k

|zi —z-1ll1 = S llzoll2
Vo 2
1
lz; — w01 ~ §||$0||1
and 1
|zi—zjlls > 5||l’z‘—$j|\1 > @Hl’o\h

V1 Vi

Idea/method goes back to
Matousek (1989,1999),
Lee, Raghavendra (2010),
Mendel, Naor (2013)
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Outline of a proof of the theorem

- Fix £ € N. Suppose that Vn € N 3f,, : D,, , = coo SO that
[fn(u) = fa(v)lls < dp,, ; (u,v) < Cl[falu) = fu(@)lls  (s-£1)

Then there exists a “vertically-faithful” embedding of D, ;, into cqo,

thatis, 3¢ : Dy, — coo so that g(v—1) =0, g(v;) = z; and Vi, j < k

v |zi — z-1]l1 = §H$0H1

1
lz; — w01 ~ §||$0||1
and 1
|zi—zjlls > 5||l’z‘—$j|\1 > @on\h

U1 Vi
Idea/method goes back to

Matousek (1989,1999),
Lee, Raghavendra (2010),
Mendel, Naor (2013)

“self-improvement argument”,
coarse differentiation (Eskin, Fisher, Whyte 2006)

V-1
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Outline of a proof of the theorem
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Outline of a proof of the theorem

By Step 1, 3g : Dy — coo so that g(v—_1) =0, g(v;) = x; and Vi, j < k
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Outline of a proof of the theorem

By Step 1, 3g : Dy — coo so that g(v—_1) =0, g(v;) = x; and Vi, j < k

We improve g so that it resembles closely a standard embedding of the
binary diamond D; » into /1,
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Outline of a proof of the theorem

By Step 1, 3¢ : D1, — coo S0 that g(v—1) =0, g(v;) = x; and Vi, j < k

We improve g so that it resembles closely a standard embedding of the
binary diamond D; » into /1,

that is, for some N € N, the top vertex of D, ; is mapped onto a vector
in ¢ whose every coordinate is 1 or —1,

and all “middle” vertices of D, ; are mapped onto elements of ¢ such

that their pairwise /..-distance does not exceed 1,

their pairwise summing norm distance is at least a/V, where a =

1
2C?°
and the “vertical faithfulness” is preserved
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Outline of a proof of the theorem

By Step 1, 3¢ : D1, — coo S0 that g(v—1) =0, g(v;) = x; and Vi, j < k

We improve g so that it resembles closely a standard embedding of the
binary diamond D; » into /1,

that is, for some N € N, the top vertex of D, ; is mapped onto a vector
in ¢ whose every coordinate is 1 or —1,

and all “middle” vertices of D, ; are mapped onto elements of ¢ such

that their pairwise /..-distance does not exceed 1,

their pairwise summing norm distance is at least /N, where oo = ﬁ
and the “vertical faithfulness” is preserved, so

There exist N € N and elements z; € ¢g, fori € {1,...,k}, so that

Vie{l,..., k} supp(z;) € {1,...,N},
Vi,je{1,...,k}Vm€{1,...,N} ’Zim—ij‘Sl,
Vi,je{l,....k}, i %, 2 — zills > aN > 2.
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Outline of a proof of the theorem

- We use the Ramsey theorem to show that

For every a € (0, 1), there exists a natural number k(«), so that

if there exist k, N € N, and {z;}¥_, C coo with

Vie{l,...,k} supp(z;) € {1,...,N},

Vi,je{l,....,k}Vvme {1,...,N} Vs = 2] £ 1,

VZ7.7€{1:7]€}77/7£], ||Z»L‘—ZszZCL’N22,
then

k < k(a).
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Sketch of proof of the Main Step
Forevery i,j € {1,...,k} with ¢ # j, we will denote by (i, j) the
smallest index that witnesses the fact that _
that is, the smallest integer in {1, ..., N} such that
r(i.j)
aN < ‘ (zim—zjm)’ < aN +1,

m=1
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Sketch of proof of the Main Step
Forevery i,j € {1,...,k} with ¢ # j, we will denote by (i, j) the
smallest index that witnesses the fact that _
that is, the smallest integer in {1, ..., N} such that
r(i.j)
alN < ‘ Z (zim—zjm)) < aN +1,
m=1

First, we prove that for every triple of pairwise distinct numbers

i,7,0 € {1,...,k} the values of indices (i, j),r(i,1), (j,1) cannot stay
together, and at least two of them are separated by a positive distance
proportional to NV, independent of the triple i, j, 1.
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Sketch of proof of the Main Step
Forevery i,j € {1,...,k} with ¢ # j, we will denote by (i, j) the
smallest index that witnesses the fact that _
that is, the smallest integer in {1,..., N} such that
r(i.j)
alN < ‘ Z (zim—zjm)) < aN +1,
m=1

Next, we prove that if, say, for all triples 1 <i < j <1 <k, the
maximum of r(z, j),r(i,1),7(4,1) is always attained at (3, 1), then,

for all 4, j, the values of (i, j) have to grow by a fixed amount with
every increase of i and j. Thus r(k — 1, k) is larger than r(1,2) by an
amount proportional to NV and k.

Since r(k — 1,k) < N, this leads to a bound on the size of k.
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Sketch of proof of the Main Step
Forevery i,j € {1,...,k} with ¢ # j, we will denote by (i, j) the

smallest index that witnesses the fact that _
that is, the smallest integer in {1,..., N} such that

r(i.j)
alN < ‘ Z (zim—zjm)’ < aN +1,
m=1

Next, we prove that if, say, for all triples 1 < i < j <[ < k, the
maximum of (¢, j),7(4,1),r(j,1) is always attained at r(j,1), then,

for all 4, j, the values of (i, j) have to grow by a fixed amount with
every increase of i and j. Thus r(k — 1, k) is larger than r(1,2) by an
amount proportional to NV and k.

Since r(k — 1,k) < N, this leads to a bound on the size of k.

Similarly, k is bounded if the maximum of = (i, j),r(i,1),r(j,1) is always
equal to (i, j), or always equal to r(i,1).

This leads to a 3-coloring of triples from {1, ..., k}, and by the Ramsey
theorem, we can find a subset of [k] with monochromatic triples.
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Forevery 1 <i < j <l <k we define
MAX;;i = max{r(i, j),(i,1),r(j,1)}
min;;; = min{r(, ), (i, 1),r(5, 1)}
Lemma

For every pairwise distinct triple of numbers i, j,l € {1,...,k} we have:

. N —1 N
MAX;;; — min;j; > 2 5= aT
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Let 7(i), 7(j) and 7 (1) be the sums of the coordinates of z;, z;, 2, resp.,
up to the term number (i, 7). That is, for example,
7(4,5)

=2 ém

By the definition of (i, j), we have

aN < |7(i) — 7(j)| < aN + 1.
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Let 7(i), 7(j) and 7 (1) be the sums of the coordinates of z;, z;, 2, resp.,
up to the term number (i, 7). That is, for example,
7(4,5)

E Zlm
aN4+1 aN+1

By the definition of (i, j), we have )
—

aN < |7(i) = 7(j)| < aN + 1. 0 =h)

Say, |7(l) = 7())| < |7(l) = 7(5)]. ~aN
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Let 7(i), 7

(7) and () be the sums of the coordinates of z;, z;, z;, resp.,

up to the term number (i, 7). That is, for example,

7(4,5)

g Zlm

aN+1 aN+1

By the definition of (i, j), we have 2 2
—
aN < |7(i) — 7(j)| < aN + 1. 0 ()
Say, |7(l) = 7(&)| < [7() — T(5)I- ~aN

Case 1: |r(l) —7()| < <% |

7(%,5) o
> (2im — 2m)| < 2251,

m=1

That is:

Difference in embedding methods
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Let 7(i), 7(j) and 7 (1) be the sums of the coordinates of z;, z;, 2, resp.,

up to the term number (i, 7). That is, for example,
7(4,5)

E Zlm

aN4+1 aN+1

By the definition of (i, j), we have )
—
aN < |7(i) — 7(j)| < aN + 1. ) =h)
Say, |7(l) = 7(&)| < [7() — T(5)I- N oN
r(i,1)
Case 1: |r(I) — 7(i)| < oL JBut \ mZzl (zim — zZm)] > aN.,

(i)
Thatis: | S (2im — zlm)‘ < al¥tl,

m=1
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Let 7(i), 7(j) and 7 (1) be the sums of the coordinates of z;, z;, 2, resp.,

up to the term number (i, 7). That is, for example,
7(4,5)

E Zlm

aN4+1 aN+1

By the definition of (i, j), we have )
—
aN < |7(i) — 7(j)| < aN + 1. ) =h)
H_/
Say, |7(l) = 7(&)| < [7() — T(5)I- N oN
7 (i1
Case 1: |7(l) — 7(i)| < oL But ‘ 2:: Zim — zlm)’ = aN.
o) Thus -
Thatis: | & i =) < B 50 | 2 e
B m=r(i.j)
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Let 7(i), 7(j) and 7 (1) be the sums of the coordinates of z;, z;, 2, resp.,

up to the term number (i, 7). That is, for example,
7(4,5)

E Zlm

aN4+1 aN+1

By the definition of (i, j), we have )
—A
aN < |7(i) — 7(j)| < aN + 1. 0 ()
—
Say, |r(1) = 7(9)| < [7(1) = 7()I- ~aN
r (i1
Case 1: |r(l) — 7(3)| < a]\g—i—l But ‘ z:: Zim — zlm)’ > aN.
- Thus
That is: mz’j)(z- p )‘ < aN+1 g N-1
| Em T A = ’ Z( 4)(Zim —sz)‘ > %5
m=r(,j
Since for all m, |zim — z1m| < 1,
) aN —1
rd) =G0l 2| 3 (o - am)| 2 2
m=r(2,j
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Let 7(i), 7(j) and 7 (1) be the sums of the coordinates of z;, z;, 2, resp.,

up to the term number (i, 7). That is, for example,
7(4,5)

E Zlm

aN+1 aN+1

By the definition of (i, j), we have 2 2
—A
aN <|7(i1) —7(j)| < aN + 1. ) )
—
Say, |t(1) = 7(9)| < [7(1) = 7()I- ~aN
(4,1
Case 1: |r(l)—7(i)| < a]\g—i—l But ‘ z:: i Zlm)’ > alN
o Thus
Thatis: |53 (4 < a1 £
aris: mzzjl(zzm B Zlm)‘ = 2 ’ Z( )(sz - Zlm)‘ > aJ\;—l
m=r(t,j
Since for all m, |z — z1m| < 1,
- . r@h) aN -1 _ aN
@A) =rGD 2| S (zim = 2m)| 2 >
m=r(i.j) 2 4
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Let (i),

7(7) and 7(l) be the sums of the coordinates of z;, z;, z;, resp.,

up to the term number (i, 7). That is, for example,

7(4,5)

=2 ém

aN+1 aN+1

By the definition of (i, j), we have 2 2
—
aN < |7(i) — 7(j)| < aN + 1. 0 ()
Say, |7(l) = 7(i)| < [7() — 7(5)I- ~aN

Case2: |r(l) —7(j)| > 2L |
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Let 7(i), 7

(7) and () be the sums of the coordinates of z;, z;, z;, resp.,

up to the term number (i, 7). That is, for example,

7(4,5)

g Zlm

aN+1 aN+1

By the definition of (i, j), we have 2 2
—
aN < |7(i) — 7(j)| < aN + 1. ) =h)
Say, |7(l) = 7(i)| < [7() — 7(5)I- ~aN
Case 2: |7(l) — 7(j)| > 3e5+L J
7 (i)
i.e. Z_l(ij — Zim)| > 30‘1;’“

Difference in embedding methods
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Let 7(i), 7(j) and 7 (1) be the sums of the coordinates of z;, z;, 2, resp.,

up to the term number (i, 7). That is, for example,
7(4,5)

E Zlm

aN4+1 aN+1

By the definition of (i, j), we have )
—
aN < |7(i) — 7(j)| < aN + 1. ) =h)
H—/
Say, |7(l) = 7(i)| < [7() — 7(5)I- N oN
7(J l)
Case 2: |r(l) —7(j)| > 324+ JBUt ‘ (zjm — zlm)‘ <aN + 1.
7 (i)

i.e. Z_l(zjm _ zlm) > 3041;/4—1
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Let 7(i), 7(j) and 7 (1) be the sums of the coordinates of z;, z;, 2, resp.,

up to the term number (i, 7). That is, for example,
7(4,5)

E Zlm

aN4+1 aN+1

By the definition of (i, j), we have )
—
aN < |7(i) — 7(j)| < aN + 1. ) =h)
H_/
Say, |7(l) = 7(i)| < [7() — 7(5)I- ~aN
7(4, l)
Case 2: |T(l) _ T(])l > 3041;7—1—1 But ‘ z]m = zlm)‘ < aN + 1.
(i.g) Thus )
. 2 167 r j7
€. mz_:l(zjm — am)| 2 P ) >, (zjm— Zlm)‘ > ali=l
B m:r(irj)
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Let 7(i), 7(j) and 7 (1) be the sums of the coordinates of z;, z;, 2, resp.,

up to the term number (i, 7). That is, for example,
7(4,5)

E Zlm

aN+1 aN+1

By the definition of (i, j), we have )
—
aN < |7(i) — 7(j)| < aN + 1. 0 )
H_/
Say, |T(1) — ()| < (1) — 7(4)I- ~alN
J,l)
Case 2: |T(l) _ T(])l > 3041;7—1—1 But ‘ z]m = zlm)’ < aN + 1.
(i.g) Thus )
; X 3aN+1 J .
€ mZ::l(zgm Z“”)‘ =59 ) 2% ‘)(ij—sz)‘ > ali=l
m=r(t,J

Since for all m, |2jm — 2im| < 1,
o ‘ 7(5)
r6) =D 2| S (= am)| 2 5= 2 5

m=r(i,]
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Thus for every pairwise distinct triple of numbers i, j,0 € {1,...,k} we

have:
aN —1 alN
- Z -

MAXijl = minijl > 1
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We are now ready for the final step of the proof.
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We are now ready for the final step of the proof.
We will color triples (i, j,1) € {1,...,k}Pwith1 <i<j<l<kas
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We are now ready for the final step of the proof.
We will color triples (i, j,1) € {1,...,k}Pwith1 <i<j<l<kas

By the Ramsey Theorem, for every s € N, there exists a natural
number Rs3(s, 3), so that for all £ > Rs(s, 3) the set {1,..., k} contains
a subset B with card(B) > s such that every triple (4, j,1) € B3 is of the
same color.
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We are now ready for the final step of the proof.
We will color triples (i, j,1) € {1,...,k}Pwith1 <i<j<l<kas

By the Ramsey Theorem, for every s € N, there exists a natural
number Rs3(s, 3), so that for all £ > Rs(s, 3) the set {1,..., k} contains
a subset B with card(B) > s such that every triple (4, j,1) € B3 is of the
same color.

v

We will show that the cardinality s of any set with monochromatic
triples is bounded above by a number independent of N.
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We are now ready for the final step of the proof.
We will color triples (i, j,1) € {1,...,k}Pwith1 <i<j<l<kas

By the Ramsey Theorem, for every s € N, there exists a natural
number Rs3(s, 3), so that for all £ > Rs(s, 3) the set {1,..., k} contains
a subset B with card(B) > s such that every triple (4, j,1) € B3 is of the
same color.

v

We will show that the cardinality s of any set with monochromatic
triples is bounded above by a number independent of N.

We consider the three possible colors separately.
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First suppose that every triple in B3 is [{g8l.
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First suppose that every triple in B3 is [{g8l.

n Then, by Lemma,
aN

?"(2,3)20{N+T

w since both r(1,2),7(1,3) > aN
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First suppose that every triple in B3 is [{g8l.

n Then, by Lemma,
alv
4

r(2,3) > aN +

w since both r(1,2),r(1,3) > aN
/\ Similarly, for all £ > 2

1 2 3 t alN

U r(z’t) 2 alN+ 4
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First suppose that every triple in B3 is [{g8l.

l‘ Then, by Lemma,
aN

T(2,3)ZQN+T

w since both r(1,2),r(1,3) > aN
/\ Similarly, for all £ > 2

1 2 3 t alN

U r(2.1) 2 alN + ==
/\ Thus, for all ¢t > 3

1 2 3 t alN

w T30z el 42 o
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First suppose that every triple in B3 is [{g8l.

l‘ Then, by Lemma,
aN

w since both r(1,2),r(1,3) > aN
/\ Similarly, for all £ > 2

1 2 3 t alN

U r(2.1) 2 alN + ==
r\ Thus, for all ¢t > 3

1 2 3 t alN
>aN+2 - —
w T(37t) = et 4
alN
By Induction r(s—1,8) >aN + (s—2)- e J
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Hence e
NZT(S—LS)ZS'QT

Thus s < | 4], i.e., if all triples in B are [{@8ll, we have

card(B) < H .

a
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Hence e
NZT(S—LS)ZS'QT

Thus s < | 4], i.e., if all triples in B are [{@8ll, we have

card(B) < H .

a

The case when all triples in B3 are [BIlig] can be considered in the
same way, we just list the elements in B in the decreasing order. Thus
the same estimate for card(B) is valid also in this case.
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When all triples in B3 are - we start in the middle of B.

Y

—

t u w

A
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When all triples in B3 are - we start in the middle of B.
If |w —t| > 1 then, by Lemma,

Y v
= r(t,w) ZozN—i—aT

t u w

A

since both r(t, u), r(u, w) > aN
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When all triples in B3 are - we start in the middle of B.
If |w —t| > 1 then, by Lemma,

Y v
r(t,w) > aN + aT

since both r(t, u), r(u, w) > aN

N\ Similarly, if juw — ¢| > 3 then

t u w alN

I\ 7“(ta111)20zN-|-2.T
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When all triples in B3 are - we start in the middle of B.
If |w —t| > 1 then, by Lemma,

Y v
r(t,w) > aN + ozT

since both r(t, u), r(u, w) > aN

N\ Similarly, if |w — ¢ > 3 then

t u w alN
r(t,w) > aN+2- —
N ) 1
If |w — t| > 29 then
By Induction we get that N
y > r(be,b) = aN +q- =
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When all triples in B3 are - we start in the middle of B.
If |w —t| > 1 then, by Lemma,

Y v
r(t,w) > aN + ozT

since both r(t, u), r(u, w) > aN

N\ Similarly, if |w — | > 3 then

t u w alN
r(t,w) > aN+2- —

. ) 1

If |w — t| > 29 then
By Induction we get that N
y > r(be,b) = aN +q- =
Hence
aN
T
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Thus log, s < (%] , i.e. when all triples in B3 are- we have

4
«

card(B) < Ak
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Thus log, s < (%] , i.e. when all triples in B3 are- we have

4
«

card(B) < ofa]

Together with the estimates for the cases of - and - triples, by
the Ramsey theorem, this implies that

k< k(a) %" R, (2%1,3)
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Thus log, s < (%] , i.e. when all triples in B3 are- we have

4
«

card(B) < Ak

Together with the estimates for the cases of - and - triples, by
the Ramsey theorem, this implies that

k< k(a) %" R, (2%1,3)
which ends the proof of

Theorem

For all C' > 1 there exists k(C') € N so that if for some k € N and every
n € N there exists an embedding f, : D, j — coo SO thatVu,v € D,, 1,

[fn(w) = fa(0)ll1 < dp, (4, v) < C|[fn(u) = fulv)lls
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If time permits...
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Theorem (Brunel, Sucheston 1975)

For each non-superreflexive space X there exists a Banach space E
with an ESA basis such that E is finitely representable in X .
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Definition (Brunel, Sucheston 1975)

A sequence {e,} is called

e equal signs additive (ESA) if for any finitely non-zero sequence {a;}
of real numbers such that sign a;, = sign a1,

k—1 00 0
H E a;e; + (ak + ak+1)ek ol E a;e;ll = H E a;e;
i=1 i=k+2 =1

e subadditive (SA) if for any finitely non-zero sequence {a;}

k—1 0 o
H Zaiei + (ar + ag41)er + Z aiei|| < H Zaiei
i=1 i=k+2 i=1

e invariant under spreading (IS) if for any finitely non-zero sequence
{a;} and any increasing (k;);

(0.0 o
[S ] = |
i=1 =1

Theorem (Brunel, Sucheston 1975) ESA < (SA and IS)
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An embedding of D, j, into a space with an ESA basis.
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An embedding of D, j, into a space with an ESA basis.
We will work with elements whose coordinates are 0 and +1. We shall
write +1 as + and —1 as —, and omit zeros at the end, e.g. we write
(+ + ——) instead of (+ + ——,0,0,0,...)
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An embedding of D, j, into a space with an ESA basis.
We will work with elements whose coordinates are 0 and +1. We shall

write +1 as + and —1 as —, and omit zeros at the end, e.g. we write
(+ + ——) instead of (+ + ——,0,0,0,...)

Note that the element (+ + ——) has two metric midpoints (0 + —0) and
(+00—) whose distance from each other is

(+00-) = (0 = +0)]| = G+ = +-)]
> 0+ ~0)] = [ +00-)]
= Sl + =)l
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An embedding of D, j, into a space with an ESA basis.
We will work with elements whose coordinates are 0 and +1. We shall

write +1 as + and —1 as —, and omit zeros at the end, e.g. we write
(+ + ——) instead of (+ + ——,0,0,0,...)

Note that the element (+ + ——) has two metric midpoints (0 + —0) and
(+00—) whose distance from each other is

1(+00=) = (0 = +0)[| = [I(+ = +-)|
> [[(0 + =0)[ = [[(+-00-)]]

1
= ZIG++ =l ,
++——
This gives a vertically faithful \
embedding of D, 5 into E l]+—[]\ /+[|[]_
oooo
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To embed D; ;, we map the bottom of D, ;, to 0, and the top to
ro=(++—-—-|++——|++—-=|++——[..]++——[0000...),

where the sequence contains 2* blocks of (4 + ——).
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To embed D; ;, we map the bottom of D, ;, to 0, and the top to
ro=(++—-—-|++——|++—-=|++——[..]++——[0000...),

where the sequence contains 2* blocks of (4 + ——).
Note that xo has many well separated metric midpoints.
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To embed D; ;, we map the bottom of D, ;, to 0, and the top to
ro=(++—-—|++—-~|++——|++——|..| ++——[0000...),

where the sequence contains 2* blocks of (+ + ——).
Note that xo has many well separated metric midpoints.
Namely, for 1 < i < k, we can define an element m,; by

{0 +-0 if r(v)=1,

v-th block of m; = )
+00— if ri(v)=—1,

where 71, ..., are the Rademachers on {1,2,3,...,2"}.
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To embed D; ;, we map the bottom of D, ;, to 0, and the top to
ro=(++—-—|++—-~|++——|++——|..| ++——[0000...),

where the sequence contains 2* blocks of (+ + ——).
Note that xo has many well separated metric midpoints.
Namely, for 1 < i < k, we can define an element m,; by

V'th bIOCk Of m; = {O + =0 If ’l“i(V) = 1)

+00— if r;(v)=-1,
where 71, ..., are the Rademachers on {1,2,3,...,2"}.
By ESA, Vi
1
lmall = 5 llzoll
and

1
lms —myl| = 7 llaol
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To embed D; ;, we map the bottom of D, ;, to 0, and the top to
ro=(++—-—|++—-~|++——|++——|..| ++——[0000...),

where the sequence contains 2* blocks of (+ + ——).
Note that xo has many well separated metric midpoints.
Namely, for 1 < i < k, we can define an element m,; by

V'th bIOCk Of m; = {0 + =0 If ’l“z‘(V) = 1)

+00— if r;(v)=-1,
where 71, ..., are the Rademachers on {1,2,3,...,2"}.
By ESA, Vi
1
lmall = 5 llzoll
and

1
lms —myl| = 7 llaol

Thus for any k& we have a vertically faithful embedding of Dy into E.
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This method can be iterated, but it does get technical.

| will just show one iteration, i.e. how to embed Dy into F.
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This method can be iterated, but it does get technical.

| will just show one iteration, i.e. how to embed Dy into F.

The top of D, ;, will be mapped onto an element similar to

ro=(++—-—|++—-—|++—-=|++——[..|++——|0000...)

but we will use more blocks and each block will be bigger.
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For D, ;. each block will be

h=(++++-———-)
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For D, ;. each block will be
h=(H+++-———-)
We will use two “good”

midpoints of h:

hy = (00 + + — —00)
and
h_ = (++ 0000 — —)
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For D, ;. each block will be

h=(H+++-———-)
We will use two “good”
midpoints of h:

hy = (00 + + — —00)
and
h_ = (++ 0000 — —)

and their “good” midpoints
(000 + —000), (00 + 00 — 00),

Bt hy
(0+ 0000 — 0), (+000000—)
hy h__
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For D, ;. each block will be

h=(H+++-———-)
We will use two “good”
midpoints of h:

hy = (00 + + — —00)
and
h_ = (++ 0000 — —)

and their “good” midpoints
(000 + —000), (00 + 00 — 00),

Bt hy
(0 + 0000 — 0), (4+000000—)
hy h__

Note that [|fe | = X[|a]l
and [l + hoyll = [ .
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For D, ; each block will be

h=(H+++-———-)
We will use two “good”
midpoints of h:

h4+ = (00 + + — —00)
and
h_ = (++ 0000 — —)

and their “good” midpoints
(000 + —000), (00 + 00 — 00),

Bt hy
(0 + 0000 — 0), (4+000000—)
hy h__

Note that ||| = L[in]l .
and ||y + h_y = 3||A]

Thus one block gives multiple options for
isometric embedding of vertical paths that
connect the bottom and top of the graph.

(++++————)0'IIL p 1
(+0++ — —0-)¢ht+ h__ he+h_c 3,
h+ h
(00 + + — —00) €
(000 + —000) s he.s,
L] >
0 0
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For D, ; each block will be

h=(H+++-———-)
We will use two “good”
midpoints of h:

h4+ = (00 + + — —00)
and
h_ = (++ 0000 — —)

and their “good” midpoints
(000 + —000), (00 + 00 — 00),

Bt hy
(0 + 0000 — 0), (4+000000—)
hy h__

Note that ||| = L[in]l .
and ||y + h_y = 3||A]

Thus one block gives multiple options for
isometric embedding of vertical paths that
connect the bottom and top of the graph.

(ot g
(+0 + 4 - —U—) h++ h__ hs+ h—s,ﬂg
(00 + + — —00) -
(000 + —000) ¢ ++ he.ty
L )
0 0

Multiple blocks give even more options
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Thank you.
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