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Definition
Let (M, d) ... a metric space, 0 € M ... a distinguished point.
We put Lipg(M) := {f : M — RLipschitz, f(0) = 0}

fx) —f(y)
HfHL —SU)[Z/) d(X, )

M canonically embeds into Lipy(M)*

5 :M — Lipg(M)*
X > 3(x) = (f = £(x))

The Lipshitz free space over M is

F(M) := spans(M) c Lipy(M)*

Remark
* §(M) is linearly independent
+ dens(M) = dens(F(M)) when M is infinite
o F(M)* = Lipn(M)
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Corollary

X has the (DP) if and only if¥ x1,...,Xn, € Bx and
VS =S8(x*¢)Jaslice T Cc Ssuchthatvy e TVi=1,...,n:
Ixi =yl >2 .
In particular if X has the (DP) then¥ xq,...,Xn € Bx Ve >0
3y € Bx such that

IXi +yll >2—¢,

i.e. X is octahedral.
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Theorem (A. Rueda Zoca, AP ’16)
For a metric space M it is equivalent:
© 7 (M) is octahedral.

® Ve>0VNCM finite, 3 u # v € M such that every
1-Lipschitz function f : N — R admits an extension

FiM R, fH < (1+¢) and F(u) — F(v) > d(u, v).
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forall x,y € N.

+ We call the property in (3) the long trapezoid property
(LTP).
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A metrie characterization of (DP) of F(M)

Theorem (L.C. Garcia Lirola, A. Rueda Zoca, AP ’17)
For a metric space M it is equivalent:
©® F(M) has the (DP).
® Ve>0VNCM finite, 3 u # v € M such that every
1-Lipschitz function f : N — R admits an extension
FiM R, HfH < (1+¢)and F(u) — F(v) > d(u, v);

and { 5(2,’2;“5/()") ‘u#veMas above} is norming.

®Ve>0VNCM finite, 3u,v e M,u # v, such that

(1 —e)(d(x,y)+d(u,v)) <d(x,u)+d(y,v)

forall x,y € N; and {5(325‘;()") ‘u#veMas above}
norming.
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Proof of 7(M) (DP) — M length

Key property of f,

MY > 1=

d(x,y) > (1 —e)max{d(x,u) +d(u,y),d(x,v)+d(v,y)}

Then

M>d(x u)+d(u,y)+d(x,v)+d(v,y)

2
1—
>2(1 —&)(d(x,y)+d(u,v)).

* The magic function is fy, (t) = Wd(x y) (minus

value at 0). It comes from Ilvakhno-Kadets-Werner.



Proof of 7(M) (DP) = M length

Lemma
If a complete M is local then M is length.




Proof of 7(M) (DP) = M length

Lemma
If a complete M is local then M is length.

Proof.

If M not length = 3 x # y and § > 0 such that

d )
B(x, (1 +26)r) N B(y, (1 +28)r) = 0 where r := 2%,




Proof of 7(M) (DP) — M length

Lemma
If a complete M is local then M is length.

Proof.

If M not length = 3 x # y and § > 0 such that
B(x, (1 +26)r) N B(y, (1 +28)r) = 0 where r := 2% Define

f(t) = max {r — 5d(x, 1), 0} and
h(t) = mln{—r+ 1+5d(y, 1), 0} and f = fy + .




Proof of 7(M) (DP) — M length

Lemma
If a complete M is local then M is length.

Proof.

If M not length = 3 x # y and § > 0 such that
B(x (1 +25)r )mB(y (1+26)r) = 0 where r := 2%¥) Define

max{ d(x, 1), 0} and
mln{ r+ 1+5d(y, f), 0} and f = fi + .

Then “zu';)v > 5 = d(u,v) > ér.
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Theorem (lvakhno, Kadets, Werner, 2007)
If M is compact, then TFAE:

©® 7~ (M) has Daugavet property

® Lipy(M) has Daugavet property

® every pair x #y € M has property (2), i.e. for everye > 0
exists z e M\ {x,y}

d(x,z)+d(z,y) <d(x,y)+edist(z,{x,y}).

Theorem (L.C. Garcia Lirola, A. Rueda Zoca, AP)

11 € strexp(Brwy) if and only if i = 5(22;‘;()5’ ) where x # y does
not have (2).

v

* So if M is compact, str exp(Br)) = 0 = F(M) is
Daugavet.

+ We don’t know if for M complete, global property (2)
implies that M is length.
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Theorem (L.C. Garcia Lirola, A. Rueda Zoca, AP)

Let (M, d) be complete such that every pair x # y € M has
property (Z). Then M is connected.

- Converse is not true: if p € (0, 1) then F([0, 1],|-|°) has the
RNP.
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Thank you for your
attention!
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