Some isometric properties of Lipschitz free spaces

Tony Procházka joint work with L. C. García Lirola, A. Rueda Zoca

LmB, Université Bourgogne Franche-Comté

March 5, 2018 Non Linear Functional Analysis, CIRM

Let (M, d) ... a metric space, $0 \in M$... a distinguished point.

Let (M, d) ... a metric space, $0 \in M$... a distinguished point. We put Lip₀ $(M) := \{f : M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$

$$||f||_L := \sup_{x \neq y} \frac{f(x) - f(y)}{d(x, y)}$$

Let (M, d) ... a metric space, $0 \in M$... a distinguished point. We put Lip₀ $(M) := \{f : M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$

$$||f||_L := \sup_{x \neq y} \frac{f(x) - f(y)}{d(x, y)}$$

M canonically embeds into $Lip_0(M)^*$

$$\delta: \mathcal{M} \to \operatorname{Lip}_0(\mathcal{M})^*$$
$$x \mapsto \delta(x) = (f \mapsto f(x))$$

Let (M, d) ... a metric space, $0 \in M$... a distinguished point. We put Lip₀ $(M) := \{f : M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$

$$||f||_L := \sup_{x \neq y} \frac{f(x) - f(y)}{d(x, y)}$$

M canonically embeds into $Lip_0(M)^*$

$$\delta: \mathcal{M} \to \operatorname{Lip}_0(\mathcal{M})^*$$
$$x \mapsto \delta(x) = (f \mapsto f(x))$$

The Lipshitz free space over M is

$$\mathcal{F}(M) := \overline{\operatorname{span}} \delta(M) \subset \operatorname{Lip}_0(M)^*$$

Let (M, d) ... a metric space, $0 \in M$... a distinguished point. We put Lip₀ $(M) := \{f : M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$

$$||f||_L := \sup_{x \neq y} \frac{f(x) - f(y)}{d(x, y)}$$

M canonically embeds into $Lip_0(M)^*$

$$\delta: \mathcal{M} \to \operatorname{Lip}_0(\mathcal{M})^*$$
$$x \mapsto \delta(x) = (f \mapsto f(x))$$

The Lipshitz free space over M is

$$\mathcal{F}(M) := \overline{\operatorname{span}}\delta(M) \subset \operatorname{Lip}_0(M)^*$$

Remark

• $\delta(M)$ is linearly independent

Let (M, d) ... a metric space, $0 \in M$... a distinguished point. We put Lip₀ $(M) := \{f : M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$

$$||f||_L := \sup_{x \neq y} \frac{f(x) - f(y)}{d(x, y)}$$

M canonically embeds into $Lip_0(M)^*$

$$\delta: \mathcal{M} \to \operatorname{Lip}_0(\mathcal{M})^*$$
$$x \mapsto \delta(x) = (f \mapsto f(x))$$

The Lipshitz free space over M is

$$\mathcal{F}(M) := \overline{\operatorname{span}} \delta(M) \subset \operatorname{Lip}_0(M)^*$$

Remark

- $\delta(M)$ is linearly independent
- dens(M) = dens($\mathcal{F}(M)$) when M is infinite

Let (M, d) ... a metric space, $0 \in M$... a distinguished point. We put Lip₀ $(M) := \{f : M \to \mathbb{R} \text{ Lipschitz}, f(0) = 0\}$

$$||f||_L := \sup_{x \neq y} \frac{f(x) - f(y)}{d(x, y)}$$

M canonically embeds into $Lip_0(M)^*$

$$\delta: \mathcal{M} \to \operatorname{Lip}_0(\mathcal{M})^*$$
$$x \mapsto \delta(x) = (f \mapsto f(x))$$

The Lipshitz free space over M is

$$\mathcal{F}(M) := \overline{\operatorname{span}} \delta(M) \subset \operatorname{Lip}_0(M)^*$$

Remark

- $\delta(M)$ is linearly independent
- dens(M) = dens($\mathcal{F}(M)$) when M is infinite
- $\mathcal{F}(M)^* = \operatorname{Lip}_0(M)$

• For every M: $\mathcal{F}(M) = \mathcal{F}(completion(M))$.

• For every M: $\mathcal{F}(M) = \mathcal{F}(completion(M))$.

 \implies WLOG every *M* complete in what follows

A Banach space X has the Daugavet property if

$$\|Id + x \otimes x^*\| = 1 + \|x\| \|x^*\|$$

for all $x \in X$, $x^* \in X^*$.

A Banach space X has the Daugavet property if

$$\| Id + x \otimes x^* \| = 1 + \|x\| \|x^*\|$$

for all $x \in X$, $x^* \in X^*$.

Theorem (L. C. García Lirola, A. Rueda Zoca, AP) *TFAE:*

- 1 M is a length space
- **2** $\mathcal{F}(M)$ has the Daugavet property
- **3** $Lip_0(M)$ has the Daugavet property

isometric property

- isometric property
- C(K) has (DP) iff K has no isolated points (Daugavet)

- isometric property
- C(K) has (DP) iff K has no isolated points (Daugavet)
- $L_1(\mu)$ and $L_{\infty}(\mu)$ have (DP) iff μ has no atoms (Lozanovskii, Pełczyński)

- isometric property
- C(K) has (DP) iff K has no isolated points (Daugavet)
- $L_1(\mu)$ and $L_{\infty}(\mu)$ have (DP) iff μ has no atoms (Lozanovskii, Pełczyński)
- X^* (DP) \Longrightarrow X (DP)
- X (DP) $\not\Longrightarrow X^*$ (DP)

- isometric property
- C(K) has (DP) iff K has no isolated points (Daugavet)
- $L_1(\mu)$ and $L_{\infty}(\mu)$ have (DP) iff μ has no atoms (Lozanovskii, Pełczyński)
- X^* (DP) \Longrightarrow X (DP)
- $X (\mathsf{DP}) \not\Longrightarrow X^* (\mathsf{DP})$

Lemma

X has the (DP) if and only if $\forall x \in B_X$ and $\forall S = S(x^*, \varepsilon) = B_X \cap \{x^* > 1 - \varepsilon\}$ $\exists y \in S$ such that $||x - y|| > 2 - \varepsilon$.

- isometric property
- C(K) has (DP) iff K has no isolated points (Daugavet)
- $L_1(\mu)$ and $L_{\infty}(\mu)$ have (DP) iff μ has no atoms (Lozanovskii, Pełczyński)
- X^* (DP) \Longrightarrow X (DP)
- $X (\mathsf{DP}) \not\Longrightarrow X^* (\mathsf{DP})$

Lemma

X has the (DP) if and only if $\forall x \in B_X$ and $\forall S = S(x^*, \varepsilon) = B_X \cap \{x^* > 1 - \varepsilon\}$ $\exists y \in S$ such that $||x - y|| > 2 - \varepsilon$.

Lemma

X has the (DP) if and only if $\forall x \in B_X$ and $\forall S = S(x^*, \varepsilon)$ \exists a slice $T \subset S$ such that $\forall y \in T : ||x - y|| > 2 - \varepsilon$.

Corollary

X has the (DP) if and only if $\forall x_1, ..., x_n \in B_X$ and $\forall S = S(x^*, \varepsilon) \exists a \text{ slice } T \subset S \text{ such that } \forall y \in T \forall i = 1, ..., n :$ $||x_i - y|| > 2 - \varepsilon.$

Corollary

X has the (DP) if and only if $\forall x_1, \ldots, x_n \in B_X$ and $\forall S = S(x^*, \varepsilon) \exists a \text{ slice } T \subset S \text{ such that } \forall y \in T \forall i = 1, \ldots, n :$ $||x_i - y|| > 2 - \varepsilon.$ In particular if *X* has the (DP) then $\forall x_1, \ldots, x_n \in B_X \forall \varepsilon > 0$ $\exists y \in B_X \text{ such that}$

$$\|\mathbf{x}_i+\mathbf{y}\|>\mathbf{2}-\varepsilon,$$

i.e. X is octahedral.

Theorem (A. Rueda Zoca, AP '16) For a metric space M it is equivalent: **1** $\mathcal{F}(M)$ is octahedral.

Theorem (A. Rueda Zoca, AP '16)

For a metric space M it is equivalent:

1 $\mathcal{F}(M)$ is octahedral.

2 $\forall \varepsilon > 0 \forall N \subset M$ finite, $\exists u \neq v \in M$ such that every 1-Lipschitz function $f : N \to \mathbb{R}$ admits an extension $\tilde{f} : M \to \mathbb{R}, \|\tilde{f}\| \leq (1 + \varepsilon) \text{ and } \tilde{f}(u) - \tilde{f}(v) \geq d(u, v).$

Theorem (A. Rueda Zoca, AP '16)

For a metric space M it is equivalent:

1 $\mathcal{F}(M)$ is octahedral.

2 ∀ ε > 0 ∀ N ⊂ M finite, ∃ u ≠ v ∈ M such that every 1-Lipschitz function f : N → ℝ admits an extension f̃ : M → ℝ, || f̃ || ≤ (1 + ε) and f̃(u) - f̃(v) ≥ d(u, v).
3 ∀ ε > 0 ∀ N ⊂ M finite, ∃ u ≠ v ∈ M such that

 $(1-\varepsilon)(d(x,y)+d(u,v)) \leq d(x,u)+d(y,v)$

for all $x, y \in N$.

Theorem (A. Rueda Zoca, AP '16)

For a metric space M it is equivalent:

1 $\mathcal{F}(M)$ is octahedral.

2 ∀ ε > 0 ∀ N ⊂ M finite, ∃ u ≠ v ∈ M such that every 1-Lipschitz function f : N → ℝ admits an extension f̃ : M → ℝ, || f̃ || ≤ (1 + ε) and f̃(u) - f̃(v) ≥ d(u, v).
3 ∀ ε > 0 ∀ N ⊂ M finite, ∃ u ≠ v ∈ M such that (1 - ε)(d(x, y) + d(u, v)) ≤ d(x, u) + d(y, v)

for all $x, y \in N$.

• We call the property in (3) the *long trapezoid property* (LTP).

Theorem (L.C. García Lirola, A. Rueda Zoca, AP '17) For a metric space M it is equivalent: **1** $\mathcal{F}(M)$ has the (DP).

Theorem (L.C. García Lirola, A. Rueda Zoca, AP '17) For a metric space M it is equivalent:

1
$$\mathcal{F}(M)$$
 has the (DP).

2 $\forall \varepsilon > 0 \forall N \subset M$ finite, $\exists u \neq v \in M$ such that every 1-Lipschitz function $f : N \to \mathbb{R}$ admits an extension $\tilde{f} : M \to \mathbb{R}, \|\tilde{f}\| \leq (1 + \varepsilon) \text{ and } \tilde{f}(u) - \tilde{f}(v) \geq d(u, v);$

Theorem (L.C. García Lirola, A. Rueda Zoca, AP '17) For a metric space M it is equivalent:

1
$$\mathcal{F}(M)$$
 has the (DP).

2 $\forall \varepsilon > 0 \ \forall N \subset M$ finite, $\exists u \neq v \in M$ such that every 1-Lipschitz function $f : N \to \mathbb{R}$ admits an extension $\tilde{f} : M \to \mathbb{R}, \|\tilde{f}\| \le (1 + \varepsilon) \text{ and } \tilde{f}(u) - \tilde{f}(v) \ge d(u, v);$ and $\left\{ \frac{\delta(u) - \delta(v)}{d(u, v)} : u \neq v \in M \text{ as above} \right\}$ is norming.

Theorem (L.C. García Lirola, A. Rueda Zoca, AP '17) For a metric space *M* it is equivalent:

1
$$\mathcal{F}(M)$$
 has the (DP).

2 ∀ ε > 0 ∀ N ⊂ M finite, ∃ u ≠ v ∈ M such that every 1-Lipschitz function f : N → ℝ admits an extension f̃ : M → ℝ, ||f̃ || ≤ (1 + ε) and f̃(u) - f̃(v) ≥ d(u, v); and {δ(u)-δ(v) / d(u,v) : u ≠ v ∈ M as above} is norming.
3 ∀ ε > 0 ∀ N ⊂ M finite, ∃ u, v ∈ M, u ≠ v, such that (1 - ε)(d(x, v) + d(u, v)) ≤ d(x, u) + d(v, v)

 $(1-\varepsilon)(d(x,y)+d(u,v)) \leq d(x,u)+d(y,v)$

for all $x, y \in N$;

Theorem (L.C. García Lirola, A. Rueda Zoca, AP '17) For a metric space M it is equivalent:

1
$$\mathcal{F}(M)$$
 has the (DP).

2 ∀ ε > 0 ∀ N ⊂ M finite, ∃ u ≠ v ∈ M such that every 1-Lipschitz function f : N → ℝ admits an extension f̃ : M → ℝ, || f̃ || ≤ (1 + ε) and f̃(u) - f̃(v) ≥ d(u, v); and {δ(u)-δ(v) / d(u,v) : u ≠ v ∈ M as above} is norming.
3 ∀ ε > 0 ∀ N ⊂ M finite, ∃ u, v ∈ M, u ≠ v, such that (1 - ε)(d(x, y) + d(u, v)) ≤ d(x, u) + d(y, v) for all x, y ∈ N; and {δ(u)-δ(v) / d(u,v) : u ≠ v ∈ M as above} is

norming.

Definition

M is called *local* if $\forall f \in \text{Lip}_0(M) \ \forall \varepsilon > 0 \ \exists u \neq v \in M$ such that $\frac{f(u)-f(v)}{d(u,v)} > \|f\|_L - \varepsilon$ and $d(u,v) < \varepsilon$.

Definition

M is called *local* if $\forall f \in \text{Lip}_0(M) \ \forall \varepsilon > 0 \ \exists u \neq v \in M$ such that $\frac{f(u)-f(v)}{d(u,v)} > \|f\|_L - \varepsilon$ and $d(u,v) < \varepsilon$.

Lemma

If $\mathcal{F}(M)$ has the (DP) then M is local.

Definition

M is called *local* if $\forall f \in \text{Lip}_0(M) \ \forall \varepsilon > 0 \ \exists u \neq v \in M$ such that $\frac{f(u)-f(v)}{d(u,v)} > \|f\|_L - \varepsilon$ and $d(u,v) < \varepsilon$.

Lemma

If $\mathcal{F}(M)$ has the (DP) then M is local.

Proof.

Given $f \in S_{\text{Lip}_0(M)}$ and $x \neq y \in M$ such that $\frac{f(x)-f(y)}{d(x,y)} > 1 - \varepsilon$ it is enough to find $u \neq v \in M$ such that $\frac{f(u)-f(v)}{d(u,v)} > 1 - \varepsilon$ and $d(u,v) < \frac{2\varepsilon}{(1-\varepsilon)^2}d(x,y)$.

Definition

M is called *local* if $\forall f \in \text{Lip}_0(M) \ \forall \varepsilon > 0 \ \exists u \neq v \in M$ such that $\frac{f(u)-f(v)}{d(u,v)} > \|f\|_L - \varepsilon$ and $d(u,v) < \varepsilon$.

Lemma

If $\mathcal{F}(M)$ has the (DP) then M is local.

Proof.

Given $f \in S_{\text{Lip}_0(M)}$ and $x \neq y \in M$ such that $\frac{f(x)-f(y)}{d(x,y)} > 1 - \varepsilon$ it is enough to find $u \neq v \in M$ such that $\frac{f(u)-f(v)}{d(u,v)} > 1 - \varepsilon$ and $d(u,v) < \frac{2\varepsilon}{(1-\varepsilon)^2}d(x,y)$. To do so, apply "norming" LTP on $g := \frac{1}{2}(f + f_{xy})$ to get $u \neq v$ such that $\frac{g(u)-g(v)}{d(u,v)} > 1 - \frac{\varepsilon}{2}$.

Definition

M is called *local* if $\forall f \in \text{Lip}_0(M) \ \forall \varepsilon > 0 \ \exists u \neq v \in M$ such that $\frac{f(u)-f(v)}{d(u,v)} > \|f\|_L - \varepsilon$ and $d(u,v) < \varepsilon$.

Lemma

If $\mathcal{F}(M)$ has the (DP) then M is local.

Proof.

Given $f \in S_{\operatorname{Lip}_0(M)}$ and $x \neq y \in M$ such that $\frac{f(x)-f(y)}{d(x,y)} > 1 - \varepsilon$ it is enough to find $u \neq v \in M$ such that $\frac{f(u)-f(v)}{d(u,v)} > 1 - \varepsilon$ and $d(u, v) < \frac{2\varepsilon}{(1-\varepsilon)^2}d(x, y)$. To do so, apply "norming" LTP on $g := \frac{1}{2}(f + f_{xy})$ to get $u \neq v$ such that $\frac{g(u)-g(v)}{d(u,v)} > 1 - \frac{\varepsilon}{2}$. $\implies \frac{f(u)-f(v)}{d(u,v)} > 1 - \varepsilon$

Definition

M is called *local* if $\forall f \in \text{Lip}_0(M) \ \forall \varepsilon > 0 \ \exists u \neq v \in M$ such that $\frac{f(u)-f(v)}{d(u,v)} > \|f\|_L - \varepsilon$ and $d(u,v) < \varepsilon$.

Lemma

If $\mathcal{F}(M)$ has the (DP) then M is local.

Proof.

Given $f \in S_{\operatorname{Lip}_0(M)}$ and $x \neq y \in M$ such that $\frac{f(x)-f(y)}{d(x,y)} > 1 - \varepsilon$ it is enough to find $u \neq v \in M$ such that $\frac{f(u)-f(v)}{d(u,v)} > 1 - \varepsilon$ and $d(u, v) < \frac{2\varepsilon}{(1-\varepsilon)^2}d(x, y)$. To do so, apply "norming" LTP on $g := \frac{1}{2}(f + f_{xy})$ to get $u \neq v$ such that $\frac{g(u)-g(v)}{d(u,v)} > 1 - \frac{\varepsilon}{2}$. $\implies \frac{f(u)-f(v)}{d(u,v)} > 1 - \varepsilon$ and $d(u, v) < \frac{2\varepsilon}{(1-\varepsilon)^2}d(x, y)$.

Key property of
$$f_{xy}$$

$$\frac{f_{xy}(u) - f_{xy}(v)}{d(u,v)} > 1 - \varepsilon \Longrightarrow$$

$$d(x,y) > (1 - \varepsilon) \max \{ d(x,u) + d(u,y), d(x,v) + d(v,y) \}.$$

Key property of
$$f_{xy}$$

 $\frac{f_{xy}(u)-f_{xy}(v)}{d(u,v)} > 1 - \varepsilon \Longrightarrow$
 $d(x,y) > (1 - \varepsilon) \max \{ d(x,u) + d(u,y), d(x,v) + d(v,y) \}.$

Then

$$2\frac{d(x,y)}{1-\varepsilon} > d(x,u) + d(u,y) + d(x,v) + d(v,y)$$

$$\geq 2(1-\varepsilon)(d(x,y) + d(u,v)).$$

Key property of
$$f_{xy}$$

 $\frac{f_{xy}(u) - f_{xy}(v)}{d(u,v)} > 1 - \varepsilon \Longrightarrow$
 $d(x,y) > (1 - \varepsilon) \max \{ d(x,u) + d(u,y), d(x,v) + d(v,y) \}.$

Then

$$2\frac{d(x,y)}{1-\varepsilon} > d(x,u) + d(u,y) + d(x,v) + d(v,y)$$

$$\geq 2(1-\varepsilon)(d(x,y) + d(u,v)).$$

• The magic function is $f_{xy}(t) = \frac{d(t,y)}{d(t,y)+d(t,x)}d(x,y)$ (minus value at 0). It comes from lvakhno-Kadets-Werner.

Lemma

If a complete M is local then M is length.

Lemma

If a complete M is local then M is length.

Proof.

If *M* not length $\implies \exists x \neq y$ and $\delta > 0$ such that $B(x, (1+2\delta)r) \cap B(y, (1+2\delta)r) = \emptyset$ where $r := \frac{d(x,y)}{2}$.

Lemma

If a complete M is local then M is length.

Proof.

If *M* not length $\implies \exists x \neq y \text{ and } \delta > 0$ such that $B(x, (1+2\delta)r) \cap B(y, (1+2\delta)r) = \emptyset$ where $r := \frac{d(x,y)}{2}$. Define $f_1(t) = \max\left\{r - \frac{1}{1+\delta}d(x,t), 0\right\}$ and $f_2(t) = \min\left\{-r + \frac{1}{1+\delta}d(y,t), 0\right\}$ and $f = f_1 + f_2$.

Lemma

If a complete M is local then M is length.

Proof.

If *M* not length $\Longrightarrow \exists x \neq y$ and $\delta > 0$ such that $B(x, (1+2\delta)r) \cap B(y, (1+2\delta)r) = \emptyset$ where $r := \frac{d(x,y)}{2}$. Define $f_1(t) = \max\left\{r - \frac{1}{1+\delta}d(x,t), 0\right\}$ and $f_2(t) = \min\left\{-r + \frac{1}{1+\delta}d(y,t), 0\right\}$ and $f = f_1 + f_2$. Then $\frac{f(u)-f(v)}{d(u,v)} > \frac{1}{1+\delta} \Longrightarrow d(u,v) \geq \delta r$.

Coming up next

If M is compact, then TFAE:

- **1** $\mathcal{F}(M)$ has Daugavet property
- 2 Lip₀(M) has Daugavet property
- **3** every pair $x \neq y \in M$ has property (*Z*), i.e. for every $\varepsilon > 0$ exists $z \in M \setminus \{x, y\}$

 $d(x,z) + d(z,y) < d(x,y) + \varepsilon \operatorname{dist}(z, \{x,y\}).$

If M is compact, then TFAE:

- **1** $\mathcal{F}(M)$ has Daugavet property
- 2 Lip₀(M) has Daugavet property
- **3** every pair $x \neq y \in M$ has property (*Z*), i.e. for every $\varepsilon > 0$ exists $z \in M \setminus \{x, y\}$

 $d(x,z) + d(z,y) < d(x,y) + \varepsilon \operatorname{dist}(z, \{x,y\}).$

Theorem (L.C. García Lirola, A. Rueda Zoca, AP)

 $\mu \in str \exp(B_{\mathcal{F}(M)})$ if and only if $\mu = \frac{\delta(x) - \delta(y)}{d(x,y)}$ where $x \neq y$ does not have (Z).

If M is compact, then TFAE:

- **1** $\mathcal{F}(M)$ has Daugavet property
- 2 Lip₀(M) has Daugavet property
- **3** every pair $x \neq y \in M$ has property (*Z*), i.e. for every $\varepsilon > 0$ exists $z \in M \setminus \{x, y\}$

 $d(x,z) + d(z,y) < d(x,y) + \varepsilon \operatorname{dist}(z, \{x,y\}).$

Theorem (L.C. García Lirola, A. Rueda Zoca, AP)

 $\mu \in str \exp(B_{\mathcal{F}(M)})$ if and only if $\mu = \frac{\delta(x) - \delta(y)}{d(x,y)}$ where $x \neq y$ does not have (Z).

 So if *M* is compact, str exp(B_{F(M)}) = ∅ ⇒ F(M) is Daugavet.

If M is compact, then TFAE:

- **1** $\mathcal{F}(M)$ has Daugavet property
- **2** $Lip_0(M)$ has Daugavet property
- **3** every pair $x \neq y \in M$ has property (*Z*), i.e. for every $\varepsilon > 0$ exists $z \in M \setminus \{x, y\}$

 $d(x,z) + d(z,y) < d(x,y) + \varepsilon \operatorname{dist}(z, \{x,y\}).$

Theorem (L.C. García Lirola, A. Rueda Zoca, AP)

 $\mu \in str \exp(B_{\mathcal{F}(M)})$ if and only if $\mu = \frac{\delta(x) - \delta(y)}{d(x,y)}$ where $x \neq y$ does not have (Z).

- So if *M* is compact, str exp(B_{F(M)}) = ∅ ⇒ F(M) is Daugavet.
- We don't know if for *M* complete, global property (Z) implies that *M* is length.

Theorem (L.C. García Lirola, A. Rueda Zoca, AP)

Let (M, d) be complete such that every pair $x \neq y \in M$ has property (Z). Then M is connected.

Theorem (L.C. García Lirola, A. Rueda Zoca, AP) Let (M, d) be complete such that every pair $x \neq y \in M$ has property (Z). Then M is connected.

• Converse is not true: if $p \in (0, 1)$ then $\mathcal{F}([0, 1], |\cdot|^p)$ has the RNP.

Proof. Let $U, V \subset M$ clopen, disjoint and $U \cup V = M$.

Let $U, V \subset M$ clopen, disjoint and $U \cup V = M$. Then $U \times V$ is closed in (M^2, d_1) where $d_1((a, b), (c, d)) = d(a, c) + d(b, d)$.

Let $U, V \subset M$ clopen, disjoint and $U \cup V = M$. Then $U \times V$ is closed in (M^2, d_1) where $d_1((a, b), (c, d)) = d(a, c) + d(b, d)$. Let $\alpha \in (0, 1)$. Ekeland's variational principle \Longrightarrow there is $(x, y) \in U \times V$ such that for every $(u, v) \in U \times V$ we have

$$d(x,y) \leq d(u,v) + \alpha(d(x,u) + d(y,v)).$$

Let $U, V \subset M$ clopen, disjoint and $U \cup V = M$. Then $U \times V$ is closed in (M^2, d_1) where $d_1((a, b), (c, d)) = d(a, c) + d(b, d)$. Let $\alpha \in (0, 1)$. Ekeland's variational principle \Longrightarrow there is $(x, y) \in U \times V$ such that for every $(u, v) \in U \times V$ we have

$$d(x,y) \leq d(u,v) + \alpha(d(x,u) + d(y,v)).$$

Now let $\varepsilon \in (0, 1 - \alpha)$ and let $z \in M \setminus \{x, y\}$ satisfy (Z) with this ε .

Let $U, V \subset M$ clopen, disjoint and $U \cup V = M$. Then $U \times V$ is closed in (M^2, d_1) where $d_1((a, b), (c, d)) = d(a, c) + d(b, d)$. Let $\alpha \in (0, 1)$. Ekeland's variational principle \Longrightarrow there is $(x, y) \in U \times V$ such that for every $(u, v) \in U \times V$ we have

$$d(x,y) \leq d(u,v) + \alpha(d(x,u) + d(y,v)).$$

Now let $\varepsilon \in (0, 1 - \alpha)$ and let $z \in M \setminus \{x, y\}$ satisfy (Z) with this ε .

WLOG $z \in V$; set (u, v) = (x, z) above.

Let $U, V \subset M$ clopen, disjoint and $U \cup V = M$. Then $U \times V$ is closed in (M^2, d_1) where $d_1((a, b), (c, d)) = d(a, c) + d(b, d)$. Let $\alpha \in (0, 1)$. Ekeland's variational principle \Longrightarrow there is $(x, y) \in U \times V$ such that for every $(u, v) \in U \times V$ we have

$$d(x,y) \leq d(u,v) + \alpha(d(x,u) + d(y,v)).$$

Now let $\varepsilon \in (0, 1 - \alpha)$ and let $z \in M \setminus \{x, y\}$ satisfy (Z) with this ε .

WLOG $z \in V$; set (u, v) = (x, z) above. Then

$$d(x, y) \le d(x, z) + \alpha d(y, z)$$

= $d(x, z) + d(y, z) - (1 - \alpha)d(y, z)$
 $\le d(x, y) + \varepsilon \operatorname{dist}(z, \{x, y\}) - (1 - \alpha)d(y, z)$

Let $U, V \subset M$ clopen, disjoint and $U \cup V = M$. Then $U \times V$ is closed in (M^2, d_1) where $d_1((a, b), (c, d)) = d(a, c) + d(b, d)$. Let $\alpha \in (0, 1)$. Ekeland's variational principle \Longrightarrow there is $(x, y) \in U \times V$ such that for every $(u, v) \in U \times V$ we have

$$d(x,y) \leq d(u,v) + \alpha(d(x,u) + d(y,v)).$$

Now let $\varepsilon \in (0, 1 - \alpha)$ and let $z \in M \setminus \{x, y\}$ satisfy (Z) with this ε .

WLOG $z \in V$; set (u, v) = (x, z) above. Then

$$d(x,y) \le d(x,z) + \alpha d(y,z)$$

= $d(x,z) + d(y,z) - (1 - \alpha)d(y,z)$
 $\le d(x,y) + \varepsilon \operatorname{dist}(z, \{x,y\}) - (1 - \alpha)d(y,z)$

Thus $d(y,z) \leq \frac{\varepsilon}{1-\alpha} d(z, \{x,y\}) < d(z, \{x,y\})$

Let $U, V \subset M$ clopen, disjoint and $U \cup V = M$. Then $U \times V$ is closed in (M^2, d_1) where $d_1((a, b), (c, d)) = d(a, c) + d(b, d)$. Let $\alpha \in (0, 1)$. Ekeland's variational principle \Longrightarrow there is $(x, y) \in U \times V$ such that for every $(u, v) \in U \times V$ we have

$$d(x,y) \leq d(u,v) + \alpha(d(x,u) + d(y,v)).$$

Now let $\varepsilon \in (0, 1 - \alpha)$ and let $z \in M \setminus \{x, y\}$ satisfy (Z) with this ε .

WLOG $z \in V$; set (u, v) = (x, z) above. Then

$$d(x,y) \leq d(x,z) + \alpha d(y,z)$$

= $d(x,z) + d(y,z) - (1 - \alpha)d(y,z)$
 $\leq d(x,y) + \varepsilon \operatorname{dist}(z, \{x,y\}) - (1 - \alpha)d(y,z)$

Thus $d(y, z) \le \frac{\varepsilon}{1-\alpha} d(z, \{x, y\}) < d(z, \{x, y\})$ Contradiction!

Thank you for your attention!