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Definition
Let (M ,d ) ... a metric space, 0 ∈ M ... a distinguished point.

We put Lip0(M) := {f : M → RLipschitz, f (0) = 0}

‖f ‖L := sup
x 6=y

f (x )− f (y )
d (x , y )

M canonically embeds into Lip0(M)∗

δ :M → Lip0(M)∗

x 7→ δ(x ) = (f 7→ f (x ))

The Lipshitz free space over M is

F(M) := spanδ(M) ⊂ Lip0(M)∗

Remark

• δ(M) is linearly independent
• dens(M) = dens(F(M)) when M is infinite
• F(M)∗ = Lip0(M)



Definition
Let (M ,d ) ... a metric space, 0 ∈ M ... a distinguished point.
We put Lip0(M) := {f : M → RLipschitz, f (0) = 0}

‖f ‖L := sup
x 6=y

f (x )− f (y )
d (x , y )

M canonically embeds into Lip0(M)∗

δ :M → Lip0(M)∗

x 7→ δ(x ) = (f 7→ f (x ))

The Lipshitz free space over M is

F(M) := spanδ(M) ⊂ Lip0(M)∗

Remark

• δ(M) is linearly independent
• dens(M) = dens(F(M)) when M is infinite
• F(M)∗ = Lip0(M)



Definition
Let (M ,d ) ... a metric space, 0 ∈ M ... a distinguished point.
We put Lip0(M) := {f : M → RLipschitz, f (0) = 0}

‖f ‖L := sup
x 6=y

f (x )− f (y )
d (x , y )

M canonically embeds into Lip0(M)∗

δ :M → Lip0(M)∗

x 7→ δ(x ) = (f 7→ f (x ))

The Lipshitz free space over M is

F(M) := spanδ(M) ⊂ Lip0(M)∗

Remark

• δ(M) is linearly independent
• dens(M) = dens(F(M)) when M is infinite
• F(M)∗ = Lip0(M)



Definition
Let (M ,d ) ... a metric space, 0 ∈ M ... a distinguished point.
We put Lip0(M) := {f : M → RLipschitz, f (0) = 0}

‖f ‖L := sup
x 6=y

f (x )− f (y )
d (x , y )

M canonically embeds into Lip0(M)∗

δ :M → Lip0(M)∗

x 7→ δ(x ) = (f 7→ f (x ))

The Lipshitz free space over M is

F(M) := spanδ(M) ⊂ Lip0(M)∗

Remark

• δ(M) is linearly independent
• dens(M) = dens(F(M)) when M is infinite
• F(M)∗ = Lip0(M)



Definition
Let (M ,d ) ... a metric space, 0 ∈ M ... a distinguished point.
We put Lip0(M) := {f : M → RLipschitz, f (0) = 0}

‖f ‖L := sup
x 6=y

f (x )− f (y )
d (x , y )

M canonically embeds into Lip0(M)∗

δ :M → Lip0(M)∗

x 7→ δ(x ) = (f 7→ f (x ))

The Lipshitz free space over M is

F(M) := spanδ(M) ⊂ Lip0(M)∗

Remark
• δ(M) is linearly independent

• dens(M) = dens(F(M)) when M is infinite
• F(M)∗ = Lip0(M)



Definition
Let (M ,d ) ... a metric space, 0 ∈ M ... a distinguished point.
We put Lip0(M) := {f : M → RLipschitz, f (0) = 0}

‖f ‖L := sup
x 6=y

f (x )− f (y )
d (x , y )

M canonically embeds into Lip0(M)∗

δ :M → Lip0(M)∗

x 7→ δ(x ) = (f 7→ f (x ))

The Lipshitz free space over M is

F(M) := spanδ(M) ⊂ Lip0(M)∗

Remark
• δ(M) is linearly independent
• dens(M) = dens(F(M)) when M is infinite

• F(M)∗ = Lip0(M)



Definition
Let (M ,d ) ... a metric space, 0 ∈ M ... a distinguished point.
We put Lip0(M) := {f : M → RLipschitz, f (0) = 0}

‖f ‖L := sup
x 6=y

f (x )− f (y )
d (x , y )

M canonically embeds into Lip0(M)∗

δ :M → Lip0(M)∗

x 7→ δ(x ) = (f 7→ f (x ))

The Lipshitz free space over M is

F(M) := spanδ(M) ⊂ Lip0(M)∗

Remark
• δ(M) is linearly independent
• dens(M) = dens(F(M)) when M is infinite
• F(M)∗ = Lip0(M)



• For every M : F(M) = F(completion(M)).

=⇒WLOG every M complete in what follows
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Definition
A Banach space X has the Daugavet property if

‖Id + x ⊗ x ∗‖ = 1 + ‖x‖ ‖x ∗‖

for all x ∈ X , x ∗ ∈ X ∗.

Theorem (L. C. García Lirola, A. Rueda Zoca, AP)
TFAE:

1 M is a length space
2 F(M) has the Daugavet property
3 Lip0(M) has the Daugavet property
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Daugavet property

• isometric property

• C(K ) has (DP) iff K has no isolated points (Daugavet)
• L1(µ) and L∞(µ) have (DP) iff µ has no atoms

(Lozanovskii, Pełczyński)
• X ∗ (DP) =⇒ X (DP)
• X (DP) 6=⇒ X ∗ (DP)

Lemma
X has the (DP) if and only if ∀ x ∈ BX and
∀ S = S(x ∗, ε) = BX ∩ {x ∗ > 1− ε}
∃ y ∈ S such that ‖x − y‖ > 2− ε.

Lemma
X has the (DP) if and only if ∀ x ∈ BX and ∀ S = S(x ∗, ε)
∃ a slice T ⊂ S such that ∀ y ∈ T : ‖x − y‖ > 2− ε.
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Corollary
X has the (DP) if and only if ∀ x1, . . . , xn ∈ BX and
∀ S = S(x ∗, ε) ∃ a slice T ⊂ S such that ∀ y ∈ T ∀ i = 1, . . . ,n :
‖xi − y‖ > 2− ε.

In particular if X has the (DP) then ∀ x1, . . . , xn ∈ BX ∀ ε > 0
∃ y ∈ BX such that

‖xi + y‖ > 2− ε,

i.e. X is octahedral.
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A metric characterization of octahedrality of F(M)

Theorem (A. Rueda Zoca, AP ’16)
For a metric space M it is equivalent:

1 F(M) is octahedral.

2 ∀ ε > 0 ∀ N ⊂ M finite, ∃ u 6= v ∈ M such that every
1-Lipschitz function f : N → R admits an extension
f̃ : M → R,

∥∥∥f̃
∥∥∥ ≤ (1 + ε) and f̃ (u)− f̃ (v ) ≥ d (u, v ).

3 ∀ ε > 0 ∀ N ⊂ M finite, ∃ u 6= v ∈ M such that

(1− ε)(d (x , y ) + d (u, v )) ≤ d (x ,u) + d (y , v )

for all x , y ∈ N.

• We call the property in (3) the long trapezoid property
(LTP).
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Theorem (L.C. García Lirola, A. Rueda Zoca, AP ’17)
For a metric space M it is equivalent:

1 F(M) has the (DP).
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and
{
δ(u)−δ(v )

d (u,v ) : u 6= v ∈ M as above
}

is norming.

3 ∀ ε > 0 ∀ N ⊂ M finite, ∃ u, v ∈ M ,u 6= v , such that

(1− ε)(d (x , y ) + d (u, v )) ≤ d (x ,u) + d (y , v )
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}

is
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Proof of F(M) (DP) =⇒ M length

Definition
M is called local if ∀ f ∈ Lip0(M) ∀ ε > 0 ∃ u 6= v ∈ M such that
f (u)−f (v )

d (u,v ) > ‖f ‖L − ε and d (u, v ) < ε.

Lemma
If F(M) has the (DP) then M is local.

Proof.

Given f ∈ SLip0(M) and x 6= y ∈ M such that f (x )−f (y )
d (x ,y ) > 1− ε it

is enough to find u 6= v ∈ M such that f (u)−f (v )
d (u,v ) > 1− ε and

d (u, v ) < 2ε
(1−ε)2 d (x , y ). To do so, apply “norming” LTP on

g := 1
2(f + fxy ) to get u 6= v such that g(u)−g(v )

d (u,v ) > 1− ε
2 .

=⇒ f (u)−f (v )
d (u,v ) > 1− ε and d (u, v ) < 2ε

(1−ε)2 d (x , y ).
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Proof of F(M) (DP) =⇒ M length

Key property of fxy

fxy (u)−fxy (v )
d (u,v ) > 1− ε =⇒

d (x , y ) > (1− ε)max {d (x ,u) + d (u, y ),d (x , v ) + d (v , y )}.

Then

2
d (x , y )
1− ε

> d (x ,u) + d (u, y ) + d (x , v ) + d (v , y )

≥ 2(1− ε)(d (x , y ) + d (u, v )).

• The magic function is fxy (t ) =
d (t ,y )

d (t ,y )+d (t ,x )d (x , y ) (minus
value at 0). It comes from Ivakhno-Kadets-Werner.
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Proof of F(M) (DP) =⇒ M length

Lemma
If a complete M is local then M is length.

Proof.
If M not length =⇒ ∃ x 6= y and δ > 0 such that
B(x , (1 + 2δ)r ) ∩ B(y , (1 + 2δ)r ) = ∅ where r := d (x ,y )

2 .Define

f1(t ) = max
{

r − 1
1+δd (x , t ),0

}
and

f2(t ) = min
{
−r + 1

1+δd (y , t ),0
}

and f = f1 + f2.

Then f (u)−f (v )
d (u,v ) > 1

1+δ =⇒ d (u, v ) ≥ δr .
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Coming up next



Theorem (Ivakhno, Kadets, Werner, 2007)
If M is compact, then TFAE:

1 F(M) has Daugavet property
2 Lip0(M) has Daugavet property
3 every pair x 6= y ∈ M has property (Z), i.e. for every ε > 0

exists z ∈ M \ {x , y}

d (x , z) + d (z , y ) < d (x , y ) + εdist(z , {x , y}).

Theorem (L.C. García Lirola, A. Rueda Zoca, AP)

µ ∈ str exp(BF(M)) if and only if µ = δ(x )−δ(y )
d (x ,y ) where x 6= y does

not have (Z).

• So if M is compact, str exp(BF(M)) = ∅ =⇒ F(M) is
Daugavet.

• We don’t know if for M complete, global property (Z)
implies that M is length.
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But

Theorem (L.C. García Lirola, A. Rueda Zoca, AP)
Let (M ,d ) be complete such that every pair x 6= y ∈ M has
property (Z). Then M is connected.

• Converse is not true: if p ∈ (0,1) then F([0,1], |·|p) has the
RNP.
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Proof.
Let U ,V ⊂ M clopen, disjoint and U ∪ V = M .

Then U × V is closed in (M2,d1) where
d1((a,b), (c ,d )) = d (a, c) + d (b,d ).
Let α ∈ (0,1). Ekeland’s variational principle =⇒ there is
(x , y ) ∈ U × V such that for every (u, v ) ∈ U × V we have

d (x , y ) ≤ d (u, v ) + α(d (x ,u) + d (y , v )).

Now let ε ∈ (0,1− α) and let z ∈ M \ {x , y} satisfy (Z) with this
ε.
WLOG z ∈ V ; set (u, v ) = (x , z) above. Then

d (x , y ) ≤ d (x , z) + αd (y , z)
= d (x , z) + d (y , z)− (1− α)d (y , z)
≤ d (x , y ) + εdist(z , {x , y})− (1− α)d (y , z)

Thus d (y , z) ≤ ε
1−αd (z , {x , y}) < d (z , {x , y})Contradiction!
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attention!
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