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I A metric space is called locally finite if each ball of finite
radius in it has finitely many elements. (Finitely generated
groups with their word metrics are locally finite metric spaces.)

I Let A be a locally finite metric space. It is quite natural to
investigate the following Pasting Problem: Whether (some
kind) of embeddability of finite subsets (pieces) of A into a
Banach space X implies the embeddability (of the same or
slightly worse kind) of the whole metric space A into X?

I As far as I know the systematic investigation of the Pasting
Problem started in 2006, although a very important for
applications case was known much earlier.

I I mean the positive answer to the Pasting Problem in the case
of Banach spaces X satisfying the condition: Each separable
subset of an arbitrary ultrapower of X admits an isometric
embedding into X (we shall discuss this result in more detail
later).
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I In 2006 three papers devoted to the Pasting Problem were
submitted:

I F. Baudier (2007): pasting embeddings of finite binary trees
in order to get a bilipschitz embedding of an infinite binary
tree into any nonsuperreflexive space.

I F. Baudier-G. Lancien (2008): pasting of an embedding of
any locally finite metric space into any Banach space with no
nontrivial cotype from bilipschitz embeddings of its finite
pieces.

I M.O. (2006): the same for coarse embeddings.

I It is not difficult to see that in all situations which we consider
existence of pasting of bilipschitz embeddings implies
existence of pasting of coarse embeddings, for this reason we
shall consider only bilipschitz embeddings.
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I Further papers on the Pasting Problem include: M.O. (2009),
F. Baudier (2012), M.O. (2012), S. Ostrovska-M.O. (2017).

I My main goal today is to present some quantitative results on
the Pasting Problem, as well as the needed background.

I Definition: A map f : A→ Y between metric spaces is called
a C -bilipschitz embedding if there exists r > 0 such that

∀u, v ∈ A rdA(u, v) ≤ dY (f (u), f (v)) ≤ rCdA(u, v) (∗).

A bilipschitz embedding is an embedding which is
C -bilipschitz for some C <∞. The smallest constant C for
which there exist r > 0 such that (*) is satisfied is called the
distortion of f .

I The most general qualitative pasting result:
I Finite Determination Theorem (M.O., 2012): Let A be a

locally finite metric space whose finite subsets admit
bilipschitz embeddings with uniformly bounded distortions
into a Banach space X . Then, A also admits a bilipschitz
embedding into X .
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An Application

I Combining the Finite Determination Theorem with the known
results of I. Benjamini-O. Schramm (1997), Bourgain (1986),
and S. Buyalo-A. Dranishnikov-V. Schroeder (2007), we get
the following metric characterization of nonsuperreflexive
Banach spaces.

I Theorem: (M.O., 2014) Let G be an infinite finitely
generated word hyperbolic group which does not have a finite
index subgroup isomorphic to Z. Then G admits a bilipschitz
embedding into a Banach space X , if and only if X is
nonsuperreflexive.
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I We are going to do quantitative analysis of the Finite
Determination Theorem.

I Given a Banach space X and a real number α ≥ 1, we write

I D(X ) ≤ α if, for any locally finite metric space A, all finite
subsets of which admit bilipschitz embeddings into X with
distortions ≤ C , the space A itself admits a bilipschitz
embedding into X with distortion ≤ α · C ;

I D(X ) = α if α is the least number for which D(X ) ≤ α;
I D(X ) = α+ if, for every ε > 0, the condition D(X ) ≤ α + ε

holds, while D(X ) ≤ α does not;
I D(X ) =∞ if D(X ) ≤ α does not hold for any α <∞.

I The proof of the Finite Determination Theorem is such that it
implies a formally stronger statement:
Theorem (M.O., 2012): There exists an absolute constant
D ∈ [1,∞), such that for an arbitrary Banach space X the
inequality D(X ) ≤ D holds.

I The estimate of D implied by the proof in M.O. (2012) is
> 1000. In the pasting result of Baudier-Lancien (2008) for
spaces X with no cotype they achieved D(X ) ≤ 216.
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I For some time I had no interest in looking at the values of
D(X ) and the optimal value of D = supX D(X ). (Why should
I care whether D is 10 or 100?)

I However people were repeatedly asking me: Are you sure that
you cannot prove the theorem with D(X ) = 1? This
eventually encouraged me to look at this problem.

I Notation: We write X ∈ (U) if a Banach space X is such
that each separable subset of an arbitrary ultrapower of X
admits an isometric embedding into X .

I Examples: Lp[0, 1] ∈ (U). If p 6= 2,∞, `p /∈ (U).

I Recall the well-known Observation: X ∈ (U) implies
D(X ) = 1.

I As I understand, the first version of this observation (for
Lp[0, 1]) goes back to J. Bretagnolle, D. Dacunha-Castelle,
and J.-L. Krivine (1966). More general versions evolved
together with the theory of ultraproducts.
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I The question which I was repeatedly asked can be written as:
Whether there exist X such that D(X ) > 1?

I It turned out that an example of the space for which
D(X ) > 1 was already known in 2008:

I Theorem (N. Kalton, G. Lancien (2008)): D(c0) = 1+.
I Note: N. Kalton and G. Lancien did not state the result in

this form.
I The proof of the fact D(c0) > 1 given by N. Kalton and

G. Lancien is simpler than the known proofs of similar results
for other Banach spaces, so I shall describe their example:

I They consider the following locally finite subset of `1:
M = {0, e0} ∪ {nen, e0 + nen; n ≥ 1}.

I Since c0 contains `n∞ isometrically for all n, Fréchet’s
observation implies that finite pieces of M embed into c0
isometrically.

I Using the triangle inequality one can show that an isometric
embedding T of M into c0 satisfying T (0) = 0 should be such
that the image of e0 should have infinitely many coordinates
with an absolute value 1, a contradiction.
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observation implies that finite pieces of M embed into c0
isometrically.

I Using the triangle inequality one can show that an isometric
embedding T of M into c0 satisfying T (0) = 0 should be such
that the image of e0 should have infinitely many coordinates
with an absolute value 1, a contradiction.

Mikhail Ostrovskii, St. John’s University Accurate pasting



I The question which I was repeatedly asked can be written as:
Whether there exist X such that D(X ) > 1?

I It turned out that an example of the space for which
D(X ) > 1 was already known in 2008:

I Theorem (N. Kalton, G. Lancien (2008)): D(c0) = 1+.
I Note: N. Kalton and G. Lancien did not state the result in

this form.
I The proof of the fact D(c0) > 1 given by N. Kalton and

G. Lancien is simpler than the known proofs of similar results
for other Banach spaces, so I shall describe their example:

I They consider the following locally finite subset of `1:
M = {0, e0} ∪ {nen, e0 + nen; n ≥ 1}.

I Since c0 contains `n∞ isometrically for all n, Fréchet’s
observation implies that finite pieces of M embed into c0
isometrically.

I Using the triangle inequality one can show that an isometric
embedding T of M into c0 satisfying T (0) = 0 should be such
that the image of e0 should have infinitely many coordinates
with an absolute value 1, a contradiction.

Mikhail Ostrovskii, St. John’s University Accurate pasting



I The goal of the rest of the talk is to present joint with Sofiya
Ostrovska results on D(X ) (2017).

I Using the isometric theory of different classes of spaces we
(S.O. & M.O., 2017) proved the inequality D(X ) > 1 for the
following Banach spaces X .

I X = `1.
I X = (⊕∞

n=1`
∞
n )p for 1 < p <∞.

I X is a strictly convex Banach space such that all finite subsets
of `2 admit isometric embeddings into X , but `2 itself does not
admit an isomorphic embedding into X .

I However our attempts to show that D(X ) > 1+ for any of
these spaces failed. Eventually we found the reason:
D(X ) = 1+ for most of the spaces.

I 1+-Theorem (S.O. & M.O., 2017): Let 1 ≤ p <∞. If
{Xn}∞n=1 is a nested family of finite-dimensional Banach

spaces, then D
(

(⊕∞
n=1Xn)p

)
≤ 1+.

I Corollary: D(`p) = 1+ for p 6= 2,∞.
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Question answered

I Corollary (repeated) : D(`p) = 1+ for p 6= 2,∞.

I This Corollary of the 1+-Theorem gives the best possible
answer to some of the questions on relations between
embeddability into `p and Lp asked by A. Naor and Y. Peres
(2011, Question 10.7, they mention that the subtlety between
embeddings into Lp and `p was pointed out by M. Bourdon).
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I Proof of the 1+-Theorem is based on rather complicated
formulas. Before (and, I think, instead of) showing the
formulas, I would like to explain the main idea of our proof.

I Some of the results of the type D(X ) > 1 are based the
following observation: An isometric image of a positive half of
the real line in a strictly convex Banach space X is an affine
half-line in X .

I To show results of the type D(X ) > 1 + ε it would be very
helpful to have results of the type: A (1 + ε)-bilipschitz image
of a half-line in (say) a uniformly convex Banach space X is
not far from an affine half-line in X .

I However this is known to be false even in the Euclidean plane.

I One of the standard examples is

γ(t) = t(cos(ln t), sin(ln t)), t > 1,

which is (as is easy to check) a
√

2-bilipschitz embedding of
the half-line t > 1.
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I We can easily modify the spiral in order to get a
(1 + ε)-bilipschitz embedding. We just choose

γ(t) = t(cos(ε ln t), sin(ε ln t)), t > 1.

I Using such spirals we can construct a (1 + ε)-bilipschitz
embeddings of a half-axis into `2 which “stays” for an
arbitrary long time on each of the coordinate axes and then
travels along a spiral of the type described above to the next
line.

I To complete the proof of the 1+-Theorem it remains to find:

I `p-versions of such spirals.
I Suitable definition of maps based of “flows” of such `p-spirals

from one subspace to the ‘next’ one.
I For each radius (distance from the origin) r we can estimate

the radius F (r) such that the `p version of (1 + ε)-spiral which
leaves the span of one of the unit vectors on level r can reach
the linear span of another unit vector on level F (r).

I Let me sketch a figure for a special case: we prove that a
locally finite subset A of Lp[0, 1], containing 0, admits a
(1 + ε)-bilipschitz embeddings into `p.
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locally finite subset A of Lp[0, 1], containing 0, admits a
(1 + ε)-bilipschitz embeddings into `p.
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I We can easily modify the spiral in order to get a
(1 + ε)-bilipschitz embedding. We just choose

γ(t) = t(cos(ε ln t), sin(ε ln t)), t > 1.

I Using such spirals we can construct a (1 + ε)-bilipschitz
embeddings of a half-axis into `2 which “stays” for an
arbitrary long time on each of the coordinate axes and then
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I This construction can be modified in many different ways.
This allows to prove the 1+-Theorem or somewhat weaker
theorems for many spaces.

I However at the moment we are far from proving that
D(X ) ≤ 1+ for every Banach space X .

I Open Problem: Do there exist Banach spaces X for which
D(X ) > 1+?

I One of the modifications. This can be used for
finite-dimensional decompositions in the the sum is not an
`p-sum, but its restriction to the sum of any two subspaces if
isometric to an `− p-sum.

I This modification allows to improve the constant in the
Baudier-Lancien (2008) theorem. For Banach spaces X with
no nontrivial cotype we get D(X ) ≤ 4+ instead of
D(X ) ≤ 216 proved by Baudier-Lancien.
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