Joint spreading models and uniform approximation of bounded operators

Pavlos Motakis Texas A&M University

(joint work with S. A. Argyros - A. Georgiou - A.-R. Lagos)

Non Linear Functional Analysis - CIRM March 8, 2018

Contents

- Motivation
 - When does pointwise approximation imply uniform aproximation?
- The UALS property
- Joint asymptotic structure
 - Plegma spreading sequences
 - *I*-joint spreading models
- Unique I-joint spreading models and the UALS property
- Spaces that fail the UALS property

General question

We are given a set A and a metric space (M, d). We are also given

General question

We are given a set A and a metric space (M, d). We are also given

• a function $f_0 : A \to M$

.

General question

We are given a set A and a metric space (M, d). We are also given

- a function $f_0 : A \to M$
- a collection W of functions $g : A \to M$.

- a function $f_0 : A \to M$
- a collection W of functions $g : A \to M$.

For $\varepsilon > 0$ and $\varepsilon' > 0$ determine conditions for f_0 , W so that

- a function $f_0 : A \to M$
- a collection W of functions $g : A \to M$.

For $\varepsilon > 0$ and $\varepsilon' > 0$ determine conditions for f_0 , W so that

• For all x in A there exists $g \in W$ so that $d(f_0(x), g(x)) \le \varepsilon$.

- a function $f_0 : A \to M$
- a collection W of functions $g : A \to M$.

For $\varepsilon > 0$ and $\varepsilon' > 0$ determine conditions for f_0 , W so that

• For all x in A there exists $g \in W$ so that $d(f_0(x), g(x)) \le \varepsilon$.

implies

- a function $f_0 : A \to M$
- a collection W of functions $g : A \to M$.

For $\varepsilon > 0$ and $\varepsilon' > 0$ determine conditions for f_0 , W so that

• For all x in A there exists $g \in W$ so that $d(f_0(x), g(x)) \le \varepsilon$.

implies

• There exists $g \in W$ so that for all $x \in A$ $d(f_0(x), g(x)) \leq \varepsilon'$.

- a function $f_0 : A \to M$
- a collection W of functions $g : A \rightarrow M$.

For $\varepsilon > 0$ and $\varepsilon' > 0$ determine conditions for f_0 , W so that

• ε -pointwise approximation of f_0 by elements W

implies

• ε' -uniform approximation of f_0 by an element of W.

The linear setting

Let X, Y be Banach spaces and we are given

The linear setting

Let X, Y be Banach spaces and we are given

• a bounded linear operator $T_0: X \to Y$, i.e. $T_0 \in \mathcal{L}(X, Y)$,

- a bounded linear operator $T_0: X \to Y$, i.e. $T_0 \in \mathcal{L}(X, Y)$,
- a convex and closed collection W of $T_0 \in \mathcal{L}(X, Y)$.

- a bounded linear operator $T_0: X \to Y$, i.e. $T_0 \in \mathcal{L}(X, Y)$,
- a convex and closed collection W of $T_0 \in \mathcal{L}(X, Y)$.

For $\varepsilon > 0$ and $\varepsilon' > 0$ determine conditions for T_0 , W so that

- a bounded linear operator $T_0: X \to Y$, i.e. $T_0 \in \mathcal{L}(X, Y)$,
- a convex and closed collection W of $T_0 \in \mathcal{L}(X, Y)$.

For $\varepsilon > 0$ and $\varepsilon' > 0$ determine conditions for T_0 , W so that

• For all x in B_X there exists $S \in W$ so that $||T_0x - Sx|| \le \varepsilon$

- a bounded linear operator $T_0: X \to Y$, i.e. $T_0 \in \mathcal{L}(X, Y)$,
- a convex and closed collection W of $T_0 \in \mathcal{L}(X, Y)$.

For $\varepsilon > 0$ and $\varepsilon' > 0$ determine conditions for T_0 , W so that

• For all x in B_X there exists $S \in W$ so that $||T_0x - Sx|| \le \varepsilon$

implies

- a bounded linear operator $T_0: X \to Y$, i.e. $T_0 \in \mathcal{L}(X, Y)$,
- a convex and closed collection W of $T_0 \in \mathcal{L}(X, Y)$.

For $\varepsilon > 0$ and $\varepsilon' > 0$ determine conditions for T_0 , W so that

• For all x in B_X there exists $S \in W$ so that $||T_0x - Sx|| \le \varepsilon$

implies

• there exists $S \in W$ so that for all $x \in B_X ||T_0x - Sx|| \le \varepsilon'$.

- a bounded linear operator $T_0: X \to Y$, i.e. $T_0 \in \mathcal{L}(X, Y)$,
- a convex and closed collection W of $T_0 \in \mathcal{L}(X, Y)$.

For $\varepsilon > 0$ and $\varepsilon' > 0$ determine conditions for T_0 , W so that

• For all x in B_X there exists $S \in W$ so that $||T_0x - Sx|| \le \varepsilon$

implies

• there exists $S \in W$ so that $||T_0 - S|| \le \varepsilon'$

- a bounded linear operator $T_0: X \to Y$, i.e. $T_0 \in \mathcal{L}(X, Y)$,
- a convex and closed collection W of $T_0 \in \mathcal{L}(X, Y)$.

For $\varepsilon > 0$ and $\varepsilon' > 0$ determine conditions for T_0 , W so that

• ε -pointwise approximation on the unit ball of T_0 by elements W

implies

• ε' -norm approximation of T_0 by an element of W.

Let X be Banach space and let

- Let X be Banach space and let
 - $x_0^* \in X^* = \mathcal{L}(X, \mathbb{R})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let X be Banach space and let
 - $x_0^* \in X^* = \mathcal{L}(X, \mathbb{R})$
 - $W \subset X^* = \mathcal{L}(X, \mathbb{R})$ be convex and w^* -compact.

A (10) A (10)

- Let X be Banach space and let
 - $x_0^* \in X^* = \mathcal{L}(X, \mathbb{R})$
 - $W \subset X^* = \mathcal{L}(X, \mathbb{R})$ be convex and w^* -compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates x_0^*

- Let X be Banach space and let
 - $x_0^* \in X^* = \mathcal{L}(X, \mathbb{R})$
 - $W \subset X^* = \mathcal{L}(X, \mathbb{R})$ be convex and w^* -compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates x_0^*

Hahn-Banach

▲ 御 ▶ ▲ ヨ ▶ ▲ ヨ

- Let X be Banach space and let
 - $x_0^* \in X^* = \mathcal{L}(X, \mathbb{R})$
 - $W \subset X^* = \mathcal{L}(X, \mathbb{R})$ be convex and w^* -compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates x_0^*

Hahn-Banach

there is $y^* \in W$ with

 $\|\boldsymbol{x}_{\boldsymbol{0}}^*-\boldsymbol{y}^*\|\leq\varepsilon.$

Let X and Y be Banach spaces and let

- $x_0^* \in X^* = \mathcal{L}(X, \mathbb{R})$
- $W \subset X^* = \mathcal{L}(X, \mathbb{R})$ be convex and w^* -compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates x_0^*

Hahn-Banach

there is $y^* \in W$ with

 $\|\boldsymbol{x}_0^* - \boldsymbol{y}^*\| \leq \varepsilon.$

Let X and Y be Banach spaces and let

- $T_0 \in \mathcal{L}(X, Y)$
- $W \subset X^* = \mathcal{L}(X, \mathbb{R})$ be convex and w^* -compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates x_0^*

Hahn-Banach

there is $y^* \in W$ with

 $\|\boldsymbol{x}_0^* - \boldsymbol{y}^*\| \leq \varepsilon.$

Let X and Y be Banach spaces and let

- $T_0 \in \mathcal{L}(X, Y)$
- $W \subset \mathcal{L}(X, Y)$ be convex and w^* -compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates x_0^*

Hahn-Banach

there is $y^* \in W$ with

 $\|\boldsymbol{x}_0^* - \boldsymbol{y}^*\| \leq \varepsilon.$

Let X and Y be Banach spaces and let

- $T_0 \in \mathcal{L}(X, Y)$
- $W \subset \mathcal{L}(X, Y)$ be convex and norm-compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates x_0^*

Hahn-Banach

there is $y^* \in W$ with

 $\|\boldsymbol{x}_{\boldsymbol{0}}^*-\boldsymbol{y}^*\|\leq\varepsilon.$

Let X and Y be Banach spaces and let

- $T_0 \in \mathcal{L}(X, Y)$
- $W \subset \mathcal{L}(X, Y)$ be convex and norm-compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates T_0

Hahn-Banach

there is $y^* \in W$ with

 $\|\boldsymbol{x}_{\boldsymbol{0}}^*-\boldsymbol{y}^*\|\leq\varepsilon.$

A (10) × A (10) × A (10)

- $T_0 \in \mathcal{L}(X, Y)$
- $W \subset \mathcal{L}(X, Y)$ be convex and norm-compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates T_0

there is $y^* \in W$ with

 $\|\boldsymbol{x}_{0}^{*}-\boldsymbol{y}^{*}\|\leq\varepsilon.$

- $T_0 \in \mathcal{L}(X, Y)$
- $W \subset \mathcal{L}(X, Y)$ be convex and norm-compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates T_0

for some uniform $C = C(X, Y) \ge 1$ there is $y^* \in W$ with

 $\|\boldsymbol{x}_0^* - \boldsymbol{y}^*\| \leq \varepsilon.$

?

- $T_0 \in \mathcal{L}(X, Y)$
- $W \subset \mathcal{L}(X, Y)$ be convex and norm-compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates T_0

for some uniform $C = C(X, Y) \ge 1$ there is $S \in W$ with

 $\|\boldsymbol{x}_0^* - \boldsymbol{y}^*\| \leq \varepsilon.$

?

- $T_0 \in \mathcal{L}(X, Y)$
- $W \subset \mathcal{L}(X, Y)$ be convex and norm-compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates T_0

for some uniform $C = C(X, Y) \ge 1$ there is $S \in W$ with

 $\|T_0-S\|\leq C\varepsilon.$

?

- Let X be Banach space and let
 - $T_0 \in \mathcal{L}(X)$
 - $W \subset \mathcal{L}(X)$ be convex and norm-compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates T_0

?

for some uniform $C = C(X) \ge 1$ there is $S \in W$ with $\|T_0 - S\| \le C\varepsilon$.

- Let X be Banach space and let
 - $T_0 \in \mathcal{L}(X)$
 - $W \subset \mathcal{L}(X)$ be convex and norm-compact.

If for some $\varepsilon > 0$ the set $W \varepsilon$ -pointwise approximates T_0

?

for some uniform $C = C(X) \ge 1$ there is $S \in W$ with $\|T_0 - S\| \le C\varepsilon$.

Answer: never, when dim(X) \ge 2. (W. B. Johnson)
The Uniform approximation on large subspaces (UALS property)

A Banach space X has the

Uniform approximation property on large subspaces (UALS) property if there exists $C \ge 1$ so that

A Banach space X has the

Uniform approximation property on large subspaces (UALS) property if there exists $C \ge 1$ so that

- whenever $T_0 \in \mathcal{L}(X)$ and $W \subset \mathcal{L}(X)$ is convex and compact
- and W ε-pointwise approximates T₀

then there exist

A Banach space X has the

Uniform approximation property on large subspaces (UALS) property if there exists $C \ge 1$ so that

- whenever $T_0 \in \mathcal{L}(X)$ and $W \subset \mathcal{L}(X)$ is convex and compact
- and W ε-pointwise approximates T₀

then there exist

● S ∈ W and

A Banach space X has the

Uniform approximation property on large subspaces (UALS) property if there exists $C \ge 1$ so that

- whenever $T_0 \in \mathcal{L}(X)$ and $W \subset \mathcal{L}(X)$ is convex and compact
- and W ε-pointwise approximates T₀

then there exist

- S ∈ W and
- a finite codimensional subspace Y of X

A Banach space X has the

Uniform approximation property on large subspaces (UALS) property if there exists $C \ge 1$ so that

- whenever $T_0 \in \mathcal{L}(X)$ and $W \subset \mathcal{L}(X)$ is convex and compact
- and W ε-pointwise approximates T₀

then there exist

● S ∈ W and

• a finite codimensional subspace Y of X

with $\|(T_0 - S)|_Y\|_{\mathcal{L}(Y,X)} \leq C\varepsilon$.

• The following Banach spaces satisfy the UALS property:

- The following Banach spaces satisfy the UALS property:
 - every X with the scalar-plus-compact property,

- The following Banach spaces satisfy the UALS property:
 - every X with the scalar-plus-compact property,
 - ℓ_p , $1 \leq p < \infty$, and c_0 ,
 - James space J and its dual J*,
 - Tsirelson space T and its dual T*,
 - in fact, every Asymptotic ℓ_p -space for $1 \le p \le \infty$,
 - James tree space JT ,

- The following Banach spaces satisfy the UALS property:
 - every X with the scalar-plus-compact property,
 - ℓ_p , $1 \leq p < \infty$, and c_0 ,
 - James space J and its dual J*,
 - Tsirelson space T and its dual T*,
 - in fact, every Asymptotic ℓ_p -space for $1 \le p \le \infty$,
 - James tree space JT ,
 - C(K), for K countable and compact,
 - in fact, every \mathscr{L}_{∞} -space with separable dual.

- The following Banach spaces satisfy the UALS property:
 - every X with the scalar-plus-compact property,
 - ℓ_p , $1 \leq p < \infty$, and c_0 ,
 - James space J and its dual J*,
 - Tsirelson space T and its dual T*,
 - in fact, every Asymptotic ℓ_p -space for $1 \le p \le \infty$,
 - James tree space JT ,
 - C(K), for K countable and compact,
 - in fact, every \mathscr{L}_{∞} -space with separable dual.
- The following Banach spaces fail the UALS property:

- The following Banach spaces satisfy the UALS property:
 - every X with the scalar-plus-compact property,
 - ℓ_p , $1 \leq p < \infty$, and c_0 ,
 - James space J and its dual J*,
 - Tsirelson space T and its dual T*,
 - in fact, every Asymptotic ℓ_p -space for $1 \le p \le \infty$,
 - James tree space JT ,
 - C(K), for K countable and compact,
 - in fact, every \mathscr{L}_{∞} -space with separable dual.
- The following Banach spaces fail the UALS property:
 - $\ell_p \oplus \ell_q$, and $\ell_p \oplus c_0$ for $1 \le p \ne q \le \infty$
 - $(\sum \ell_p)_{\ell_q}$, for $1 \leq p \neq q \leq \infty$,
 - $(\sum \ell_p)_{c_0}$, $(\sum c_0)_{\ell_p}$, for $1 \le p \le \infty$,
 - $L_{p}[0, 1], 1 \leq p < \infty, p \neq 2,$

- The following Banach spaces satisfy the UALS property:
 - every X with the scalar-plus-compact property,
 - ℓ_p , $1 \leq p < \infty$, and c_0 ,
 - James space J and its dual J*,
 - Tsirelson space T and its dual T*,
 - in fact, every Asymptotic ℓ_p -space for $1 \le p \le \infty$,
 - James tree space JT ,
 - C(K), for K countable and compact,
 - in fact, every \mathscr{L}_{∞} -space with separable dual.
- The following Banach spaces fail the UALS property:
 - $\ell_p \oplus \ell_q$, and $\ell_p \oplus c_0$ for $1 \le p \ne q \le \infty$
 - $(\sum \ell_p)_{\ell_q}$, for $1 \leq p \neq q \leq \infty$,
 - $(\sum \ell_p)_{c_0}$, $(\sum c_0)_{\ell_p}$, for $1 \leq p \leq \infty$,
 - $L_{p}[0, 1], 1 \leq p < \infty, p \neq 2,$
 - C[0,1] and its dual $\mathcal{M}[0,1]$ and $L_{\infty}[0,1]$.

• if $\varepsilon > 0$ and $T_0 : c_0 \to c_0$ and $W \subset \mathcal{L}(c_0)$ compact are such that

→ Ξ →

• if $\varepsilon > 0$ and $T_0 : c_0 \to c_0$ and $W \subset \mathcal{L}(c_0)$ compact are such that

for all $x \in c_0$ there is $S \in W$ with $||T_0x - S_0x|| \le \varepsilon ||x||$.

- if $\varepsilon > 0$ and $T_0 : c_0 \to c_0$ and $W \subset \mathcal{L}(c_0)$ compact are such that for all $x \in c_0$ there is $S \in W$ with $||T_0x - S_0x|| < \varepsilon ||x||$.
- then there exists $n \in \mathbb{N}$ so that if $Y_n = [(e_i)_{i>n}]$: we have

 $\|(T_0-S)|_Y\|_{\mathcal{L}(Y,c_0)}\leq 3\varepsilon.$

• if $\varepsilon > 0$ and $T_0 : c_0 \to c_0$ and $W \subset \mathcal{L}(c_0)$ compact are such that for all $x \in c_0$ there is $S \in W$ with $||T_0x - S_0x|| < \varepsilon ||x||$.

In all $x \in \mathcal{O}$ there is $\mathcal{O} \in \mathcal{V}$ with $||\mathcal{O} x = \mathcal{O} ||x|| \leq \varepsilon ||x||$

• then there exists $n \in \mathbb{N}$ so that if $Y_n = [(e_i)_{i \ge n}]$: we have

 $\|(T_0-S)|_Y\|_{\mathcal{L}(Y,c_0)}\leq 3\varepsilon.$

Proof:

• if $\varepsilon > 0$ and $T_0 : c_0 \to c_0$ and $W \subset \mathcal{L}(c_0)$ compact are such that

for all $x \in c_0$ there is $S \in W$ with $||T_0x - S_0x|| \le \varepsilon ||x||$.

• then there exists $n \in \mathbb{N}$ so that if $Y_n = [(e_i)_{i \ge n}]$: we have

 $\|(T_0-S)|_Y\|_{\mathcal{L}(Y,c_0)}\leq 3\varepsilon.$

Proof:

• For simplicity assume $W = \{S_1, ..., S_m\}$.

• if $\varepsilon > 0$ and $T_0 : c_0 \to c_0$ and $W \subset \mathcal{L}(c_0)$ compact are such that

for all $x \in c_0$ there is $S \in W$ with $||T_0x - S_0x|| \le \varepsilon ||x||$.

• then there exists $n \in \mathbb{N}$ so that if $Y_n = [(e_i)_{i \ge n}]$: we have

 $\|(T_0-S)|_Y\|_{\mathcal{L}(Y,c_0)}\leq 3\varepsilon.$

Proof:

- For simplicity assume $W = \{S_1, ..., S_m\}$.
- * Will show: there is $n \in \mathbb{N}$ and $1 \le k_0 \le m$ with $\|(T_0 S_{k_0})\|_{Y_n}\| \le 3\varepsilon$.

• if $\varepsilon > 0$ and $T_0 : c_0 \to c_0$ and $W \subset \mathcal{L}(c_0)$ compact are such that

for all $x \in c_0$ there is $S \in W$ with $||T_0x - S_0x|| \le \varepsilon ||x||$.

• then there exists $n \in \mathbb{N}$ so that if $Y_n = [(e_i)_{i \ge n}]$: we have

 $\|(T_0-S)|_Y\|_{\mathcal{L}(Y,c_0)}\leq 3\varepsilon.$

Proof:

- For simplicity assume $W = \{S_1, ..., S_m\}$.
- * Will show: there is $n \in \mathbb{N}$ and $1 \le k_0 \le m$ with $\|(T_0 S_{k_0})\|_{Y_n}\| \le 3\varepsilon$.
- If * fails: we find normalized block sequences $(x_i^k)_i$, $1 \le k \le m$

• if $\varepsilon > 0$ and $T_0 : c_0 \to c_0$ and $W \subset \mathcal{L}(c_0)$ compact are such that

for all $x \in c_0$ there is $S \in W$ with $||T_0x - S_0x|| \le \varepsilon ||x||$.

• then there exists $n \in \mathbb{N}$ so that if $Y_n = [(e_i)_{i \ge n}]$: we have

 $\|(T_0-S)|_Y\|_{\mathcal{L}(Y,c_0)}\leq 3\varepsilon.$

Proof:

• For simplicity assume $W = \{S_1, ..., S_m\}$.

* Will show: there is $n \in \mathbb{N}$ and $1 \le k_0 \le m$ with $\|(T_0 - S_{k_0})|_{Y_0}\| \le 3\varepsilon$.

• If * fails: we find normalized block sequences $(x_i^k)_i$, $1 \le k \le m$ with $\|(T_0 - S_k)x_i^k\| \ge 3\varepsilon$ for all $i \in \mathbb{N}$, $1 \le k \le m$.

- If * fails: we find normalized block sequences $(x_i^k)_i$, $1 \le k \le m$ with $\|(T_0 - S_k)x_i^k\| \ge 3\varepsilon$ for all $i \in \mathbb{N}$, $1 \le k \le m$.
- By a gliding hump argument we may pick $i_1 < \cdots < i_m$ so that

* Will show: there is $n \in \mathbb{N}$ and $1 \le k_0 \le m$ with $\|(T_0 - S_{k_0})|_{Y_n}\| \le 3\varepsilon$.

- If * fails: we find normalized block sequences $(x_i^k)_i$, $1 \le k \le m$ with $\|(T_0 - S_k)x_i^k\| \ge 3\varepsilon$ for all $i \in \mathbb{N}$, $1 \le k \le m$.
- By a gliding hump argument we may pick $i_1 < \cdots < i_m$ so that
 - $x_{i_1}^{(1)}, x_{i_2}^{(2)}, \dots, x_{i_m}^{(m)}$ have disjoint supports,

不良 とうきょう ちょうしょう

- If * fails: we find normalized block sequences $(x_i^k)_i$, $1 \le k \le m$ with $\|(T_0 - S_k)x_i^k\| \ge 3\varepsilon$ for all $i \in \mathbb{N}$, $1 \le k \le m$.
- By a gliding hump argument we may pick $i_1 < \cdots < i_m$ so that
 - $x_{i_1}^{(1)}, x_{i_2}^{(2)}, \dots, x_{i_m}^{(m)}$ have disjoint supports,
 - for $1 \le k \le m$: $(T_0 S_k) x_{i_1}^{(1)}, (T_0 S_k) x_{i_2}^{(2)}, \dots, (T_0 S_k) x_{i_m}^{(m)}$ has "almost" disjoint supports

- If * fails: we find normalized block sequences $(x_i^k)_i$, $1 \le k \le m$ with $\|(T_0 - S_k)x_i^k\| \ge 3\varepsilon$ for all $i \in \mathbb{N}$, $1 \le k \le m$.
- By a gliding hump argument we may pick $i_1 < \cdots < i_m$ so that
 - $x_{i_1}^{(1)}, x_{i_2}^{(2)}, \dots, x_{i_m}^{(m)}$ have disjoint supports,
 - for $1 \le k \le m$: $(T_0 S_k) x_{i_1}^{(1)}, (T_0 S_k) x_{i_2}^{(2)}, \dots, (T_0 S_k) x_{i_m}^{(m)}$ has "almost" disjoint supports
- So: $\|\sum_{k=1}^{m} x_{i_k}^{(k)}\| = \max_{1 \le k \le m} \|x_{i_k}^{(k)}\| = 1$

- If * fails: we find normalized block sequences $(x_i^k)_i$, $1 \le k \le m$ with $\|(T_0 - S_k)x_i^k\| \ge 3\varepsilon$ for all $i \in \mathbb{N}$, $1 \le k \le m$.
- By a gliding hump argument we may pick $i_1 < \cdots < i_m$ so that
 - $x_{i_1}^{(1)}, x_{i_2}^{(2)}, \dots, x_{i_m}^{(m)}$ have disjoint supports,
 - for $1 \le k \le m$: $(T_0 S_k) x_{i_1}^{(1)}, (T_0 S_k) x_{i_2}^{(2)}, \dots, (T_0 S_k) x_{i_m}^{(m)}$ has "almost" disjoint supports
- So: $\|\sum_{k=1}^{m} x_{i_k}^{(k)}\| = \max_{1 \le k \le m} \|x_{i_k}^{(k)}\| = 1$
- and for all $1 \le k_0 \le m$:

$$\left\| (T - \mathcal{S}_{k_0}) \Big(\sum_{k=1}^m x_{i_k}^{(k)} \Big) \right\| \simeq \max_{1 \le k \le m} \| (T - \mathcal{S}_{k_0}) x_{i_k}^{(k)} \| \ge \| (T_0 - \mathcal{S}_{k_0}) x_{i_k}^{k_0} \| \ge 3\varepsilon$$

- If * fails: we find normalized block sequences $(x_i^k)_i$, $1 \le k \le m$ with $\|(T_0 - S_k)x_i^k\| \ge 3\varepsilon$ for all $i \in \mathbb{N}$, $1 \le k \le m$.
- By a gliding hump argument we may pick $i_1 < \cdots < i_m$ so that
 - $x_{i_1}^{(1)}, x_{i_2}^{(2)}, \dots, x_{i_m}^{(m)}$ have disjoint supports,
 - for $1 \le k \le m$: $(T_0 S_k) x_{i_1}^{(1)}, (T_0 S_k) x_{i_2}^{(2)}, \dots, (T_0 S_k) x_{i_m}^{(m)}$ has "almost" disjoint supports
- So: $\|\sum_{k=1}^{m} x_{i_k}^{(k)}\| = \max_{1 \le k \le m} \|x_{i_k}^{(k)}\| = 1$
- and for all $1 \le k_0 \le m$:

$$\left\| (T - S_{k_0}) \Big(\sum_{k=1}^m x_{i_k}^{(k)} \Big) \right\| \simeq \max_{1 \le k \le m} \| (T - S_{k_0}) x_{i_k}^{(k)} \| \ge \| (T_0 - S_{k_0}) x_{i_k}^{k_0} \| \ge 3\varepsilon$$

* Will show: there is $n \in \mathbb{N}$ and $1 \le k_0 \le m$ with $\|(T_0 - S_{k_0})|_{Y_n}\| \le 3\varepsilon$.

- If * fails: we find normalized block sequences (x_i^k)_i, 1 ≤ k ≤ m with ||(T₀ - S_k)x_i^k|| ≥ 3ε for all i ∈ N, 1 ≤ k ≤ m.
- By a gliding hump argument we may pick $i_1 < \cdots < i_m$ so that
 - $x_{i_1}^{(1)}, x_{i_2}^{(2)}, \dots, x_{i_m}^{(m)}$ have disjoint supports,
 - for $1 \le k \le m$: $(T_0 S_k) x_{i_1}^{(1)}, (T_0 S_k) x_{i_2}^{(2)}, \dots, (T_0 S_k) x_{i_m}^{(m)}$ has "almost" disjoint supports
- So: $\|\sum_{k=1}^m x_{i_k}^{(k)}\| = 1$
- and for all $1 \le k_0 \le m$:

$$\left\| (T - \mathcal{S}_{k_0}) \Big(\sum_{k=1}^m x_{i_k}^{(k)} \Big) \right\| \gtrsim 3 \varepsilon$$

• Absurd! ($W \varepsilon$ -pointwise approximates T_0)

• What property of c_0 did we use?

- What property of c_0 did we use?
- For every finite collection of normalized block sequences $(y_i^{(1)})_{i=1}^{\infty}, \ldots, (y_i^{(l)})_{i=1}^{\infty}$

伺 ト イ ヨ ト イ ヨ

- What property of c_0 did we use?
- For every finite collection of normalized block sequences $(y_i^{(1)})_{i=1}^{\infty}, \ldots, (y_i^{(l)})_{i=1}^{\infty}$
- there are $i_1 < \cdots < i_l$ so that

.

- What property of c_0 did we use?
- For every finite collection of normalized block sequences $(y_i^{(1)})_{i=1}^{\infty}, \ldots, (y_i^{(l)})_{i=1}^{\infty}$
- there are $i_1 < \cdots < i_l$ so that

$$\left\|\sum_{k=1}^{l} a_{k} y_{i_{k}}^{(k)}\right\| = \max_{1 \le k \le l} |a_{k}|.$$

.

- What property of c_0 did we use?
- For every finite collection of normalized block sequences $(y_i^{(1)})_{i=1}^{\infty}, \ldots, (y_i^{(l)})_{i=1}^{\infty}$
- there are $i_1 < \cdots < i_l$ so that

$$\left\|\sum_{k=1}^{l} a_{k} y_{i_{k}}^{(k)}\right\| = \max_{1 \le k \le l} |a_{k}|.$$

$$\begin{array}{c} (y_i^{(1)})_i \bullet & \bullet & \bullet \\ (y_i^{(2)})_i \bullet & \bullet & \bullet \\ (y_i^{(3)})_i \bullet & \bullet & \bullet \\ & & & & \\ & & & & \\ (y_i^{(l)})_i \bullet & \bullet & \bullet \\ \end{array}$$

.

- What property of c_0 did we use?
- For every finite collection of normalized block sequences $(y_i^{(1)})_{i=1}^{\infty}, \ldots, (y_i^{(l)})_{i=1}^{\infty}$
- there are $i_1 < \cdots < i_l$ so that

$$\left\|\sum_{k=1}^{l} a_k y_{i_k}^{(k)}\right\| = \max_{1 \le k \le l} |a_k|.$$

- What property of c₀ did we use?
- For every finite collection of normalized block sequences $(y_i^{(1)})_{i=1}^{\infty}, \ldots, (y_i^{(l)})_{i=1}^{\infty}$
- there are $i_1 < \cdots < i_l$ so that

$$\left\|\sum_{k=1}^{l} a_{k} y_{i_{k}}^{(k)}\right\| = \max_{1 \le k \le l} |a_{k}|.$$

 Any finite collection of normalized block sequences in c₀ asymptotically jointly behaves like the uvb of c₀.
Plegma spreading sequences

A sequence $(e_i)_{i=1}^{\infty}$ in a Banach space is called spreading if for any $m \in \mathbb{N}$, any

 $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$

and any scalars $(a_n)_{n=1}^m$ we have:

$$\Big\|\sum_{n=1}^m a_n e_{i_n}\Big\| = \Big\|\sum_{n=1}^m a_n e_{j_n}\Big\|.$$

くぼう くほう くほう

A sequence $(e_i)_{i=1}^{\infty}$ in a Banach space is called spreading if for any $m \in \mathbb{N}$, any

 $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$

and any scalars $(a_n)_{n=1}^m$ we have:

$$\Big|\sum_{n=1}^m a_n e_{i_n}\Big\| = \Big\|\sum_{n=1}^m a_n e_{j_n}\Big\|.$$

くぼう くほう くほう

A sequence $(e_i)_{i=1}^{\infty}$ in a Banach space is called spreading if for any $m \in \mathbb{N}$, any

 $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$

and any scalars $(a_n)_{n=1}^m$ we have:

$$\Big\|\sum_{n=1}^m a_n e_{i_n}\Big\| = \Big\|\sum_{n=1}^m a_n e_{j_n}\Big\|.$$

くぼう くほう くほう

A sequence $(e_i)_{i=1}^{\infty}$ in a Banach space is called spreading if for any $m \in \mathbb{N}$, any

 $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$

and any scalars $(a_n)_{n=1}^m$ we have:

くぼう くほう くほう

A sequence $(e_i)_{i=1}^{\infty}$ in a Banach space is called spreading if for any $m \in \mathbb{N}$, any

 $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$

and any scalars $(a_n)_{n=1}^m$ we have:

$$\Big\|\sum_{n=1}^m a_n e_{i_n}\Big\| = \Big\|\sum_{n=1}^m a_n e_{j_n}\Big\|.$$

く 同 と く ヨ と く ヨ と

A sequence $(e_i)_{i=1}^{\infty}$ in a Banach space is called spreading if for any $m \in \mathbb{N}$, any

 $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$

and any scalars $(a_n)_{n=1}^m$ we have:

$$\Big\|\sum_{n=1}^m a_n e_{i_n}\Big\| = \Big\|\sum_{n=1}^m a_n e_{j_n}\Big\|.$$

 $(e_{i_n})_{n=1}^m$ is isometric to $(e_{j_n})_{n=1}^m$

• e.g. the unit vector basis of c_0 , ℓ_p , $1 \le p < \infty$.

< 回 > < 三 > < 三 >

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

- N

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

 $i_1^{(1)} \leq \cdots \leq i_k^{(1)}$

• • • • • • •

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

$$i_1^{(1)} \leq \cdots \leq i_k^{(1)} < i_1^{(2)} \leq \cdots \leq i_k^{(2)}$$

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

$$i_1^{(1)} \le \dots \le i_k^{(1)} < i_1^{(2)} \le \dots \le i_k^{(2)} < \dots < i_1^{(m)} \le \dots \le i_k^{(m)}$$

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

$$\begin{split} i_1^{(1)} &\leq \cdots \leq i_k^{(1)} < i_1^{(2)} \leq \cdots \leq i_k^{(2)} < \cdots < i_1^{(m)} \leq \cdots \leq i_k^{(m)} \\ j_1^{(1)} &\leq \cdots \leq j_k^{(1)} < j_1^{(2)} \leq \cdots \leq j_k^{(2)} < \cdots < j_1^{(m)} \leq \cdots \leq j_k^{(m)} \end{split}$$

★ ∃ ► 4

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

$$\begin{split} i_1^{(1)} &\leq \cdots \leq i_k^{(1)} < i_1^{(2)} \leq \cdots \leq i_k^{(2)} < \cdots < i_1^{(m)} \leq \cdots \leq i_k^{(m)} \\ j_1^{(1)} &\leq \cdots \leq j_k^{(1)} < j_1^{(2)} \leq \cdots \leq j_k^{(2)} < \cdots < j_1^{(m)} \leq \cdots \leq j_k^{(m)} \end{split}$$

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

$$i_{1}^{(1)} \leq \dots \leq i_{k}^{(1)} < i_{1}^{(2)} \leq \dots \leq i_{k}^{(2)} < \dots < i_{1}^{(m)} \leq \dots \leq i_{k}^{(m)}$$
$$j_{1}^{(1)} \leq \dots \leq j_{k}^{(1)} < j_{1}^{(2)} \leq \dots \leq j_{k}^{(2)} < \dots < j_{1}^{(m)} \leq \dots \leq j_{k}^{(m)}$$

$$\left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}e_{j_{n}^{(k)}}^{(k)}\right\| = \left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}e_{j_{n}^{(k)}}^{(k)}\right\|$$

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

$$i_{1}^{(1)} \leq \dots \leq i_{k}^{(1)} < i_{1}^{(2)} \leq \dots \leq i_{k}^{(2)} < \dots < i_{1}^{(m)} \leq \dots \leq i_{k}^{(m)}$$
$$j_{1}^{(1)} \leq \dots \leq j_{k}^{(1)} < j_{1}^{(2)} \leq \dots \leq j_{k}^{(2)} < \dots < j_{1}^{(m)} \leq \dots \leq j_{k}^{(m)}$$

$$\left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}\boldsymbol{e}_{j_{n}^{(k)}}^{(k)}\right\| = \left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}\boldsymbol{e}_{j_{n}^{(k)}}^{(k)}\right\|$$

$$\begin{array}{c} (e_i^{(1)})_i & \bullet & \bullet & \bullet \\ (e_i^{(2)})_i & \bullet & \bullet & \bullet \\ (e_i^{(3)})_i & \bullet & \bullet & \bullet \\ (e_i^{(l)})_i & \bullet & \bullet & \bullet \\ \end{array}$$

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

$$i_{1}^{(1)} \leq \dots \leq i_{k}^{(1)} < i_{1}^{(2)} \leq \dots \leq i_{k}^{(2)} < \dots < i_{1}^{(m)} \leq \dots \leq i_{k}^{(m)}$$
$$j_{1}^{(1)} \leq \dots \leq j_{k}^{(1)} < j_{1}^{(2)} \leq \dots \leq j_{k}^{(2)} < \dots < j_{1}^{(m)} \leq \dots \leq j_{k}^{(m)}$$

$$\left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}\boldsymbol{e}_{j_{n}^{(k)}}^{(k)}\right\| = \left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}\boldsymbol{e}_{j_{n}^{(k)}}^{(k)}\right\|$$

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

$$i_{1}^{(1)} \leq \dots \leq i_{k}^{(1)} < i_{1}^{(2)} \leq \dots \leq i_{k}^{(2)} < \dots < i_{1}^{(m)} \leq \dots \leq i_{k}^{(m)}$$
$$j_{1}^{(1)} \leq \dots \leq j_{k}^{(1)} < j_{1}^{(2)} \leq \dots \leq j_{k}^{(2)} < \dots < j_{1}^{(m)} \leq \dots \leq j_{k}^{(m)}$$

$$\left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}\boldsymbol{e}_{j_{n}^{(k)}}^{(k)}\right\| = \left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}\boldsymbol{e}_{j_{n}^{(k)}}^{(k)}\right\|$$

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

$$i_{1}^{(1)} \leq \dots \leq i_{k}^{(1)} < i_{1}^{(2)} \leq \dots \leq i_{k}^{(2)} < \dots < i_{1}^{(m)} \leq \dots \leq i_{k}^{(m)}$$
$$j_{1}^{(1)} \leq \dots \leq j_{k}^{(1)} < j_{1}^{(2)} \leq \dots \leq j_{k}^{(2)} < \dots < j_{1}^{(m)} \leq \dots \leq j_{k}^{(m)}$$

$$\left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}\boldsymbol{e}_{j_{n}^{(k)}}^{(k)}\right\| = \left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}\boldsymbol{e}_{j_{n}^{(k)}}^{(k)}\right\|$$

$$\begin{array}{c} (e_i^{(1)})_i & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ (e_i^{(2)})_i & \bullet \\ (e_i^{(3)})_i & \bullet \\ (e_i^{(l)})_i & \bullet \\ \end{array}$$

A finite collection of sequences $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ in a Banach space X is called plegma spreading if for any $m \in \mathbb{N}$, any

$$i_{1}^{(1)} \leq \dots \leq i_{k}^{(1)} < i_{1}^{(2)} \leq \dots \leq i_{k}^{(2)} < \dots < i_{1}^{(m)} \leq \dots \leq i_{k}^{(m)}$$
$$j_{1}^{(1)} \leq \dots \leq j_{k}^{(1)} < j_{1}^{(2)} \leq \dots \leq j_{k}^{(2)} < \dots < j_{1}^{(m)} \leq \dots \leq j_{k}^{(m)}$$

$$\left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}\boldsymbol{e}_{i_{n}^{(k)}}^{(k)}\right\| = \left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{n}^{(k)}\boldsymbol{e}_{j_{n}^{(k)}}^{(k)}\right\|$$

Example: If $X = (\sum_{k=1}^{l} \ell_p)_{\ell_q}$ and $(e_i^{(k)})_{i=1}^{\infty}$ is the uvb of the *k*'th copy of ℓ_p .

Example: If $X = (\sum_{k=1}^{l} \ell_p)_{\ell_q}$ and $(e_i^{(k)})_{i=1}^{\infty}$ is the uvb of the *k*'th copy of ℓ_p .

$$\left\|\sum_{n=1}^{m}\sum_{k=1}^{l}a_{i}^{(k)}e_{i_{n}^{(k)}}^{(k)}\right\| = \left(\sum_{k=1}^{l}\left(\sum_{n=1}^{m}|a_{n}^{(k)}|^{p}\right)^{q/p}\right)^{1/q}.$$

• • • • • • • •

► < Ξ > <</p>

• If each $(e_i^{(k)})_i$ is weakly null then $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ is suppression unconditional.

- If each $(e_i^{(k)})_i$ is weakly null then $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ is suppression unconditional.
- If each $(e_i^{(k)})_i$ is unconditional then $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ is jointly unconditional.

- If each $(e_i^{(k)})_i$ is weakly null then $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ is suppression unconditional.
- If each $(e_i^{(k)})_i$ is unconditional then $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ is jointly unconditional.

Remark: plegma spreading is necessary

- If each $(e_i^{(k)})_i$ is weakly null then $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ is suppression unconditional.
- If each $(e_i^{(k)})_i$ is unconditional then $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ is jointly unconditional.

Remark: plegma spreading is necessary

• There exist unconditional sequences $(e_i^{(1)})_i, (e_i^{(2)})_i$ that have no plegma unconditional subsequences.

- If each $(e_i^{(k)})_i$ is weakly null then $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ is suppression unconditional.
- If each $(e_i^{(k)})_i$ is unconditional then $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ is jointly unconditional.

Remark: plegma spreading is necessary

• There exist unconditional sequences $(e_i^{(1)})_i, (e_i^{(2)})_i$ that have no plegma unconditional subsequences.

Remark: If each $(e_i^{(k)})_i$ is Schauder basic $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ need not be Schauder basic.

l-joint spreading models

Let $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ and $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ be finite collections of Schauder basic sequences in Banach spaces *X* and *E* respectively.

A = A = A

Let $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ and $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ be finite collections of Schauder basic sequences in Banach spaces X and E respectively. We say that $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ generates $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ as an *l*-joint spreading model

Let $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ and $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ be finite collections of Schauder basic sequences in Banach spaces X and E respectively. We say that $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ generates $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ as an *l*-joint spreading model

Let $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ and $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ be finite collections of Schauder basic sequences in Banach spaces X and E respectively. We say that $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ generates $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ as an *l*-joint spreading model

$$i_1^{(1)} < \cdots < i_k^{(1)}$$

Let $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ and $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ be finite collections of Schauder basic sequences in Banach spaces X and E respectively. We say that $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ generates $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ as an *l*-joint spreading model

$$i_1^{(1)} < \cdots < i_k^{(1)} < i_1^{(2)} < \cdots < i_k^{(2)}$$

Let $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ and $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ be finite collections of Schauder basic sequences in Banach spaces X and E respectively. We say that $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ generates $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ as an *l*-joint spreading model

$$i_1^{(1)} < \dots < i_k^{(1)} < i_1^{(2)} < \dots < i_k^{(2)} < \dots < i_1^{(m)} < \dots < i_k^{(m)}$$

Let $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ and $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ be finite collections of Schauder basic sequences in Banach spaces X and E respectively. We say that $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ generates $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ as an *l*-joint spreading model

$$\begin{aligned} i_1^{(1)} < \cdots < i_k^{(1)} < i_1^{(2)} < \cdots < i_k^{(2)} < \cdots < i_1^{(m)} < \cdots < i_k^{(m)} \\ & \left\| \left\| \sum_{n=1}^m \sum_{k=1}^l a_n^{(k)} x_{i_n^{(k)}}^{(k)} \right\| - \left\| \sum_{n=1}^m \sum_{k=1}^l a_n^{(k)} e_n^{(k)} \right\| \right\| < \delta_m. \end{aligned}$$

Let $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ and $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ be finite collections of Schauder basic sequences in Banach spaces X and E respectively. We say that $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ generates $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ as an *l*-joint spreading model if there is $\delta_m \searrow 0$ s.t. for any $m \in \mathbb{N}$, scalars $((a_n^{(k)})_{k=1}^{l})_{n=1}^{l}$, and

$$\left\| \left\| \sum_{n=1}^{m} \sum_{k=1}^{l} a_{n}^{(k)} x_{i_{n}^{(k)}}^{(k)} \right\| - \left\| \sum_{n=1}^{m} \sum_{k=1}^{l} a_{n}^{(k)} e_{n}^{(k)} \right\| \right\| < \delta_{m}.$$

Remark: $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ is plegma spreading.
Properties: let $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ be Schauder basic sequences in X

• • • • • • •

Properties: let $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ be Schauder basic sequences in X

• There is an infinite *L* so that $((x_i^{(k)})_{i\in L})'_{k=1}$ generates an *I*-joint spreading model $((e_i^{(k)})_{i=1}^{\infty})'_{k=1}$.

Properties: let $((x_i^{(k)})_{i=1}^{\infty})_{k=1}^{l}$ be Schauder basic sequences in X

- There is an infinite *L* so that $((x_i^{(k)})_{i \in L})_{k=1}^l$ generates an *l*-joint spreading model $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$.
- If $((x_i^{(k)})_i$ is weakly null, for $1 \le k \le l$ then $((e_i^{(k)})_{i=1}^{\infty})_{k=1}^l$ is suppression unconditional.

Spaces with unique a *I*-joint spreading models

Spaces that satisfy the UALS

Pavlos Motakis Joint spreading models and uniform approximation of bounded operators

• Let *X* be a Banach space and \mathscr{F} be a collection of normalized Schauder basic sequences in *X*.

- Let X be a Banach space and \mathscr{F} be a collection of normalized Schauder basic sequences in X.
- If there exists $C \ge 1$ so that

for any $l \in \mathbb{N}$, any two plegma spreading sequences that are generated as *l*-joint spreading models by two *l*-tuples of sequences in \mathscr{F} are *C*-equivalent

• then we say that X admits a unique *I*-joint spreading model with respect to \mathscr{F} .

- Let X be a Banach space and \mathscr{F} be a collection of normalized Schauder basic sequences in X.
- If there exists $C \ge 1$ so that

for any $l \in \mathbb{N}$, any two plegma spreading sequences that are generated as *l*-joint spreading models by two *l*-tuples of sequences in \mathscr{F} are *C*-equivalent

• then we say that X admits a unique *I*-joint spreading model with respect to \mathcal{F} .

Remark

There is a notion of an asymptotic model generated by an infinite array of sequences. (Halbeisen - Odell (2014)). A space has a unique I-joint spreading model with respect to \mathscr{F} if and only if it has a unique asymptotic model with respect to \mathscr{F}

Typical examples of families \mathscr{F} in X:

- $\mathscr{F}(X) =$ all normalized Schauder basic sequences,
- $\mathscr{F}_{C}(X)$ = all normalized C-Schauder basic sequences,
- $\mathscr{F}_0(X) =$ all normalized weakly null Schauder basic sequences,
- $\mathscr{F}_{b}(X) =$ all normalized block sequences if X has a basis.
- given a (countable) $\mathscr{A} \subset X^*$:

$$\mathscr{F}_{\mathscr{A},0} = \Big\{ (x_k)_k \in \mathscr{F}(X) : f(x_k) \to 0 \text{ for all } f \in \mathscr{A} \Big\}.$$

周 ト イ ヨ ト イ ヨ

(a)

• If $X = \ell_p$, 1 , then X admits a unique*I* $-joint spreading model with respect to <math>\mathcal{F}(X)$.

• • • • • • •

- If $X = \ell_p$, 1 , then X admits a unique*I* $-joint spreading model with respect to <math>\mathcal{F}(X)$.
- If $X = c_0$, then X admits a unique *I*-joint spreading model with respect to $\mathcal{F}_0(X)$ but not $\mathcal{F}(X)$.

周レイモレイモ

- If $X = \ell_p$, 1 , then X admits a unique*I* $-joint spreading model with respect to <math>\mathcal{F}(X)$.
- If $X = c_0$, then X admits a unique *I*-joint spreading model with respect to $\mathcal{F}_0(X)$ but not $\mathcal{F}(X)$.

Theorem

If X = JT (James tree space), then X admits a unique I-joint spreading model with respect to $\mathcal{F}_0(X)$ but not $\mathcal{F}(X)$.

A (10) > A (10) > A (10)

Let X be a Banach space and $\mathscr{F} \subset \mathscr{F}(X)$. We say that \mathscr{F} is difference including if:

<ロ> <問> <問> < 回> < 回> 、

3

Let X be a Banach space and $\mathscr{F} \subset \mathscr{F}(X)$. We say that \mathscr{F} is difference including if:

• if $(x_k)_k$ in \mathscr{F} then any of its subsequences is in \mathscr{F} .

A (10) A (10)

Let X be a Banach space and $\mathscr{F} \subset \mathscr{F}(X)$. We say that \mathscr{F} is difference including if:

- if $(x_k)_k$ in \mathscr{F} then any of its subsequences is in \mathscr{F} .
- *if* $(x_k)_k$ *is bounded* without convergent subsequences *then*

A (10) A (10)

Let X be a Banach space and $\mathscr{F} \subset \mathscr{F}(X)$. We say that \mathscr{F} is difference including if:

- if $(x_k)_k$ in \mathscr{F} then any of its subsequences is in \mathscr{F} .
- if (x_k)_k is bounded without convergent subsequences then there exists infinite M ⊂ N so that for any l₁ < l₂ < l₃ < · · · ∈ M

Let X be a Banach space and $\mathscr{F} \subset \mathscr{F}(X)$. We say that \mathscr{F} is difference including if:

- if $(x_k)_k$ in \mathscr{F} then any of its subsequences is in \mathscr{F} .
- if (x_k)_k is bounded without convergent subsequences then there exists infinite M ⊂ N so that for any l₁ < l₂ < l₃ < · · · ∈ M

$$(y_k)_k = \left(rac{x_{l_{2k}} - x_{l_{2k-1}}}{\|x_{l_{2k}} - x_{l_{2k-1}}\|}\right)_k$$
 is in \mathscr{F} .

4 AR 6 4 E 6 4 E

Let X be a Banach space and $\mathscr{F} \subset \mathscr{F}(X)$. We say that \mathscr{F} is difference including if:

- if $(x_k)_k$ in \mathscr{F} then any of its subsequences is in \mathscr{F} .
- if (x_k)_k is bounded without convergent subsequences then there exists infinite M ⊂ N so that for any l₁ < l₂ < l₃ < · · · ∈ M

$$(y_k)_k = \left(\frac{x_{l_{2k}} - x_{l_{2k-1}}}{\|x_{l_{2k}} - x_{l_{2k-1}}\|}\right)_k$$
 is in \mathscr{F} .

Examples of difference including families \mathscr{F} :

- $\mathscr{F}(X) =$ all normalized basic sequences,
- $\mathscr{F}_{C}(X) =$ all normalized *C*-basic sequences,
- $\mathscr{F}_0(X)$ = all normalized *w*-null basic sequences, if $\ell_1 \not\subset X$,
- $\mathscr{F}_{\mathscr{A},0} = \left\{ (x_k)_k \in \mathscr{F}(X) : f(x_k) \to 0 \text{ for all } f \in \mathscr{A} \right\}, \text{ if } \mathscr{A} \text{ countable,}$
- $\mathscr{F}_{(e_i^*)_i(X)}$, if X has a basis $(e_i)_i$.

< D > < P > < E > <</pre>

Let X be a Banach space. If there exists a difference including family \mathscr{F} so that X admits a unique I-joint spreading model with respect to \mathscr{F} then X has the UALS property.

Let X be a Banach space. If there exists a difference including family \mathscr{F} so that X admits a unique I-joint spreading model with respect to \mathscr{F} then X has the UALS property.

Corollary

Every Asymptotic- ℓ_p *space*, $1 \le p \le \infty$ *has the UALS-property.*

A (10) > A (10) > A (10)

Let X be a Banach space. If there exists a difference including family \mathscr{F} so that X admits a unique *I*-joint spreading model with respect to \mathscr{F} then X has the UALS property.

Corollary

Every Asymptotic- ℓ_p *space,* $1 \le p \le \infty$ *has the UALS-property.*

Recall: *X* is Asymptotic- ℓ_p , $1 \le p \le \infty$ if $\exists C \ge 1$ so that $\forall n \in \mathbb{N}$ \exists a finite codimensional $Y_1 \hookrightarrow X$ so that \forall normalized $x_1 \in Y_1$ \exists a finite codimensional $Y_2 \hookrightarrow X$ so that \forall normalized $x_2 \in Y_2$:

∃ a finite codimensional $Y_n \hookrightarrow X$ so that \forall normalized $x_n \in Y_n$ $(x_k)_{k=1}^n$ is *C*-equivalent to the uvb of ℓ_p^n .

Let X be a Banach space. If there exists a difference including family \mathscr{F} so that X admits a unique *I*-joint spreading model with respect to \mathscr{F} then X has the UALS property.

Corollary

Every Asymptotic- ℓ_p *space,* $1 \le p \le \infty$ *has the UALS-property.*

Recall: *X* is Asymptotic- ℓ_p , $1 \le p \le \infty$ if $\exists C \ge 1$ so that $\forall n \in \mathbb{N}$ \exists a finite codimensional $Y_1 \hookrightarrow X$ so that \forall normalized $x_1 \in Y_1$ \exists a finite codimensional $Y_2 \hookrightarrow X$ so that \forall normalized $x_2 \in Y_2$

∃ a finite codimensional $Y_n \hookrightarrow X$ so that \forall normalized $x_n \in Y_n$ $(x_k)_{k=1}^n$ is *C*-equivalent to the uvb of ℓ_p^n .

E.g. c_0 , ℓ_p , $1 \le p < \infty$, James space *J*, Tsirelson space *T*, and *T*^{*}.

Let X be a Banach space with an FDD. If there exists a difference including family \mathscr{F} so that X^{*} admits a unique I-joint spreading model with respect to \mathscr{F} then X has the UALS property.

Let X be a Banach space with an FDD. If there exists a difference including family \mathscr{F} so that X^{*} admits a unique I-joint spreading model with respect to \mathscr{F} then X has the UALS property.

Corollary

Every \mathscr{L}_{∞} -space with separable dual has the UALS-property. Specifically, every C(K) for K countable and compact has the UALS-property.

A (10) > A (10) > A

Theorem (Argyros - Georgiou - Lagos - M (2018))

- The following Banach spaces satisfy the UALS property:
 - every X with the scalar-plus-compact property,
 - ℓ_p , $1 \leq p < \infty$, and c_0 ,
 - James space J and its dual J*,
 - Tsirelson space T and its dual T*,
 - in fact, every Asymptotic ℓ_p -space for $1 \le p \le \infty$,
 - James tree space JT ,
 - C(K), for K countable and compact,
 - in fact, every \mathscr{L}_{∞} -space with separable dual.

Question (Halbeisen - Odell)

If X admits a unique I-joint spreading model with respect to a difference including family \mathscr{F} does it contain an asymptotic ℓ_p subspace?

Answer (Freeman - Odell - Sari - Zheng (2016))

If the unique I-joint spreading model is isomorphic to c_0 then yes.

Spaces failing the UALS

Spaces that have a unique spreading model but not a unique *I*-joint spreading model

イロト イ団ト イヨト イヨト

$$X_n = (\underbrace{\ell_1 \oplus \cdots \oplus \ell_1}_{2n \text{ copies of } \ell_1})_{\ell_1} \equiv \ell_1, \quad Y_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_2} \equiv \ell_2$$

イロト イヨト イヨト イヨト

$$X_n = (\underbrace{\ell_1 \oplus \cdots \oplus \ell_1}_{2n \text{ copies of } \ell_1})_{\ell_1} \equiv \ell_1, \quad Y_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_2} \equiv \ell_2$$

• Consider the formal identity $I: X_n \to Y_n$,

$$I(x_1, x_2, \ldots, x_{2n}) = (x_1, x_2, \ldots, x_{2n})$$

A (10) A (10)

$$X_n = (\underbrace{\ell_1 \oplus \cdots \oplus \ell_1}_{2n \text{ copies of } \ell_1})_{\ell_1} \equiv \ell_1, \quad Y_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_2} \equiv \ell_2$$

• Consider the formal identity $I: X_n \to Y_n$,

$$I(x_1, x_2, \ldots, x_{2n}) = (x_1, x_2, \ldots, x_{2n})$$

• For $F \subset \{1, \dots, 2n\}$, the formal canonical projection $P_F : X_n \to Y_n$, $P_F(x_1, x_2, \dots, x_{2n}) = (\mathbb{1}_F(1)x_1, \mathbb{1}_F(2)x_2, \dots, \mathbb{1}_F(2n)x_{2n})$

$$X_n = (\underbrace{\ell_1 \oplus \cdots \oplus \ell_1}_{2n \text{ copies of } \ell_1})_{\ell_1} \equiv \ell_1, \quad Y_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_2} \equiv \ell_2$$

• Consider the formal identity $I: X_n \to Y_n$,

$$I(x_1, x_2, \ldots, x_{2n}) = (x_1, x_2, \ldots, x_{2n})$$

- For $F \subset \{1, \dots, 2n\}$, the formal canonical projection $P_F : X_n \to Y_n$, $P_F(x_1, x_2, \dots, x_{2n}) = (\mathbb{1}_F(1)x_1, \mathbb{1}_F(2)x_2, \dots, \mathbb{1}_F(2n)x_{2n})$
- Define $W = co\{P_F : \# \le n\}.$

$$X_n = (\underbrace{\ell_1 \oplus \cdots \oplus \ell_1}_{2n \text{ copies of } \ell_1})_{\ell_1} \equiv \ell_1, \quad Y_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_2} \equiv \ell_2$$

• Consider the formal identity $I: X_n \to Y_n$,

$$I(x_1, x_2, \ldots, x_{2n}) = (x_1, x_2, \ldots, x_{2n})$$

- For $F \subset \{1, \dots, 2n\}$, the formal canonical projection $P_F : X_n \to Y_n$, $P_F(x_1, x_2, \dots, x_{2n}) = (\mathbb{1}_F(1)x_1, \mathbb{1}_F(2)x_2, \dots, \mathbb{1}_F(2n)x_{2n})$
- Define $W = co\{P_F : \# \le n\}.$
 - $W(1/\sqrt{n})$ -pointwise approximates *I*.

$$X_n = (\underbrace{\ell_1 \oplus \cdots \oplus \ell_1}_{2n \text{ copies of } \ell_1})_{\ell_1} \equiv \ell_1, \quad Y_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_2} \equiv \ell_2$$

• Consider the formal identity $I: X_n \to Y_n$,

$$I(x_1, x_2, \ldots, x_{2n}) = (x_1, x_2, \ldots, x_{2n})$$

- For $F \subset \{1, \dots, 2n\}$, the formal canonical projection $P_F : X_n \to Y_n$, $P_F(x_1, x_2, \dots, x_{2n}) = (\mathbb{1}_F(1)x_1, \mathbb{1}_F(2)x_2, \dots, \mathbb{1}_F(2n)x_{2n})$
- Define $W = \operatorname{co}\{P_F : \# \leq n\}.$
 - $W(1/\sqrt{n})$ -pointwise approximates *I*.
 - For any $Z \xrightarrow{\text{finite codim}} Y$ and any $S \in W$

 $\|(I-S)|_Z\| \ge 1/2$

Comment

The space $\ell_1 \oplus \ell_2$ has two spreading models.

A > + = + + =

Comment

The space $\ell_1 \oplus \ell_2$ has two spreading models.

Question

• If X has a unique I-joint spreading model then it has the UALS property.

伺 ト イ ヨ ト イ ヨ
The space $\ell_1 \oplus \ell_2$ has two spreading models.

Question

- If X has a unique I-joint spreading model then it has the UALS property.
- What if X just has a unique spreading model?

$$X_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_1}, \quad Y_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_2}$$

イロト イポト イヨト イヨト

$$X_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_1}, \quad Y_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_2}$$

Comment

The space $X = (\sum_{k=1}^{\infty} X_n)_{\ell_2}$ fails the UALS property.

A (10) A (10)

$$X_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_1}, \quad Y_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_2}$$

Comment

The space $X = (\sum_{k=1}^{\infty} X_n)_{\ell_2}$ fails the UALS property.

Remark

 Every spreading model admitted by X is isometrically equivalent to the uvb of l₂.

A (10) > A (10) > A (10)

$$X_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_1}, \quad Y_n = (\underbrace{\ell_2 \oplus \cdots \oplus \ell_2}_{2n \text{ copies of } \ell_2})_{\ell_2}$$

Comment

The space $X = (\sum_{k=1}^{\infty} X_n)_{\ell_2}$ fails the UALS property.

Remark

- Every spreading model admitted by X is isometrically equivalent to the uvb of l₂.
- The space X has no unique I-joint spreading model.

A (10) > A (10) > A (10)

Theorem (Argyros - Georgiou - Lagos - M (2018))

• The following Banach spaces fail the UALS property:

• • • • • • •

Theorem (Argyros - Georgiou - Lagos - M (2018))

- The following Banach spaces fail the UALS property:
 - $\ell_p \oplus \ell_q$, and $\ell_p \oplus c_0$ for $1 \le p \ne q \le \infty$
 - $(\sum \ell_p)_{\ell_q}$, for $1 \le p \ne q \le \infty$,
 - $(\sum \ell_p)_{c_0}$, $(\sum c_0)_{\ell_p}$, for $1 \le p \le \infty$,
 - $L_{p}[0,1], 1 \leq p < \infty, p \neq 2,$
 - C[0,1] and its dual $\mathcal{M}[0,1]$ and $L_{\infty}[0,1]$.

ト くぼ ト く ヨ ト く ヨ ト 二 ヨ

イロト イヨト イヨト イヨト

÷.

• C[0, 1], $L_p[0, 1]$, $p \neq 2$, $\ell_p \oplus \ell_q$ etc fail the UALS property. They contain subspaces that satisfy the UALS property.

.

- C[0, 1], $L_p[0, 1]$, $p \neq 2$, $\ell_p \oplus \ell_q$ etc fail the UALS property. They contain subspaces that satisfy the UALS property.
- C(K), for countable compact K, satisfies the UALS property. It contains subspaces that fail the UALS property.

- C[0, 1], $L_p[0, 1]$, $p \neq 2$, $\ell_p \oplus \ell_q$ etc fail the UALS property. They contain subspaces that satisfy the UALS property.
- C(K), for countable compact K, satisfies the UALS property. It contains subspaces that fail the UALS property.
- If X is Asymptotic ℓ_p all of its subspaces are asymptotic ℓ_p .

- C[0, 1], $L_p[0, 1]$, $p \neq 2$, $\ell_p \oplus \ell_q$ etc fail the UALS property. They contain subspaces that satisfy the UALS property.
- C(K), for countable compact K, satisfies the UALS property. It contains subspaces that fail the UALS property.
- If X is Asymptotic ℓ_p all of its subspaces have the UALS property.

A (1) > A (1) > A

- C[0, 1], $L_p[0, 1]$, $p \neq 2$, $\ell_p \oplus \ell_q$ etc fail the UALS property. They contain subspaces that satisfy the UALS property.
- C(K), for countable compact K, satisfies the UALS property. It contains subspaces that fail the UALS property.
- If X is Asymptotic ℓ_p all of its subspaces have the UALS property.

Question

Is there X all subspaces of which fail the UALS property?

A (1) > A (2) > A

Thank you!