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General question

We are given a set A and a metric space (M,d). We are also given

a function f0 : A→ M

a collection W of functions g : A→ M.

For ε > 0 and ε′ > 0 determine conditions for f0,W so that

For all x in A there exists g ∈W so that d(f0(x),g(x)) ≤ ε.

implies

There exists g ∈W so that for all x ∈ A d(f0(x),g(x)) ≤ ε′.
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General question

We are given a set A and a metric space (M,d). We are also given

a function f0 : A→ M

a collection W of functions g : A→ M.

For ε > 0 and ε′ > 0 determine conditions for f0,W so that

ε-pointwise approximation of f0 by elements W

implies

ε′-uniform approximation of f0 by an element of W .
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The linear setting

Let X , Y be Banach spaces and we are given

a bounded linear operator T0 : X → Y , i.e. T0 ∈ L(X ,Y ),

a convex and closed collection W of T0 ∈ L(X ,Y ).

For ε > 0 and ε′ > 0 determine conditions for T0,W so that

For all x in BX there exists S ∈W so that ‖T0x − Sx‖ ≤ ε

implies

there exists S ∈W so that for all x ∈ BX ‖T0x − Sx‖ ≤ ε′.
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The linear setting

Let X , Y be Banach spaces and we are given

a bounded linear operator T0 : X → Y , i.e. T0 ∈ L(X ,Y ),

a convex and closed collection W of T0 ∈ L(X ,Y ).

For ε > 0 and ε′ > 0 determine conditions for T0,W so that

ε-pointwise approximation on the unit ball of T0 by elements W

implies

ε′-norm approximation of T0 by an element of W .
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Example:

Let X be Banach space and let

x∗0 ∈ X ∗ = L(X ,R)

W ⊂ X ∗ = L(X ,R) be convex and w∗-compact.

If for some ε > 0 the set W ε-pointwise approximates x∗0
Hahn-Banach

=⇒

there is y∗ ∈W with

‖x∗0 − y∗‖ ≤ ε.

Answer: never, when dim(X ) ≥ 2. (W. B. Johnson)
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Example:

Let X and Y be Banach spaces and let

T0 ∈ L(X ,Y )

W ⊂ L(X ,Y ) be convex and norm-compact.

If for some ε > 0 the set W ε-pointwise approximates x∗0
Hahn-Banach

=⇒

there is y∗ ∈W with

‖x∗0 − y∗‖ ≤ ε.

Answer: never, when dim(X ) ≥ 2. (W. B. Johnson)

Pavlos Motakis Joint spreading models and uniform approximation of bounded operators



Example:

Let X and Y be Banach spaces and let

T0 ∈ L(X ,Y )

W ⊂ L(X ,Y ) be convex and norm-compact.

If for some ε > 0 the set W ε-pointwise approximates T0

Hahn-Banach
=⇒

there is y∗ ∈W with

‖x∗0 − y∗‖ ≤ ε.
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Example:

Let X and Y be Banach spaces and let

T0 ∈ L(X ,Y )

W ⊂ L(X ,Y ) be convex and norm-compact.

If for some ε > 0 the set W ε-pointwise approximates T0

?
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T0 ∈ L(X ,Y )

W ⊂ L(X ,Y ) be convex and norm-compact.

If for some ε > 0 the set W ε-pointwise approximates T0

?
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for some uniform C = C(X ,Y ) ≥ 1 there is S ∈W with
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Example:

Let X and Y be Banach spaces and let

T0 ∈ L(X ,Y )

W ⊂ L(X ,Y ) be convex and norm-compact.

If for some ε > 0 the set W ε-pointwise approximates T0

?
=⇒

for some uniform C = C(X ,Y ) ≥ 1 there is S ∈W with

‖T0 − S‖ ≤ Cε.

Answer: never, when dim(X ) ≥ 2. (W. B. Johnson)
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The Uniform approximation on large
subspaces (UALS property)
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Definition
A Banach space X has the

Uniform approximation property on large subspaces (UALS)
property if there exists C ≥ 1 so that

whenever T0 ∈ L(X ) and W ⊂ L(X ) is convex and compact

and W ε-pointwise approximates T0

then there exist

S ∈W and

a finite codimensional subspace Y of X

with ‖(T0 − S)|Y‖L(Y ,X) ≤ Cε.
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Theorem (Argyros - Georgiou - Lagos - M (2018))

The following Banach spaces satisfy the UALS property:

• every X with the scalar-plus-compact property,
• `p, 1 ≤ p <∞, and c0,
• James space J and its dual J∗,
• Tsirelson space T and its dual T ∗,
• in fact, every Asymptotic `p-space for 1 ≤ p ≤ ∞,
• James tree space JT ,
• C(K ), for K countable and compact,
• in fact, every L∞-space with separable dual.

The following Banach spaces fail the UALS property:

• `p ⊕ `q , and `p ⊕ c0 for 1 ≤ p 6= q ≤ ∞
• (
∑
`p)`q , for 1 ≤ p 6= q ≤ ∞,

• (
∑
`p)c0 , (

∑
c0)`p , for 1 ≤ p ≤ ∞,

• Lp[0,1], 1 ≤ p <∞, p 6= 2,
• C[0,1] and its dualM[0,1] and L∞[0,1].
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The space c0 has the UALS:

• if ε > 0 and T0 : c0 → c0 and W ⊂ L(c0) compact are such that

for all x ∈ c0 there is S ∈W with ‖T0x − S0x‖ ≤ ε‖x‖.

• then there exists n ∈ N so that if Yn = [(ei)i≥n]: we have

‖(T0 − S)|Y‖L(Y ,c0) ≤ 3ε.

Proof:

• For simplicity assume W = {S1, ...,Sm}.

∗Will show: there is n ∈ N and 1 ≤ k0 ≤ m with ‖(T0 − Sk0)|Yn‖ ≤ 3ε.

• If ∗ fails: we find normalized block sequences (xk
i )i , 1 ≤ k ≤ m

• with ‖(T0 − Sk )xk
i ‖ ≥ 3ε for all i ∈ N, 1 ≤ k ≤ m.
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• For simplicity assume W = {S1, ...,Sm}.

∗Will show: there is n ∈ N and 1 ≤ k0 ≤ m with ‖(T0 − Sk0)|Yn‖ ≤ 3ε.

• If ∗ fails: we find normalized block sequences (xk
i )i , 1 ≤ k ≤ m

• with ‖(T0 − Sk )xk
i ‖ ≥ 3ε for all i ∈ N, 1 ≤ k ≤ m.

• By a gliding hump argument we may pick i1 < · · · < im so that

x (1)
i1 , x (2)

i2 , . . . , x (m)
im have disjoint supports,

for 1 ≤ k ≤ m: (T0 − Sk )x
(1)
i1 , (T0 − Sk )x

(2)
i2 , . . . , (T0 − Sk )x

(m)
im

has “almost” disjoint supports

• So: ‖
∑m

k=1 x (k)
ik ‖ = max1≤k≤m ‖x (k)

ik ‖ = 1

• and for all 1 ≤ k0 ≤ m:∥∥∥(T − Sk0)
( m∑

k=1

x (k)
ik

)∥∥∥ ' max
1≤k≤m

‖(T − Sk0)x
(k)
ik ‖ ≥ ‖(T0 − Sk0)x

k0
ik ‖ ≥ 3ε

• Absurd! (W ε-pointwise approximates T0)
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• What property of c0 did we use?

• For every finite collection of normalized block sequences
(y (1)

i )∞i=1, . . . , (y
(l)
i )∞i=1

• there are i1 < · · · < il so that

∥∥∥ l∑
k=1

ak y (k)
ik

∥∥∥ = max
1≤k≤l

|ak |.

• Any finite collection of normalized block sequences in c0

• asymptotically jointly behaves like the uvb of c0.
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Plegma spreading sequences
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Definition

A sequence (ei)
∞
i=1 in a Banach space is called spreading if for any

m ∈ N, any
i1 < · · · < im and j1 < · · · < jm

and any scalars (an)
m
n=1 we have:

∥∥∥ m∑
n=1

anein

∥∥∥ =
∥∥∥ m∑

n=1

anejn

∥∥∥.

• e.g. the unit vector basis of c0, `p, 1 ≤ p <∞.
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Definition

A finite collection of sequences ((e(k)
i )∞i=1)

l
k=1 in a Banach space X is

called plegma spreading if for any m ∈ N, any

i(1)1 ≤ · · · ≤ i(1)k < i(2)1 ≤ · · · ≤ i(2)k < · · · < i(m)
1 ≤ · · · ≤ i(m)

k

j(1)1 ≤ · · · ≤ j(1)k < j(2)1 ≤ · · · ≤ j(2)k < · · · < j(m)
1 ≤ · · · ≤ j(m)

k

and any scalars ((a(k)
n )l

k=1))
m
n=1 we have:

∥∥∥ m∑
n=1

l∑
k=1

a(k)
n e(k)

i(k)n

∥∥∥ =
∥∥∥ m∑

n=1

l∑
k=1

a(k)
n e(k)

j(k)n

∥∥∥.
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Example: If X = (
∑l

k=1 `p)`q and (e(k)
i )∞i=1 is the uvb of the k ’th copy

of `p.

∥∥∥ m∑
n=1

l∑
k=1

a(k)
i e(k)

i(k)n

∥∥∥ =
( l∑

k=1

( m∑
n=1

|a(k)
n |p

)q/p)1/q
.
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Properties of a plegma spreading collection ((e(k)
i )∞i=1)

l
k=1

• If each (e(k)
i )i is weakly null then ((e(k)

i )∞i=1)
l
k=1 is suppression

unconditional.

• If each (e(k)
i )i is unconditional then ((e(k)

i )∞i=1)
l
k=1 is jointly

unconditional.

Remark: plegma spreading is necessary

• There exist unconditional sequences (e(1)
i )i , (e

(2)
i )i that have no

plegma unconditional subsequences.

Remark: If each (e(k)
i )i is Schauder basic ((e(k)

i )∞i=1)
l
k=1 need not be

Schauder basic.
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`-joint spreading models
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Definition

Let ((x (k)
i )∞i=1)

l
k=1 and ((e(k)

i )∞i=1)
l
k=1 be finite collections of Schauder

basic sequences in Banach spaces X and E respectively.

We say that ((x (k)
i )∞i=1)

l
k=1 generates ((e(k)

i )∞i=1)
l
k=1 as an l-joint

spreading model

if there is δm ↘ 0 s.t. for any m ∈ N, scalars ((a(k)
n )l

k=1))
m
n=1, and

i(1)1 < · · · < i(1)k < i(2)1 < · · · < i(2)k < · · · < i(m)
1 < · · · < i(m)

k∣∣∣∣∣∥∥∥
m∑

n=1

l∑
k=1

a(k)
n x (k)

i(k)n

∥∥∥− ∥∥∥ m∑
n=1

l∑
k=1

a(k)
n e(k)

n

∥∥∥∣∣∣∣∣ < δm.

Remark: ((e(k)
i )∞i=1)

l
k=1 is plegma spreading.
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Properties: let ((x (k)
i )∞i=1)

l
k=1 be Schauder basic sequences in X

• There is an infinite L so that ((x (k)
i )i∈L)

l
k=1 generates an l-joint

spreading model ((e(k)
i )∞i=1)

l
k=1.

• If ((x (k)
i )i is weakly null, for 1 ≤ k ≤ l then ((e(k)

i )∞i=1)
l
k=1 is

suppression unconditional.
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Spaces with unique a l-joint spreading
models

Spaces that satisfy the UALS
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• Let X be a Banach space and F be a collection of normalized
Schauder basic sequences in X .

• If there exists C ≥ 1 so that

for any l ∈ N, any two plegma spreading sequences

that are generated as l-joint spreading models

by two l-tuples of sequences in F are C-equivalent

• then we say that X admits a unique l-joint spreading model with
respect to F .

Remark
There is a notion of an asymptotic model generated by an infinite
array of sequences. (Halbeisen - Odell (2014)).

A space has a unique l-joint spreading model with respect to F if and
only if it has a unique asymptotic model with respect to F
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Typical examples of families F in X :

• F (X ) = all normalized Schauder basic sequences,

• FC(X ) = all normalized C-Schauder basic sequences,

• F0(X ) = all normalized weakly null Schauder basic sequences,

• Fb(X ) = all normalized block sequences if X has a basis.

• given a (countable) A ⊂ X ∗:

FA ,0 =
{
(xk )k ∈ F (X ) : f (xk )→ 0 for all f ∈ A

}
.
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Examples:

• If X = `p, 1 < p <∞, then X admits a unique l-joint spreading
model with respect to F(X ).

• If X = c0, then X admits a unique l-joint spreading model with
respect to F0(X ) but not F(X ).

Theorem
If X = JT (James tree space), then X admits a unique l-joint
spreading model with respect to F0(X ) but not F(X ).
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Definition

Let X be a Banach space and F ⊂ F (X ). We say that F is
difference including if:

if (xk )k in F then any of its subsequences is in F .

if (xk )k is bounded without convergent subsequences then
there exists infinite M ⊂ N so that for any l1 < l2 < l3 < · · · ∈ M

(yk )k =
( xl2k − xl2k−1

‖xl2k − xl2k−1‖

)
k

is in F .

Examples of difference including families F :

• F (X ) = all normalized basic sequences,

• FC(X ) = all normalized C-basic sequences,

• F0(X ) = all normalized w-null basic sequences, if `1 6⊂ X ,

• FA ,0 =
{
(xk )k ∈ F (X ) : f (xk )→ 0 for all f ∈ A

}
, if A countable,

• F(e∗
i )i (X), if X has a basis (ei)i .
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Theorem
Let X be a Banach space. If there exists a difference including family
F so that X admits a unique l-joint spreading model with respect to
F then X has the UALS property.

Corollary

Every Asymptotic-`p space, 1 ≤ p ≤ ∞ has the UALS-property.

Recall: X is Asymptotic-`p, 1 ≤ p ≤ ∞ if ∃ C ≥ 1 so that ∀n ∈ N

∃ a finite codimensional Y1 ↪→ X so that ∀ normalized x1 ∈ Y1

∃ a finite codimensional Y2 ↪→ X so that ∀ normalized x2 ∈ Y2

...
∃ a finite codimensional Yn ↪→ X so that ∀ normalized xn ∈ Yn

(xk )
n
k=1 is C-equivalent to the uvb of `n

p.

E.g. c0, `p, 1 ≤ p <∞, James space J, Tsirelson space T , and T ∗.
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Theorem
Let X be a Banach space with an FDD. If there exists a difference
including family F so that X ∗ admits a unique l-joint spreading model
with respect to F then X has the UALS property.

Corollary

Every L∞-space with separable dual has the UALS-property.
Specifically, every C(K ) for K countable and compact has the
UALS-property.
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Theorem (Argyros - Georgiou - Lagos - M (2018))

The following Banach spaces satisfy the UALS property:

• every X with the scalar-plus-compact property,
• `p, 1 ≤ p <∞, and c0,
• James space J and its dual J∗,
• Tsirelson space T and its dual T ∗,
• in fact, every Asymptotic `p-space for 1 ≤ p ≤ ∞,
• James tree space JT ,
• C(K ), for K countable and compact,
• in fact, every L∞-space with separable dual.
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Question (Halbeisen - Odell)

If X admits a unique l-joint spreading model with respect to a
difference including family F does it contain an asymptotic `p
subspace?

Answer (Freeman - Odell - Sari - Zheng (2016))

If the unique l-joint spreading model is isomorphic to c0 then yes.
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Spaces failing the UALS
Spaces that have a unique spreading model

but not a unique l-joint spreading model
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• The space `1 ⊕ `2 fails the UALS.

Write:

Xn = (`1 ⊕ · · · ⊕ `1︸ ︷︷ ︸
2n copies of `1

)`1 ≡ `1, Yn = (`2 ⊕ · · · ⊕ `2︸ ︷︷ ︸
2n copies of `2

)`2≡ `2

• Consider the formal identity I : Xn → Yn,

I(x1, x2, . . . , x2n) = (x1, x2, . . . , x2n)

• For F ⊂ {1, . . . ,2n}, the formal canonical projection PF : Xn → Yn,

PF (x1, x2, . . . , x2n) = (1F (1)x1,1F (2)x2, . . . ,1F (2n)x2n)

• Define W = co{PF : # ≤ n}.

W (1/
√

n)-pointwise approximates I.

For any Z
finite codim
↪→ Y and any S ∈W

‖(I − S)|Z‖ ≥ 1/2
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Comment
The space `1 ⊕ `2 has two spreading models.

Question
• If X has a unique l-joint spreading model then it has the UALS
property.

• What if X just has a unique spreading model?
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• Consider the Banach spaces

Xn = (`2 ⊕ · · · ⊕ `2︸ ︷︷ ︸
2n copies of `2

)`1 , Yn = (`2 ⊕ · · · ⊕ `2︸ ︷︷ ︸
2n copies of `2

)`2

Comment

The space X = (
∑∞

k=1 Xn)`2 fails the UALS property.

Remark

Every spreading model admitted by X is isometrically equivalent
to the uvb of `2.
The space X has no unique l-joint spreading model.
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Theorem (Argyros - Georgiou - Lagos - M (2018))

The following Banach spaces fail the UALS property:

• `p ⊕ `q , and `p ⊕ c0 for 1 ≤ p 6= q ≤ ∞
• (
∑
`p)`q , for 1 ≤ p 6= q ≤ ∞,

• (
∑
`p)c0 , (

∑
c0)`p , for 1 ≤ p ≤ ∞,

• Lp[0,1], 1 ≤ p <∞, p 6= 2,
• C[0,1] and its dualM[0,1] and L∞[0,1].
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Comment

• C[0,1], Lp[0,1], p 6= 2, `p ⊕ `q etc fail the UALS property. They
contain subspaces that satisfy the UALS property.
• C(K ), for countable compact K , satisfies the UALS property. It
contains subspaces that fail the UALS property.
• If X is Asymptotic `p all of its subspaces are asymptotic `p.

Question
Is there X all subspaces of which fail the UALS property?
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Thank you!
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