Closed Ideals in $L(L_{\rho})$

Bill Johnson

CIRM, March, 2018

Non(?) Linear Functional Analysis

Joint with G. Pisier and G. Schechtman [JPiS]

Joint with N. C. Phillips and G. Schechtman [JPhS]

・ コ ト ・ 四 ト ・ 回 ト ・

Closed Ideals in $L(L_{\rho})$

Bill Johnson

CIRM, March, 2018

Non(?) Linear Functional Analysis

Joint with G. Pisier and G. Schechtman [JPiS] Joint with N. C. Phillips and G. Schechtman [JPhS]

• Image: A image:

- ⊒ →

Foundational work on L(X): [Berkson-Porta 1969 JFA]

 $L_{p} := L_{p}(0,1) \equiv L_{p}\{-1,1\}^{\mathbb{N}}, 1 \leq p < \infty.$

Motivation for studying $L(\ell_p)$ and $L(L_p)$:

After C^* -algebras, these are arguably the most natural non commutative Banach algebras.

The structure of $L(L_p)$ for $p \neq 2$ is very different from that of $L(\ell_p)$ and $L(L_2)$; more complicated and more interesting.

There are some connections to harmonic analysis.

◆□ > ◆□ > ◆豆 > ◆豆 > →

Foundational work on L(X): [Berkson-Porta 1969 JFA]

 $L_{\rho} := L_{\rho}(0,1) \equiv L_{\rho}\{-1,1\}^{\mathbb{N}}, 1 \leq \rho < \infty.$

Motivation for studying $L(\ell_p)$ and $L(L_p)$:

After C^* -algebras, these are arguably the most natural non commutative Banach algebras.

The structure of $L(L_p)$ for $p \neq 2$ is very different from that of $L(\ell_p)$ and $L(L_2)$; more complicated and more interesting.

There are some connections to harmonic analysis.

ヘロン 人間 とくほ とくほ とう

Foundational work on L(X): [Berkson-Porta 1969 JFA]

 $L_{\rho}:=L_{\rho}(0,1)\equiv L_{\rho}\{-1,1\}^{\mathbb{N}}, 1\leq \rho<\infty.$

Motivation for studying $L(\ell_p)$ and $L(L_p)$:

After C^* -algebras, these are arguably the most natural non commutative Banach algebras.

The structure of $L(L_p)$ for $p \neq 2$ is very different from that of $L(\ell_p)$ and $L(L_2)$; more complicated and more interesting.

There are some connections to harmonic analysis.

ヘロン 人間 とくほ とくほ とう

Foundational work on L(X): [Berkson-Porta 1969 JFA]

 $L_{\rho}:=L_{\rho}(0,1)\equiv L_{\rho}\{-1,1\}^{\mathbb{N}}, 1\leq \rho<\infty.$

Motivation for studying $L(\ell_p)$ and $L(L_p)$:

After C^* -algebras, these are arguably the most natural non commutative Banach algebras.

The structure of $L(L_p)$ for $p \neq 2$ is very different from that of $L(\ell_p)$ and $L(L_2)$; more complicated and more interesting.

There are some connections to harmonic analysis.

ヘロン 人間 とくほとく ほとう

Foundational work on L(X): [Berkson-Porta 1969 JFA]

 $L_{\rho}:=L_{\rho}(0,1)\equiv L_{\rho}\{-1,1\}^{\mathbb{N}}, 1\leq \rho<\infty.$

Motivation for studying $L(\ell_p)$ and $L(L_p)$:

After C^* -algebras, these are arguably the most natural non commutative Banach algebras.

The structure of $L(L_p)$ for $p \neq 2$ is very different from that of $L(\ell_p)$ and $L(L_2)$; more complicated and more interesting.

There are some connections to harmonic analysis.

・ロン ・聞 と ・ ヨ と ・ ヨ と

E DQC

Foundational work on L(X): [Berkson-Porta 1969 JFA]

 $L_{\rho}:=L_{\rho}(0,1)\equiv L_{\rho}\{-1,1\}^{\mathbb{N}}, 1\leq \rho<\infty.$

Motivation for studying $L(\ell_p)$ and $L(L_p)$:

After C^* -algebras, these are arguably the most natural non commutative Banach algebras.

The structure of $L(L_p)$ for $p \neq 2$ is very different from that of $L(\ell_p)$ and $L(L_2)$; more complicated and more interesting.

There are some connections to harmonic analysis.

・ロン ・聞 と ・ ヨ と ・ ヨ と

= 990

Background

For different p, the structure of $L(L_p(\mu))$ spaces are different. There is no non zero (always Banach algebra) homomorphism from $L(L_p(\mu))$ into $L(L_q(\nu))$ when $p \neq q$ and $p \neq 2$. [Phillips?]

Since L_2 is isomorphic to a complemented subspace of L_p , 1 < $p < \infty$, there is a Banach algebra isomorphism from $L(L_2)$ into $L(L_p)$.

Proposition.

Suppose Π : $L(X) \rightarrow L(Y)$ is a non injective homomorphism, and let $1 \le p < \infty$.

• If
$$X = \ell_p$$
, then dens $Y \ge 2^{\aleph_0}$. [known]

• If $X=L_p$, then dens $Y\geq 2^{\aleph_0}$. [JPhS], maybe new

ヘロン ヘアン ヘビン ヘビン

ъ

Background

For different p, the structure of $L(L_p(\mu))$ spaces are different. There is no non zero (always Banach algebra) homomorphism from $L(L_p(\mu))$ into $L(L_q(\nu))$ when $p \neq q$ and $p \neq 2$. [Phillips?]

Since L_2 is isomorphic to a complemented subspace of L_p , $1 , there is a Banach algebra isomorphism from <math>L(L_2)$ into $L(L_p)$.

Proposition.

Suppose Π : $L(X) \rightarrow L(Y)$ is a non injective homomorphism, and let $1 \le p < \infty$.

• If
$$X=\ell_p$$
, then dens $Y\geq 2^{leph_0}$. [known]

• If $X=L_p$, then dens $Y\geq 2^{\aleph_0}$. [JPhS], maybe new

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Background

For different p, the structure of $L(L_p(\mu))$ spaces are different. There is no non zero (always Banach algebra) homomorphism from $L(L_p(\mu))$ into $L(L_q(\nu))$ when $p \neq q$ and $p \neq 2$. [Phillips?]

Since L_2 is isomorphic to a complemented subspace of L_p , $1 , there is a Banach algebra isomorphism from <math>L(L_2)$ into $L(L_p)$.

Proposition.

Suppose $\Pi : L(X) \rightarrow L(Y)$ is a non injective homomorphism, and let $1 \le p < \infty$.

• If
$$X = \ell_p$$
, then dens $Y \ge 2^{\aleph_0}$. [known]

• If $X=L_p$, then dens $Y\geq 2^{leph_0}$. [JPhS], maybe new

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Suppose $\Pi : L(X) \rightarrow L(Y)$ is a non injective homomorphism, and let $1 \le p < \infty$.

- If $X = \ell_p$, then dens $Y \ge 2^{\aleph_0}$. [known]
- If $X = L_p$, then dens $Y \ge 2^{\aleph_0}$. [JPhS], maybe new

Note that since $\Pi^{-1}(0)$ is a non trivial closed ideal, it contains the compact operators K(X) on X. (K(X) is the closure of the finite rank operators

since $L_p(\mu)$ spaces have the approximation property.) So the Calkin algebras $L(\ell_p)/K(\ell_p)$ and $L(L_p)/K(L_p)$ have no non zero representations in L(Y) if Y is a separable Banach space.

Suppose $\Pi : L(X) \rightarrow L(Y)$ is a non injective homomorphism, and let $1 \le p < \infty$.

- If $X = \ell_p$, then dens $Y \ge 2^{\aleph_0}$. [known]
- If $X = L_p$, then dens $Y \ge 2^{\aleph_0}$. [JPhS], maybe new

Note that since $\Pi^{-1}(0)$ is a non trivial closed ideal, it contains the compact operators K(X) on X. (*K*(*X*) is the closure of the finite rank operators since $L_p(\mu)$ spaces have the approximation property.) So the Calkin algebras $L(\ell_p)/K(\ell_p)$ and $L(L_p)/K(L_p)$ have no non zero representations in L(Y) if Y is a separable Banach space.

Suppose $\Pi : L(X) \to L(Y)$, $1 \le p < \infty$, is a non injective homomorphism.

- If $X = \ell_p$, then dens $Y \ge 2^{\aleph_0}$. [known]
- If $X=L_p$, then dens $Y\geq 2^{\aleph_0}$. [JPhS], maybe new

Lemma.

Let X be ℓ_p or L_p , $1 \le p < \infty$. Then there are commuting contractive idempotents $(P_{\alpha})_{\alpha \in \mathbb{R}}$ in L(X) s.t.

- for $\alpha \neq \beta$, $P_{\alpha}P_{\beta}$ has finite rank
- for all $\alpha \in \mathbb{R}$, P_{α} is isometrically isomorphic to X.

Assume Lemma. Then $\Pi(P_{\alpha})$ are idempotents in L(Y) and $\forall \alpha \neq \beta$, $\Pi(P_{\alpha}P_{\beta}) = 0$ since $P_{\alpha}P_{\beta} \in K(X) \subset \Pi^{-1}(0)$. So the unit spheres of $(\Pi(P_{\alpha})(Y))_{\alpha \in \mathbb{R}}$ are disjoint separated subsets of Y.

Suppose $\Pi : L(X) \rightarrow L(Y)$, $1 \le p < \infty$, is a non injective homomorphism.

- If $X = \ell_p$, then dens $Y \ge 2^{\aleph_0}$. [known]
- If $X=L_p$, then dens $Y\geq 2^{\aleph_0}$. [JPhS], maybe new

Lemma.

Let X be ℓ_p or L_p , $1 \le p < \infty$. Then there are commuting contractive idempotents $(P_{\alpha})_{\alpha \in \mathbb{R}}$ in L(X) s.t.

- for $\alpha \neq \beta$, $P_{\alpha}P_{\beta}$ has finite rank
- for all $\alpha \in \mathbb{R}$, P_{α} is isometrically isomorphic to X.

Assume Lemma. Then $\Pi(P_{\alpha})$ are idempotents in L(Y) and $\forall \alpha \neq \beta$, $\Pi(P_{\alpha}P_{\beta}) = 0$ since $P_{\alpha}P_{\beta} \in K(X) \subset \Pi^{-1}(0)$. So the unit spheres of $(\Pi(P_{\alpha})(Y))_{\alpha \in \mathbb{R}}$ are disjoint separated subsets of *Y*.

Lemma.

Let X be ℓ_p or L_p , $1 \le p < \infty$. Then there are commuting contractive idempotents $(P_{\alpha})_{\alpha \in \mathbb{R}}$ in L(X) s.t.

- for $\alpha \neq \beta$, $P_{\alpha}P_{\beta}$ has finite rank
- for all $\alpha \in \mathbb{R}$, P_{α} is isometrically isomorphic to X.

The Lemma is a good exercise for your students. Here are some hints to give them if they need help.

Hint 1. There are 2^{\aleph_0} infinite subsets of $\mathbb N$ s.t. the intersection of any two are finite.

Hint 2. $L_{p} \equiv L_{p} \{-1, 1\}^{\mathbb{N}}$.

ヘロン 人間 とくほ とくほ とう

Lemma.

Let X be ℓ_p or L_p , $1 \le p < \infty$. Then there are commuting contractive idempotents $(P_{\alpha})_{\alpha \in \mathbb{R}}$ in L(X) s.t.

- for $\alpha \neq \beta$, $P_{\alpha}P_{\beta}$ has finite rank
- for all $\alpha \in \mathbb{R}$, P_{α} is isometrically isomorphic to X.

The Lemma is a good exercise for your students. Here are some hints to give them if they need help.

Hint 1. There are 2^{\aleph_0} infinite subsets of \mathbb{N} s.t. the intersection of any two are finite.

Hint 2. $L_{p} \equiv L_{p} \{-1, 1\}^{\mathbb{N}}$.

ヘロン 人間 とくほ とくほ とう

Lemma.

Let X be ℓ_p or L_p , $1 \le p < \infty$. Then there are commuting contractive idempotents $(P_{\alpha})_{\alpha \in \mathbb{R}}$ in L(X) s.t.

- for $\alpha \neq \beta$, $P_{\alpha}P_{\beta}$ has finite rank
- for all $\alpha \in \mathbb{R}$, P_{α} is isometrically isomorphic to X.

The Lemma is a good exercise for your students. Here are some hints to give them if they need help.

Hint 1. There are 2^{\aleph_0} infinite subsets of \mathbb{N} s.t. the intersection of any two are finite.

Hint 2. $L_p \equiv L_p\{-1,1\}^{\mathbb{N}}$.

< ロ > < 同 > < 三 > .

Algebra Isomorphisms into $L(L_p(\mu))$

For $1 \leq p < \infty$, there is an isometric Banach algebra isomorphism $L(\ell_p)/K(\ell_p) \rightarrow L(L_p(\mu))$ and a Banach algebra isomorphism $L(L_p)/K(L_p) \rightarrow L(L_p(\mu))$ [Calkin '41], [BoedinhardjoJ '15], [BlecherPhillips '18].

The 21st century proofs use the most natural left approximate identity for $K(\ell_p)$ and $K(L_p)$. [BJ] uses ultrapowers and [BP] uses the Arens multiplication on $K(\ell_p)^{**}$ and $K(L_p)^{**}$.

Problem. Are there other (always non trivial) closed ideals \mathcal{I} of $L(L_p)$ s.t. $L(L_p)/\mathcal{I}$ is Banach algebra isomorphic to a subalgebra of $L_p(\mu)$? $\kappa_{(\ell_p)}$ is the only non trivial closed ideal in $L(\ell_p)$.

One of the main results of [JPhS] is that $K(L_p)$ is the only closed ideal in $L(L_p)$ that has a left approximate identity.

・ロト ・四ト ・ヨト ・ヨト

Algebra Isomorphisms into $L(L_{\rho}(\mu))$

For $1 \leq p < \infty$, there is an isometric Banach algebra isomorphism $L(\ell_p)/K(\ell_p) \rightarrow L(L_p(\mu))$ and a Banach algebra isomorphism $L(L_p)/K(L_p) \rightarrow L(L_p(\mu))$ [Calkin '41], [BoedinhardjoJ '15], [BlecherPhillips '18].

The 21st century proofs use the most natural left approximate identity for $K(\ell_p)$ and $K(L_p)$. [BJ] uses ultrapowers and [BP] uses the Arens multiplication on $K(\ell_p)^{**}$ and $K(L_p)^{**}$.

Problem. Are there other (always non trivial) closed ideals \mathcal{I} of $L(L_{\rho})$ s.t. $L(L_{\rho})/\mathcal{I}$ is Banach algebra isomorphic to a subalgebra of $L_{\rho}(\mu)$? $\kappa_{(\ell_{\rho})}$ is the only non trivial closed ideal in $L(\ell_{\rho})$.

One of the main results of [JPhS] is that $K(L_p)$ is the only closed ideal in $L(L_p)$ that has a left approximate identity.

・ロン ・四 と ・ 回 と ・ 回 と

Algebra Isomorphisms into $L(L_{\rho}(\mu))$

For $1 \leq \rho < \infty$, there is an isometric Banach algebra isomorphism $L(\ell_{\rho})/K(\ell_{\rho}) \rightarrow L(L_{\rho}(\mu))$ and a Banach algebra isomorphism $L(L_{\rho})/K(L_{\rho}) \rightarrow L(L_{\rho}(\mu))$ [Calkin '41], [BoedinhardjoJ '15], [BlecherPhillips '18].

The 21st century proofs use the most natural left approximate identity for $K(\ell_p)$ and $K(L_p)$. [BJ] uses ultrapowers and [BP] uses the Arens multiplication on $K(\ell_p)^{**}$ and $K(L_p)^{**}$.

Problem. Are there other (always non trivial) closed ideals \mathcal{I} of $L(L_p)$ s.t. $L(L_p)/\mathcal{I}$ is Banach algebra isomorphic to a subalgebra of $L_p(\mu)$? $\kappa_{(\ell_p)}$ is the only non trivial closed ideal in $L(\ell_p)$.

One of the main results of [JPhS] is that $K(L_p)$ is the only closed ideal in $L(L_p)$ that has a left approximate identity.

ヘロン 人間 とくほとく ほとう

Algebra Isomorphisms into $L(L_{\rho}(\mu))$

For $1 \leq p < \infty$, there is an isometric Banach algebra isomorphism $L(\ell_p)/K(\ell_p) \rightarrow L(L_p(\mu))$ and a Banach algebra isomorphism $L(L_p)/K(L_p) \rightarrow L(L_p(\mu))$ [Calkin '41], [BoedinhardjoJ '15], [BlecherPhillips '18].

The 21st century proofs use the most natural left approximate identity for $K(\ell_p)$ and $K(L_p)$. [BJ] uses ultrapowers and [BP] uses the Arens multiplication on $K(\ell_p)^{**}$ and $K(L_p)^{**}$.

Problem. Are there other (always non trivial) closed ideals \mathcal{I} of $L(L_p)$ s.t. $L(L_p)/\mathcal{I}$ is Banach algebra isomorphic to a subalgebra of $L_p(\mu)$? $\kappa_{(\ell_p)}$ is the only non trivial closed ideal in $L(\ell_p)$.

One of the main results of [JPhS] is that $K(L_p)$ is the only closed ideal in $L(L_p)$ that has a left approximate identity.

◆□ > ◆□ > ◆豆 > ◆豆 > →

Problem. Are there other closed ideals \mathcal{I} of $L(L_p)$ s.t. $L(L_p)/\mathcal{I}$ is Banach algebra isomorphic to a subalgebra of $L_p(\mu)$? $\kappa_{(\ell_p)}$ is the only non trivial closed ideal in $L(\ell_p)$.

This problem goes back at least to [Le Merdy '96], who proved that there there is an isometric algebra isomorphism $L(L_p)/\mathcal{I} \to L(X)$ for some X that is a subspace of a quotient of $L_p(\mu)$.

AFAIK, this problem is open for every $\mathcal{I} \neq K(L_p)$.

But what are the closed ideals in $L(L_p)$?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Problem. Are there other closed ideals \mathcal{I} of $L(L_p)$ s.t. $L(L_p)/\mathcal{I}$ is Banach algebra isomorphic to a subalgebra of $L_p(\mu)$? $\kappa_{(\ell_p)}$ is the only non trivial closed ideal in $L(\ell_p)$.

This problem goes back at least to [Le Merdy '96], who proved that there there is an isometric algebra isomorphism $L(L_p)/\mathcal{I} \to L(X)$ for some X that is a subspace of a quotient of $L_p(\mu)$.

AFAIK, this problem is open for every $\mathcal{I} \neq K(L_p)$.

But what are the closed ideals in $L(L_p)$?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Problem. Are there other closed ideals \mathcal{I} of $L(L_p)$ s.t. $L(L_p)/\mathcal{I}$ is Banach algebra isomorphic to a subalgebra of $L_p(\mu)$? $\kappa_{(\ell_p)}$ is the only non trivial closed ideal in $L(\ell_p)$.

This problem goes back at least to [Le Merdy '96], who proved that there there is an isometric algebra isomorphism $L(L_p)/\mathcal{I} \rightarrow L(X)$ for some X that is a subspace of a quotient of $L_p(\mu)$.

AFAIK, this problem is open for every $\mathcal{I} \neq \mathcal{K}(L_p)$.

But what are the closed ideals in $L(L_p)$?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A maximal algebraic ideal is automatically closed since the invertible elements in a Banach algebra form an open set, so every (always proper) closed ideal is contained in a closed maximal ideal. What are the maximal ones? Is there even a largest ideal?

ヘロン ヘアン ヘビン ヘビン

A maximal algebraic ideal is automatically closed since the invertible elements in a Banach algebra form an open set, so every (always proper) closed ideal is contained in a closed maximal ideal. What are the maximal ones? Is there even a largest ideal?

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

A maximal algebraic ideal is automatically closed since the invertible elements in a Banach algebra form an open set, so every (always proper) closed ideal is contained in a closed maximal ideal. What are the maximal ones? Is there even a largest ideal?

(ロ) (四) (モ) (モ) (モ) (モ)

A maximal algebraic ideal is automatically closed since the invertible elements in a Banach algebra form an open set, so every (always proper) closed ideal is contained in a closed maximal ideal. What are the maximal ones? Is there even a largest ideal?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T. It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators [EnfloStarbird 79] for p = 1; [JMaureySchechtmanTzafrid 79] for 1 .

An operator T is called Y-singular if T is not an isomorphism when restricted to any subspace that is isomorphic to Y. So an operator is strictly singular iff it is Y-singular for every infinite dimensional space Y.

Basically we know nothing about $L(L_p)/\mathcal{M}(L_p)$. (Except for p = 2.)

<ロ> (四) (四) (三) (三) (三)

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T. It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators [EntroStarbird 79] for p = 1; [JMaureySchechtmanTzafrid 79] for 1 .

An operator T is called Y-singular if T is not an isomorphism when restricted to any subspace that is isomorphic to Y. So an operator is strictly singular iff it is Y-singular for every infinite dimensional space Y.

Basically we know nothing about $L(L_p)/\mathcal{M}(L_p)$. (Except for p = 2.)

<ロ> (四) (四) (三) (三) (三)

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T. It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators [EnfloStarbird '79] for p = 1; [JMaureySchechtmanTzafriri '79] for 1 .

An operator T is called Y-singular if T is not an isomorphism when restricted to any subspace that is isomorphic to Y. So an operator is strictly singular iff it is Y-singular for every infinite dimensional space Y.

Basically we know nothing about $L(L_p)/\mathcal{M}(L_p)$. (Except for p = 2.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T. It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators [EnfloStarbird '79] for p = 1; [JMaureySchechtmanTzafriri '79] for 1 .

An operator T is called Y-singular if T is not an isomorphism when restricted to any subspace that is isomorphic to Y. So an operator is strictly singular iff it is Y-singular for every infinite dimensional space Y.

Basically we know nothing about $L(L_p)/\mathcal{M}(L_p)$. (Except for p = 2.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $\mathcal{M}(X)$ denote all operators T on X s.t. the identity operator I_X does not factor through T. It is obvious that $\mathcal{M}(X)$ is an ideal in L(X) if it is closed under addition, in which case it clearly is the largest ideal in L(X). It is known, but non trivial, that $\mathcal{M}(L_p)$ is closed under addition, and also that $\mathcal{M}(L_p)$ is the set of L_p -singular operators [EnfloStarbird '79] for p = 1; [JMaureySchechtmanTzafriri '79] for 1 .

An operator T is called Y-singular if T is not an isomorphism when restricted to any subspace that is isomorphic to Y. So an operator is strictly singular iff it is Y-singular for every infinite dimensional space Y.

Basically we know nothing about $L(L_p)/\mathcal{M}(L_p)$. (Except for p = 2.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A common way of constructing a (not necessarily closed) ideal in L(X) is to take some operator $U: Y \to Z$ between Banach spaces and let \mathcal{I}_U be the collection of all operators on X that factor through U, i.e., all $T \in L(X)$ s.t. $A \in L(X, Y)$ and $B \in L(Z, X)$ s.t. T = BUA.

 $L(X)\mathcal{I}_UL(X) \subset \mathcal{I}_U$ is clear, so \mathcal{I}_U is an ideal in L(X) if \mathcal{I}_U is closed under addition. One usually guarantees this by using a U s.t. $U \oplus U : Y \oplus Y \to Z \oplus Z$ factors through U, and these are the only U that I will mention. Then the closure $\overline{\mathcal{I}}_U$ will be a proper ideal in L(X) as long as I_X does not factor through U.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A common way of constructing a (not necessarily closed) ideal in L(X) is to take some operator $U: Y \to Z$ between Banach spaces and let \mathcal{I}_U be the collection of all operators on X that factor through U, i.e., all $T \in L(X)$ s.t. $A \in L(X, Y)$ and $B \in L(Z, X)$ s.t. T = BUA.

 $L(X)\mathcal{I}_U L(X) \subset \mathcal{I}_U$ is clear, so \mathcal{I}_U is an ideal in L(X) if \mathcal{I}_U is closed under addition. One usually guarantees this by using a U s.t. $U \oplus U : Y \oplus Y \to Z \oplus Z$ factors through U, and these are the only U that I will mention. Then the closure $\overline{\mathcal{I}}_U$ will be a proper ideal in L(X) as long as I_X does not factor through U.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○
A common way of constructing a (not necessarily closed) ideal in L(X) is to take some operator $U: Y \to Z$ between Banach spaces and let \mathcal{I}_U be the collection of all operators on X that factor through U, i.e., all $T \in L(X)$ s.t. $A \in L(X, Y)$ and $B \in L(Z, X)$ s.t. T = BUA.

 $L(X)\mathcal{I}_U L(X) \subset \mathcal{I}_U$ is clear, so \mathcal{I}_U is an ideal in L(X) if \mathcal{I}_U is closed under addition. One usually guarantees this by using a U s.t. $U \oplus U : Y \oplus Y \to Z \oplus Z$ factors through U, and these are the only U that I will mention. Then the closure $\overline{\mathcal{I}}_U$ will be a proper ideal in L(X) as long as I_X does not factor through U.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

S(X): Strictly singular operators on X.

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

So $\overline{\mathcal{I}}_U$ is small if U is strictly singular and $U \oplus U$ factors through U.

 $\overline{\mathcal{I}}_U$ is large if $U = I_Y$ for some complemented subspace Y of X and Y \oplus Y is isomorphic to Y. To simplify notation, I'll write \mathcal{I}_Y instead of \mathcal{I}_{I_Y} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

S(X): Strictly singular operators on X.

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

So $\overline{\mathcal{I}}_U$ is small if U is strictly singular and $U \oplus U$ factors through U.

 $\overline{\mathcal{I}}_U$ is large if $U = I_Y$ for some complemented subspace Y of X and Y \oplus Y is isomorphic to Y. To simplify notation, I'll write \mathcal{I}_Y instead of \mathcal{I}_{I_Y} .

→ □ → → ミ → ↓ ミ → りへぐ

S(X): Strictly singular operators on X.

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

So $\overline{\mathcal{I}}_U$ is small if U is strictly singular and $U \oplus U$ factors through U.

 $\overline{\mathcal{I}}_U$ is large if $U = I_Y$ for some complemented subspace Y of X and $Y \oplus Y$ is isomorphic to Y. To simplify notation, I'll write \mathcal{I}_Y instead of \mathcal{I}_{I_Y} .

S(X): Strictly singular operators on X.

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

So $\overline{\mathcal{I}}_U$ is small if U is strictly singular and $U \oplus U$ factors through U.

 $\overline{\mathcal{I}}_U$ is large if $U = I_Y$ for some complemented subspace Y of X and Y \oplus Y is isomorphic to Y. To simplify notation, I'll write \mathcal{I}_Y instead of \mathcal{I}_{I_Y} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Small closed ideals in $L(L_1)$ include $K(L_1)$, $S(L_1)$, and $W(L_1)$. But $W(L_1) = S(L_1)$ Dunford-Pettis property of L_1 .

Large closed ideals in $L(L_1)$ include $\overline{\mathcal{I}}_{\ell_1}$ and the largest ideal $\mathcal{M}(L_1)$.

Until recently this is all that were known. This led Pietsch to ask in his 1979 book "Operator Ideals" whether there are infinitely many closed ideals in $L(L_1)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Small closed ideals in $L(L_1)$ include $K(L_1)$, $S(L_1)$, and $W(L_1)$. But $W(L_1) = S(L_1)$ Dunford-Pettis property of L_1 .

Large closed ideals in $L(L_1)$ include $\overline{\mathcal{I}}_{\ell_1}$ and the largest ideal $\mathcal{M}(L_1)$.

Until recently this is all that were known. This led Pietsch to ask in his 1979 book "Operator Ideals" whether there are infinitely many closed ideals in $L(L_1)$.

Small closed ideals in $L(L_1)$ include $K(L_1)$, $S(L_1)$, and $W(L_1)$. But $W(L_1) = S(L_1)$ Dunford-Pettis property of L_1 .

Large closed ideals in $L(L_1)$ include $\overline{\mathcal{I}}_{\ell_1}$ and the largest ideal $\mathcal{M}(L_1)$.

Until recently this is all that were known. This led Pietsch to ask in his 1979 book "Operator Ideals" whether there are infinitely many closed ideals in $L(L_1)$.

Small closed ideals in $L(L_1)$ include $K(L_1)$, $S(L_1)$, and $W(L_1)$. But $W(L_1) = S(L_1)$ Dunford-Pettis property of L_1 .

Large closed ideals in $L(L_1)$ include $\overline{\mathcal{I}}_{\ell_1}$ and the largest ideal $\mathcal{M}(L_1)$.

Until recently this is all that were known. This led Pietsch to ask in his 1979 book "Operator Ideals" whether there are infinitely many closed ideals in $L(L_1)$.

<ロ> (四) (四) (三) (三) (三) (三)

(ロ) (四) (三) (三) (三)

I thought that the key to solving Pietsch's problem was to find just one new closed ideal in $L(L_1)$. Early last year Schechtman and I did that. The ideal is the closure of \mathcal{I}_{J_2} , where $J_2 : \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto the Rademacher functions

IID Bernoulli random variables that take on the values 1 and –1, each with probability 1/2. We were excited when we were able to prove that $\overline{\mathcal{I}}_{J_2}$ is different from the previously known ideals. We then looked at $\overline{\mathcal{I}}_{J_p}$, $1 , where <math>J_p : \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto IID *p*-stable random variables. The ideals \mathcal{I}_{J_p} are all different, but it turns out that all $\overline{\mathcal{I}}_{J_p}$ are equal to $\overline{\mathcal{I}}_{J_2}$!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─

I thought that the key to solving Pietsch's problem was to find just one new closed ideal in $L(L_1)$. Early last year Schechtman and I did that. The ideal is the closure of \mathcal{I}_{J_2} , where $J_2: \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto the Rademacher functions IID Bernoulli random variables that take on the values 1 and -1, each with probability 1/2. We were excited when we were able to prove that $\overline{\mathcal{I}}_{J_2}$ is different from the previously known ideals. We then looked at $\overline{\mathcal{I}}_{J_n}$, 1 ,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

I thought that the key to solving Pietsch's problem was to find just one new closed ideal in $L(L_1)$. Early last year Schechtman and I did that. The ideal is the closure of \mathcal{I}_{J_2} , where $J_2: \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto the Rademacher functions IID Bernoulli random variables that take on the values 1 and -1, each with probability 1/2. We were excited when we were able to prove that $\overline{\mathcal{I}}_{J_2}$ is different from the previously known ideals. We then looked at $\overline{\mathcal{I}}_{J_p}$, 1 ,where $J_p: \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto IID *p*-stable random variables. The ideals $\mathcal{I}_{J_{n}}$ are all different, but it

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─

I thought that the key to solving Pietsch's problem was to find just one new closed ideal in $L(L_1)$. Early last year Schechtman and I did that. The ideal is the closure of \mathcal{I}_{J_2} , where $J_2: \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto the Rademacher functions IID Bernoulli random variables that take on the values 1 and -1, each with probability 1/2. We were excited when we were able to prove that $\overline{\mathcal{I}}_{J_2}$ is different from the previously known ideals. We then looked at $\overline{\mathcal{I}}_{J_p}$, 1 ,where $J_p: \ell_1 \to L_1$ maps the unit vector basis of ℓ_1 onto IID *p*-stable random variables. The ideals \mathcal{I}_{J_n} are all different, but it turns out that all $\overline{\mathcal{I}}_{J_{\alpha}}$ are equal to $\overline{\mathcal{I}}_{J_{2}}$!

(ロ) (四) (モ) (モ) (モ) (モ)

[JPIS] There are at least 2^{\aleph_0} small closed ideals in $L(L_1)$.

It remains open whether there are more than two large ideals in $L(L_1)$. This is connected to the unsolved problem whether every infinite dimensional complemented subspace of L_1 is isomorphic either to ℓ_1 or to L_1 . Also open is whether there are more than 2^{\aleph_0} closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters. (A set of characters is $\Lambda(q)$ if the L_1 norm is equivalent to the L_q norm on their linear span.) Bourgain's solution to Rudin's $\Lambda(q)$ -set problem is used

(could be avoided by using B-space theory results from the 1970s).

[JPIS] There are at least 2^{\aleph_0} small closed ideals in $L(L_1)$.

It remains open whether there are more than two large ideals in $L(L_1)$. This is connected to the unsolved problem whether every infinite dimensional complemented subspace of L_1 is isomorphic either to ℓ_1 or to L_1 . Also open is whether there are more than 2^{\aleph_0} closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters. (A set of characters is $\Lambda(q)$ if the L_1 norm is equivalent to the L_q norm on their linear span.) Bourgain's solution to Rudin's $\Lambda(q)$ -set problem is used

(could be avoided by using B-space theory results from the 1970s).

[JPIS] There are at least 2^{\aleph_0} small closed ideals in $L(L_1)$.

It remains open whether there are more than two large ideals in $L(L_1)$. This is connected to the unsolved problem whether every infinite dimensional complemented subspace of L_1 is isomorphic either to ℓ_1 or to L_1 . Also open is whether there are more than 2^{\aleph_0} closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters. (A set of characters is $\Lambda(q)$ if the L_1 norm is equivalent to the L_q norm on their linear span.) Bourgain's solution to Rudin's $\Lambda(q)$ -set problem is used

(could be avoided by using B-space theory results from the 1970s).

[JPIS] There are at least 2^{\aleph_0} small closed ideals in $L(L_1)$.

It remains open whether there are more than two large ideals in $L(L_1)$. This is connected to the unsolved problem whether every infinite dimensional complemented subspace of L_1 is isomorphic either to ℓ_1 or to L_1 . Also open is whether there are more than 2^{\aleph_0} closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1\{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters. (A set of characters is $\Lambda(q)$ if the L_1 norm is equivalent to the L_q norm on their linear span.) Bourgain's solution to Rudin's $\Lambda(q)$ -set problem is used

(could be avoided by using B-space theory results from the 1970s).

[JPIS] There are at least 2^{\aleph_0} small closed ideals in $L(L_1)$.

It remains open whether there are more than two large ideals in $L(L_1)$. This is connected to the unsolved problem whether every infinite dimensional complemented subspace of L_1 is isomorphic either to ℓ_1 or to L_1 . Also open is whether there are more than 2^{\aleph_0} closed ideals in $L(L_1)$.

The new ideals are a familty $(\overline{\mathcal{I}}_{U_q})_{2 < q < \infty}$, where $U_q : \ell_1 \to L_1 \{-1, 1\}^{\mathbb{N}}$ maps the unit vector basis of ℓ_1 to a carefully chosen $\Lambda(q)$ -set of characters. (A set of characters is $\Lambda(q)$ if the L_1 norm is equivalent to the L_q norm on their linear span.) Bourgain's solution to Rudin's $\Lambda(q)$ -set problem is used

(could be avoided by using B-space theory results from the 1970s).

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

[Schechtman '75] There are infinitely many isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are infinitely many large closed ideals in $L(L_p)$.

[BourgainRosenthalSchechtman '81] There are \aleph_1 isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are \aleph_1 large closed ideals in $L(L_p)$.

It is open if there are more than \aleph_1 large closed ideals in $L(L_p)$. Maybe there are even $2^{2^{\aleph_0}}$ large closed ideals.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

[Schechtman '75] There are infinitely many isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are infinitely many large closed ideals in $L(L_p)$.

[BourgainRosenthalSchechtman '81] There are \aleph_1 isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are \aleph_1 large closed ideals in $L(L_p)$.

It is open if there are more than \aleph_1 large closed ideals in $L(L_p)$. Maybe there are even $2^{2^{\aleph_0}}$ large closed ideals.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

[Schechtman '75] There are infinitely many isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are infinitely many large closed ideals in $L(L_p)$.

[BourgainRosenthalSchechtman '81] There are \aleph_1 isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are \aleph_1 large closed ideals in $L(L_p)$.

It is open if there are more than \aleph_1 large closed ideals in $L(L_p)$. Maybe there are even $2^{2^{\aleph_0}}$ large closed ideals.

An ideal \mathcal{I} is small if $\mathcal{I} \subset S(X)$; otherwise it is large.

[Schechtman '75] There are infinitely many isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are infinitely many large closed ideals in $L(L_p)$.

[BourgainRosenthalSchechtman '81] There are \aleph_1 isomorphically different complemented subspaces of L_p , each isomorphic to its square, hence there are \aleph_1 large closed ideals in $L(L_p)$.

It is open if there are more than \aleph_1 large closed ideals in $L(L_p)$. Maybe there are even $2^{2^{\aleph_0}}$ large closed ideals.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Much work this millenium, culminating in a paper that solved another problem from Pietsch's book:

Theorem. (SchlumprechtZsak '18)

There are infinitely many; in fact, at least 2^{\aleph_0} ; small closed ideals in $L(L_p)$, 1 .

The ideals constructed in [sz 18] are all of the form $\overline{\mathcal{I}}_U$ with U a basis to basis mapping from ℓ_r to ℓ_s but the bases for ℓ_r , ℓ_s are not the standard unit vector basis.

Whether there are more than 2^{\aleph_0} small closed ideals in $L(L_p)$ remains open.

イロン 不得 とくほ とくほ とうほ

Much work this millenium, culminating in a paper that solved another problem from Pietsch's book:

Theorem. (SchlumprechtZsak '18)

There are infinitely many; in fact, at least 2^{\aleph_0} ; small closed ideals in $L(L_p)$, 1 .

The ideals constructed in [sz'18] are all of the form $\overline{\mathcal{I}}_U$ with U a basis to basis mapping from ℓ_r to ℓ_s but the bases for ℓ_r , ℓ_s are not the standard unit vector basis.

Whether there are more than 2^{\aleph_0} small closed ideals in $L(L_p)$ remains open.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Much work this millenium, culminating in a paper that solved another problem from Pietsch's book:

Theorem. (SchlumprechtZsak '18)

There are infinitely many; in fact, at least 2^{\aleph_0} ; small closed ideals in $L(L_p)$, 1 .

The ideals constructed in [sz'18] are all of the form $\overline{\mathcal{I}}_U$ with U a basis to basis mapping from ℓ_r to ℓ_s but the bases for ℓ_r , ℓ_s are not the standard unit vector basis.

Whether there are more than 2^{\aleph_0} small closed ideals in $L(L_p)$ remains open.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

There are at least 2^{\aleph_0} small closed ideals in $L(L_1)$.

Lemma. (JPiS)

Let $0 . Suppose <math>v_1, \ldots, v_N$ in L_q satisfy • $\max_{\epsilon_i = \pm 1} \|\sum_{i=1}^N \epsilon_i v_i\|_q \le CN^{1/2}$ • $T : L_1 \to L_1^{N^{p/2}}$ satisfies $\min_{1 \le i \le N} \|Tv_i\|_1 \ge \epsilon$ Then $\|T\|_{L^{p/2}} \ge (\epsilon/C)N^{\frac{q-p}{2q}}$

$$\|T\|_{L_1\to L_1^{N^{p/2}}} \ge (\epsilon/C)N^{\frac{1}{2q}}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

There are at least 2^{\aleph_0} small closed ideals in $L(L_1)$.

Lemma. (JPiS)

Let $0 . Suppose <math>v_1, \dots, v_N$ in L_q satisfy • $\max_{\epsilon_i = \pm 1} \|\sum_{i=1}^N \epsilon_i v_i\|_q \le CN^{1/2}$ • $T : L_1 \to L_1^{N^{p/2}}$ satisfies $\min_{1 \le i \le N} \|Tv_i\|_1 \ge \epsilon$ Then $\|T\|_{L_1 \to L_1^{N^{p/2}}} \ge (\epsilon/C)N^{\frac{q-p}{2q}}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

If \mathcal{I} is a closed ideal in $L(L_p)$, $1 \le p < \infty$, that has a left approximate identity, then $\mathcal{I} = K(L_p)$.

A left approximate identity for a Banach algebra A is a net (a_i) in A s.t. for all $x \in A$, $||a_i x - x|| \to 0$.

Proposition. (JPhS)

Let $\{e_{n,i} : 1 \le i \le 2^n; n = 1, 2, ... \}$ be the natural basis for

 $(\sum_{n=1}^{\infty} \ell_2^{2^n})_p$ and let $\{h_{n,i} : 1 \le i \le 2^n; n = 1, 2, ...\}$ be the L_p normalized Haar basis for L_p . Then for $2 the mapping <math>e_{n,i} \to h_{n,i}$ extends to a bounded linear operator from $(\sum_{n=1}^{\infty} \ell_2^{2^n})_p$ into L_p .

If \mathcal{I} is a closed ideal in $L(L_p)$, $1 \le p < \infty$, that has a left approximate identity, then $\mathcal{I} = K(L_p)$.

A left approximate identity for a Banach algebra \mathcal{A} is a net (a_i) in \mathcal{A} s.t. for all $x \in \mathcal{A}$, $||a_ix - x|| \to 0$.

Proposition. (JPhS)

Let $\{e_{n,i} : 1 \le i \le 2^n; n = 1, 2, ... \}$ be the natural basis for

 $(\sum_{n=1}^{\infty} \ell_2^{2^n})_p$ and let $\{h_{n,i} : 1 \le i \le 2^n; n = 1, 2, ...\}$ be the L_p normalized Haar basis for L_p . Then for $2 the mapping <math>e_{n,i} \to h_{n,i}$ extends to a bounded linear operator from $(\sum_{n=1}^{\infty} \ell_2^{2^n})_p$ into L_p .

If \mathcal{I} is a closed ideal in $L(L_p)$, $1 \le p < \infty$, that has a left approximate identity, then $\mathcal{I} = K(L_p)$.

A left approximate identity for a Banach algebra \mathcal{A} is a net (a_i) in \mathcal{A} s.t. for all $x \in \mathcal{A}$, $||a_ix - x|| \to 0$.

Proposition. (JPhS)

Let $\{e_{n,i}: 1 \le i \le 2^n; n = 1, 2, ...\}$ be the natural basis for $(\sum_{n=1}^{\infty} \ell_2^{2^n})_p$ and let $\{h_{n,i}: 1 \le i \le 2^n; n = 1, 2, ...\}$ be the L_p normalized Haar basis for L_p . Then for $2 the mapping <math>e_{n,i} \to h_{n,i}$ extends to a bounded linear operator from $(\sum_{n=1}^{\infty} \ell_2^{2^n})_p$ into L_p .

If \mathcal{I} is a closed ideal in $L(L_p)$, $1 \le p < \infty$, that has a left approximate identity, then $\mathcal{I} = K(L_p)$.

A left approximate identity for a Banach algebra \mathcal{A} is a net (a_i) in \mathcal{A} s.t. for all $x \in \mathcal{A}$, $||a_ix - x|| \to 0$.

Proposition. (JPhS)

Let $\{e_{n,i}: 1 \le i \le 2^n; n = 1, 2, ...\}$ be the natural basis for $(\sum_{n=1}^{\infty} \ell_2^{2^n})_p$ and let $\{h_{n,i}: 1 \le i \le 2^n; n = 1, 2, ...\}$ be the L_p normalized Haar basis for L_p . Then for $2 the mapping <math>e_{n,i} \to h_{n,i}$ extends to a bounded linear operator from $(\sum_{n=1}^{\infty} \ell_2^{2^n})_p$ into L_p .

Lemma

Let $1 \le p < q < \infty$, $\{v_1, \ldots, v_N\} \subset L_q$, and let $T : L_1 \to L_1^{N^2}$ be an operator. Suppose that C and ϵ satisfy $max_{\epsilon_i=\pm 1} \|\sum_{i=1}^N \epsilon_i v_i\|_q \le CN^{1/2}$, and $min_{1\le i\le N} \|Tv_i\|_1 \ge \epsilon$. Then $\|T\| \ge (\epsilon/C)N^{\frac{q-p}{2q}}$.

Proof: Take u_i^* in $L_{\infty}^{N^{p/2}} = (L_1^{N_2^p})^*$ with $|u_i^*| \equiv 1$ so that $\langle u_i^*, Tv_i \rangle = ||Tv_i||_1 \ge \epsilon$. Then

$$\epsilon N \leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(a) v_i(a) \, da$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(a) v_i(a) \, da \\ &\leq \int_0^1 \sup_{a \in [0,1]} |\sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b)| \, db \\ &=: \int_0^1 ||\sum_{i=1}^{N} v_i(b) T^* u_i^*||_{L_{\infty}[0,1]} \, db \\ &\leq ||T|| \int_0^1 ||\sum_{i=1}^{N} v_i(b) u_i^*||_{L_{\infty}^{N^{p/2}}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} \int_0^1 (\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc)^{\frac{1}{q}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} (\int_{[N^{\frac{p}{2}}]} \int_0^1 |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, db \, dc)^{\frac{1}{q}} \\ &\leq C ||T|| N^{\frac{p+q}{2q}} \, . \end{split}$$

・ロト・「日下・「日下・「日下」 シック

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(a) v_i(a) \, da \\ &\leq \int_0^1 \sup_{a \in [0,1]} \left\| \sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b) \right\| \, db \\ &=: \int_0^1 \left\| \sum_{i=1}^{N} v_i(b) T^* u_i^* \right\|_{L_{\infty}[0,1]} \, db \\ &\leq \|T\| \int_0^1 \left\| \sum_{i=1}^{N} v_i(b) u_i^* \right\|_{L_{\infty}^{p/2}} \, db \\ &\leq \|T\| N^{\frac{p}{2q}} \int_0^1 \left(\int_{[N^{\frac{p}{2}]}} \left\| \sum_{i=1}^{N} u_i^*(c) v_i(b) \right\|^q \, dc \right)^{\frac{1}{q}} \, db \\ &\leq \|T\| N^{\frac{p}{2q}} \left(\int_{[N^{\frac{p}{2}]}} \int_0^1 \left\| \sum_{i=1}^{N} u_i^*(c) v_i(b) \right\|^q \, db \, dc \right)^{\frac{1}{q}} \\ &\leq C\|T\| N^{\frac{p+q}{2q}} \, . \end{split}$$

・ロト・「日下・「日下・「日下」 シック
$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(a) v_i(a) \, da \\ &\leq \int_0^1 \sup_{a \in [0,1]} |\sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b)| \, db \\ &=: \int_0^1 ||\sum_{i=1}^{N} v_i(b) T^* u_i^*||_{L_{\infty}[0,1]} \, db \\ &\leq ||T|| \int_0^1 ||\sum_{i=1}^{N} v_i(b) u_i^*||_{L_{\infty}^{N/2}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} \int_0^1 (\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc)^{\frac{1}{q}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} \left(\int_{[N^{\frac{p}{2}}]} \int_0^1 |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, db \, dc \right)^{\frac{1}{q}} \\ &\leq C ||T|| N^{\frac{p+q}{2q}} \, . \end{split}$$

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(a) v_i(a) \, da \\ &\leq \int_0^1 \sup_{a \in [0,1]} |\sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b)| \, db \\ &=: \int_0^1 ||\sum_{i=1}^{N} v_i(b) T^* u_i^*||_{L_{\infty}[0,1]} \, db \\ &\leq ||T|| \int_0^1 ||\sum_{i=1}^{N} v_i(b) u_i^*||_{L_{\infty}^{N^{p/2}}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} \int_0^1 (\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc)^{\frac{1}{q}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} \left(\int_{[N^{\frac{p}{2}}]} \int_0^1 |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, db \, dc \right)^{\frac{1}{q}} \\ &\leq C ||T|| N^{\frac{p+q}{2q}} \, . \end{split}$$

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(a) v_i(a) \, da \\ &\leq \int_0^1 \sup_{a \in [0,1]} |\sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b)| \, db \\ &=: \int_0^1 ||\sum_{i=1}^{N} v_i(b) T^* u_i^*||_{L_{\infty}[0,1]} \, db \\ &\leq ||T|| \int_0^1 ||\sum_{i=1}^{N} v_i(b) u_i^*||_{L_{\infty}^{N^{2}}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} \int_0^1 (\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc)^{\frac{1}{q}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} \left(\int_{[N^{\frac{p}{2}}]} \int_0^1 |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, db \, dc \right)^{\frac{1}{q}} \\ &\leq C ||T|| N^{\frac{p+q}{2q}} \, . \end{split}$$

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(a) v_i(a) \, da \\ &\leq \int_0^1 \sup_{a \in [0,1]} |\sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b)| \, db \\ &=: \int_0^1 ||\sum_{i=1}^{N} v_i(b) T^* u_i^*||_{L_{\infty}[0,1]} \, db \\ &\leq ||T|| \int_0^1 ||\sum_{i=1}^{N} v_i(b) u_i^*||_{L_{\infty}^{N^{p/2}}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} \int_0^1 (\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc)^{\frac{1}{q}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} (\int_{[N^{\frac{p}{2}}]} \int_0^1 |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, db \, dc)^{\frac{1}{q}} \\ &\leq C ||T|| N^{\frac{p+q}{2q}}. \end{split}$$

$$\begin{split} \epsilon N &\leq \sum_{i=1}^{N} \langle T^* u_i^*, v_i \rangle := \int_0^1 \sum_{i=1}^{N} (T^* u_i^*)(a) v_i(a) \, da \\ &\leq \int_0^1 \sup_{a \in [0,1]} |\sum_{i=1}^{N} (T^* u_i^*)(a) v_i(b)| \, db \\ &=: \int_0^1 ||\sum_{i=1}^{N} v_i(b) T^* u_i^*||_{L_{\infty}[0,1]} \, db \\ &\leq ||T|| \int_0^1 ||\sum_{i=1}^{N} v_i(b) u_i^*||_{L_{\infty}^{N^{p/2}}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} \int_0^1 (\int_{[N^{\frac{p}{2}}]} |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, dc)^{\frac{1}{q}} \, db \\ &\leq ||T|| N^{\frac{p}{2q}} (\int_{[N^{\frac{p}{2}}]} \int_0^1 |\sum_{i=1}^{N} u_i^*(c) v_i(b)|^q \, db \, dc)^{\frac{1}{q}} \\ &\leq C ||T|| N^{\frac{p+q}{2q}}. \end{split}$$

Thank you for your attention

ヘロト 人間 とくほとくほとう

₹ 990