Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.

### Michael Dymond

Universität Innsbruck

Nonlinear Functional Analysis, Luminy, 5-9 March 2018.

Joint work with Vojtěch Kaluža and Eva Kopecká.

(日)

Universität Innsbruck

Michael Dymond

# 'The regular $n \times n$ grid' $Q_n$ .

| •          | •          | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | $\bullet$ $(n, n$ | ) |
|------------|------------|---|---|---|---|---|---|-------------------|---|
| •          | ٠          | • | • | • | • | ٠ | • | •                 |   |
| ٠          | •          | • | ٠ | ٠ | • | • | • | •                 |   |
| ٠          | •          | • | • | • | • | • | • | •                 |   |
| •          | •          | • | ٠ | • | • | • | • | •                 |   |
| •          | •          | • | • | • | • | • | • | •                 |   |
| ٠          | •          | • | ٠ | • | ٠ | • | • | •                 |   |
| •          | •          | • | ٠ | • | • | • | • | •                 |   |
| •<br>(1,1) | •<br>(2,1) | • | • | • | • | • | • | (n,1)             |   |

#### Michael Dymond

Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.

### Universität Innsbruck

< □ > < 同 >



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで



Michael Dymond

Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.



## **Problem** Determine $I_{n,\Gamma} := \min \{ \operatorname{Lip}(f) \colon f \colon \Gamma \to Q_n \text{ bijective} \},$

Michael Dymond

Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.

.



**Problem** Determine

$$\begin{array}{ll} & \textbf{I}_{n,\Gamma} := \min \{ \operatorname{Lip}(f) \colon f \colon \Gamma \to Q_n \text{ bijective} \}, \\ & \textbf{I}_n := \sup_{\Gamma} L_{n,\Gamma} \end{array}$$

Michael Dymond

Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.

.



**Problem** Determine

$$\begin{array}{ll} \textbf{(i)} \quad L_{n,\Gamma} := \min \{ \operatorname{Lip}(f) \colon f \colon \Gamma \to Q_n \text{ bijective} \}, \\ \textbf{(i)} \quad L_n := \sup_{\Gamma} L_{n,\Gamma} \leq \sqrt{n}. \end{array}$$

Michael Dymond

Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.

### Is the sequence $(L_n)_{n=1}^{\infty}$ bounded?



Michael Dymond

Universität Innsbruck

Is the sequence  $(L_n)_{n=1}^{\infty}$  bounded?



Does there exist L > 0 such that for any  $n \in \mathbb{N}$  and any set  $\Gamma \subseteq \mathbb{Z}^2$  with  $|\Gamma| = n^2$  there exists a bijective mapping  $f \colon \Gamma \to Q_n$  with  $\operatorname{Lip}(f) \leq L$ ?

#### Michael Dymond

Universität Innsbruck



density  $\rho \colon [0,1]^2 \to (0,\infty)$  $0 < \inf \rho < \sup \rho < \infty$ 





density  $\rho \colon [0,1]^2 \to (0,\infty)$  $0 < \inf \rho < \sup \rho < \infty$ 





density 
$$\rho \colon [0,1]^2 \to (0,\infty)$$
  
  $0 < \inf \rho < \sup \rho < \infty$ 

 $S_1$ 

Universität Innsbruck

Michael Dymond



| •     | •   | •     |
|-------|-----|-------|
| •     | •   | •     |
| • •   |     | •     |
| • • • |     | • • • |
| • • • | ••• |       |
| • • • | ••• | • • • |

 $S_2$ 

density  $\rho \colon [0,1]^2 \to (0,\infty)$  $0 < \inf \rho < \sup \rho < \infty$ 

# $(0,1]^2 \to (0,\infty)$ $(0,\infty) < \sup \rho < \infty$

Universität Innsbruck

#### Michael Dymond



| •    | •    | •                             | •    |
|------|------|-------------------------------|------|
| •    | •    | ••                            | •    |
| •••  | •••  | ••                            | •••  |
| •••• | •••• | • • • •<br>• • • •<br>• • • • | •••• |

density 
$$\rho \colon [0,1]^2 \to (0,\infty)$$
  
  $0 < \inf \rho < \sup \rho < \infty$ 

 $S_k$ 

Michael Dymond

Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.

Universität Inns<u>bruck</u>



 $S_k$ 

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで



Universität Innsbruck

Michael Dymond

《日》《聞》《臣》《臣》 臣 の()()

Michael Dymond

Universität Innsbruck

### Lemma (D., Kaluža, Kopecká (2017))

Suppose that the answer to Feige's question is positive. Then for every measurable density  $\rho \colon [0,1]^2 \to (0,\infty)$  with  $0 < \inf \rho < \sup \rho < \infty$  there exists a Lipschitz regular mapping  $f \colon [0,1]^2 \to \mathbb{R}^2$  such that

$$f_{\sharp}\rho\mathcal{L} = \mathcal{L}|_{f([0,1]^2)}.$$

Michael Dymond

Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.

# Non-bilipschitz equivalent separated nets.

### Theorem (Burago, Kleiner (1998), McMullen (1998))

The following statements are equivalent and false.



Michael Dymond

# Non-bilipschitz equivalent separated nets.

### Theorem (Burago, Kleiner (1998), McMullen (1998))

The following statements are equivalent and false.

• Every two separated nets in the plane are bilipschitz equivalent.

Universität Innsbruck

Michael Dymond

### Non-bilipschitz equivalent separated nets.

### Theorem (Burago, Kleiner (1998), McMullen (1998))

The following statements are equivalent and false.

- Every two separated nets in the plane are bilipschitz equivalent.
- 2 For every measurable density ρ: [0,1]<sup>2</sup> → (0,∞) with 0 < inf ρ < sup ρ < ∞ there exists a bilipschitz mapping f: [0,1]<sup>2</sup> → ℝ<sup>2</sup> with

$$\rho = |\operatorname{Jac}(f)| \qquad a.e.$$

Michael Dymond

Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.

### Lemma (D., Kaluža, Kopecká (2017))

Suppose that the answer to Feige's question is positive. Then for every measurable density  $\rho: [0,1]^2 \to (0,\infty)$  with  $0 < \inf \rho < \sup \rho < \infty$  there exists a Lipschitz regular mapping  $f: [0,1]^2 \to \mathbb{R}^2$  such that

$$f_{\sharp}\rho\mathcal{L} = \mathcal{L}$$

Michael Dymond

Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.

We call a mapping  $f: A \subseteq \mathbb{R}^d \to \mathbb{R}^d$  Lipschitz regular if it satisfies one of the following equivalent conditions:



Michael Dymond

We call a mapping  $f: A \subseteq \mathbb{R}^d \to \mathbb{R}^d$  Lipschitz regular if it satisfies one of the following equivalent conditions:

I f is Lipschitz and there exists a constant C > 0 such that the preimage  $f^{-1}(B)$  of any ball  $B \subseteq \mathbb{R}^d$  can be covered by C balls of radius  $C \operatorname{rad}(B)$ .

Universität Innsbruck

Michael Dymond

We call a mapping  $f: A \subseteq \mathbb{R}^d \to \mathbb{R}^d$  Lipschitz regular if it satisfies one of the following equivalent conditions:

- I f is Lipschitz and there exists a constant C > 0 such that the preimage  $f^{-1}(B)$  of any ball  $B \subseteq \mathbb{R}^d$  can be covered by C balls of radius  $C \operatorname{rad}(B)$ .
- **2** f is Lipschitz and conserves measure in the sense that there exists a constant a > 0 such that

$$\mathcal{L}(f(E)) \ge a\mathcal{L}(E)$$

Universität Innsbruck

for any measurable set  $E \subseteq A$ .

Michael Dymond

We call a mapping  $f: A \subseteq \mathbb{R}^d \to \mathbb{R}^d$  Lipschitz regular if it satisfies one of the following equivalent conditions:

- I f is Lipschitz and there exists a constant C > 0 such that the preimage  $f^{-1}(B)$  of any ball  $B \subseteq \mathbb{R}^d$  can be covered by C balls of radius  $C \operatorname{rad}(B)$ .
- **2** f is Lipschitz and conserves measure in the sense that there exists a constant a > 0 such that

$$\mathcal{L}(f(E)) \ge a\mathcal{L}(E)$$

for any measurable set  $E \subseteq A$ .

We will call a Lipschitz mapping (C, L)-regular if it is *L*-Lipschitz and regular with constant C in the sense of 1.

Michael Dymond

Universität Innsbruck

Let  $B \subseteq \mathbb{R}^d$  be a non-empty open ball and  $f: B \to \mathbb{R}^d$  be a (C, L)-Lipschitz regular mapping.



Michael Dymond

# Bilipschitz behaviour of regular mappings.

Let  $B \subseteq \mathbb{R}^d$  be a non-empty open ball and  $f: B \to \mathbb{R}^d$  be a (C, L)-Lipschitz regular mapping.

### Theorem (David)

There exists a set  $G \subseteq B$  with  $\mathcal{L}(G) \geq \delta = \delta(B, C)$  such that  $f|_G$  is bilipschitz with lower bilipschitz constant b = b(C).

Universität Innsbruck

Michael Dymond

# Bilipschitz behaviour of regular mappings.

Let  $B \subseteq \mathbb{R}^d$  be a non-empty open ball and  $f: B \to \mathbb{R}^d$  be a (C, L)-Lipschitz regular mapping.

### Theorem (David)

There exists a set  $G \subseteq B$  with  $\mathcal{L}(G) \geq \delta = \delta(B, C)$  such that  $f|_G$  is bilipschitz with lower bilipschitz constant b = b(C).

### Theorem (Bonk, Kleiner (2001))

There exists a non-empty, open ball  $B' \subseteq B$  such that  $f|_{B'}$  is bilipschitz with lower bilipschitz constant b = b(C).

Michael Dymond

Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.

Universität Innsbruck

(日) (同) (三)

# Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

Michael Dymond

Universität Innsbruck

# Example

• For every  $\varepsilon > 0$ , there exists a Lipschitz regular mapping  $f: [0,1]^d \to \mathbb{R}^d$  with  $\operatorname{Lip}(f) = 1$ , C = 3 such that the set of points where f is locally injective has Lebesgue measure smaller than  $\varepsilon$ .

Michael Dymond

# Example

- For every  $\varepsilon > 0$ , there exists a Lipschitz regular mapping  $f: [0,1]^d \to \mathbb{R}^d$  with  $\operatorname{Lip}(f) = 1$ , C = 3 such that the set of points where f is locally injective has Lebesgue measure smaller than  $\varepsilon$ .
- On the other hand, any Lipschitz regular mapping  $f: [0,1]^d \to \mathbb{R}^d$  with C = 2 must be locally injective almost everywhere.

Universität Innsbruck

< □ > < 同 > < 回 >

### Porous and $\sigma$ -porous sets.

### Definition

Let (M, d) be a complete metric space.

(i) A set  $E \subseteq M$  is called *porous* if there exists c > 0 such that for every  $\varepsilon > 0$  and every  $x \in E$  there exists  $y \in M$  with  $d(x, y) < \varepsilon$  and  $B(y, c\varepsilon) \cap E = \emptyset$ .

Michael Dymond

Universität Innsbruck

### Porous and $\sigma$ -porous sets.

### Definition

Let (M, d) be a complete metric space.

- (i) A set  $E \subseteq M$  is called *porous* if there exists c > 0 such that for every  $\varepsilon > 0$  and every  $x \in E$  there exists  $y \in M$  with  $d(x, y) < \varepsilon$  and  $B(y, c\varepsilon) \cap E = \emptyset$ .
- (ii) A set  $F \subseteq M$  is called  $\sigma$ -porous if F can be written as a countable union of porous sets.

Universität Innsbruck

Michael Dymond

### Existence of non-realisable densities.

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

Michael Dymond

Universität Innsbruck

Let  $\mathcal{E} \subseteq C([0,1]^2)$  denote the set of all functions  $\rho \in C([0,1]^2)$ for which the equation

$$f_{\sharp}\rho\mathcal{L}=\mathcal{L}$$

admits Lipschitz regular solutions  $f \colon [0,1]^2 \to \mathbb{R}^2$ .

Universität Innsbruck

Michael Dymond

Let  $\mathcal{E} \subseteq C([0,1]^2)$  denote the set of all functions  $\rho \in C([0,1]^2)$ for which the equation

 $f_{\sharp}\rho\mathcal{L}=\mathcal{L}$ 

admits Lipschitz regular solutions  $f: [0,1]^2 \to \mathbb{R}^2$ .

Theorem (D., Kaluža, Kopecká (2017))

 $\mathcal{E}$  is a  $\sigma$ -porous subset of  $C([0,1]^2)$ .

Michael Dymond

Mapping n grid points onto a square forces an arbitrarily large Lipschitz constant.

Universität Innsbruck

<ロト < 同ト < 三ト

Thank you for your attention!



Michael Dymond

Universität Innsbruck