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Feige’s Question

Γ ⊆ Z2, |Γ| = n2 Qn

f

Problem Determine

(i) Ln,Γ := min {Lip(f) : f : Γ→ Qn bijective},

(ii)Ln := supΓ Ln,Γ ≤
√
n.
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Feige’s Question

Is the sequence (Ln)∞n=1 bounded?

Γ Qn

f

Does there exist L > 0 such that for any n ∈ N and any set
Γ ⊆ Z2 with |Γ| = n2 there exists a bijective mapping
f : Γ→ Qn with Lip(f) ≤ L?
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Densities as separated sets.

density ρ : [0, 1]2 → (0,∞)
0 < inf ρ < sup ρ <∞

S1
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Densities as separated sets.

density ρ : [0, 1]2 → (0,∞)
0 < inf ρ < sup ρ <∞
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density ρ : [0, 1]2 → (0,∞)
0 < inf ρ < sup ρ <∞
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Assume that the answer to Feige’s question is positive...

Sk

fk
L-Lipschitz

fk(Sk)
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Assume that the answer to Feige’s question is positive...

Lemma (D., Kaluža, Kopecká (2017))

Suppose that the answer to Feige’s question is positive. Then for
every measurable density ρ : [0, 1]2 → (0,∞) with
0 < inf ρ < sup ρ <∞ there exists a Lipschitz regular mapping
f : [0, 1]2 → R2 such that

f]ρL = L|f([0,1]2).
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Non-bilipschitz equivalent separated nets.

Theorem (Burago, Kleiner (1998), McMullen (1998))

The following statements are equivalent and false.

1 Every two separated nets in the plane are bilipschitz
equivalent.

2 For every measurable density ρ : [0, 1]2 → (0,∞) with
0 < inf ρ < sup ρ <∞ there exists a bilipschitz mapping
f : [0, 1]2 → R2 with

ρ = |Jac(f)| a.e.
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Assume that the answer to Feige’s question is positive...

Lemma (D., Kaluža, Kopecká (2017))

Suppose that the answer to Feige’s question is positive. Then for
every measurable density ρ : [0, 1]2 → (0,∞) with
0 < inf ρ < sup ρ <∞ there exists a Lipschitz regular mapping
f : [0, 1]2 → R2 such that

f]ρL = L.
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Lipschitz Regular Mappings.

We call a mapping f : A ⊆ Rd → Rd Lipschitz regular if it
satisfies one of the following equivalent conditions:

1 f is Lipschitz and there exists a constant C > 0 such that
the preimage f−1(B) of any ball B ⊆ Rd can be covered by
C balls of radius C rad(B).

2 f is Lipschitz and conserves measure in the sense that
there exists a constant a > 0 such that

L(f(E)) ≥ aL(E)

for any measurable set E ⊆ A.

We will call a Lipschitz mapping (C,L)-regular if it is
L-Lipschitz and regular with constant C in the sense of 1.
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Bilipschitz behaviour of regular mappings.

Let B ⊆ Rd be a non-empty open ball and f : B → Rd be a
(C,L)-Lipschitz regular mapping.

Theorem (David)

There exists a set G ⊆ B with L(G) ≥ δ = δ(B,C) such that
f |G is bilipschitz with lower bilipschitz constant b = b(C).

Theorem (Bonk, Kleiner (2001))

There exists a non-empty, open ball B′ ⊆ B such that f |B′ is
bilipschitz with lower bilipschitz constant b = b(C).
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Example

For every ε > 0, there exists a Lipschitz regular mapping
f : [0, 1]d → Rd with Lip(f) = 1, C = 3 such that the set of
points where f is locally injective has Lebesgue measure
smaller than ε.

On the otherhand, any Lipschitz regular mapping
f : [0, 1]d → Rd with C = 2 must be locally injective almost
everywhere.
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Porous and σ-porous sets.

Definition

Let (M,d) be a complete metric space.

(i) A set E ⊆M is called porous if there exists c > 0 such
that for every ε > 0 and every x ∈ E there exists y ∈M
with d(x, y) < ε and B(y, cε) ∩ E = ∅.

(ii) A set F ⊆M is called σ-porous if F can be written as a
countable union of porous sets.
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Existence of non-realisable densities.

Let E ⊆ C([0, 1]2) denote the set of all functions ρ ∈ C([0, 1]2)
for which the equation

f]ρL = L

admits Lipschitz regular solutions f : [0, 1]2 → R2.

Theorem (D., Kaluža, Kopecká (2017))

E is a σ-porous subset of C([0, 1]2).
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Thank you for your attention!
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