Complexity of distances between metric and Banach spaces

Marek Cúth, Michal Doucha, Ondřej Kurka

Non Linear Functional Analysis, CIRM

Definition

Let X, Y be Polish spaces and let E, F equivalence relations on X, Y respectively.

Definition

Let X, Y be Polish spaces and let E, F equivalence relations on X, Y respectively. E is said to be Borel reducible to F, if there is a Borel mapping $f: X \rightarrow Y$ such that for every $a, b \in X$ we have $a E b \Leftrightarrow f(a) F f(b)$. We denote it by

$$
E \leq_{B} F .
$$

Definition

Let X, Y be Polish spaces and let E, F equivalence relations on X, Y respectively. E is said to be Borel reducible to F, if there is a Borel mapping $f: X \rightarrow Y$ such that for every $a, b \in X$ we have $a E b \Leftrightarrow f(a) F f(b)$. We denote it by

$$
E \leq_{B} F .
$$

We say that E and F are Borel bireducible if $E \leq_{B} F$ and $F \leq_{B} E$. We denote it by

$$
E \sim_{B} F .
$$

Definition

Let X, Y be Polish spaces and let E, F equivalence relations on X, Y respectively. E is said to be Borel reducible to F, if there is a Borel mapping $f: X \rightarrow Y$ such that for every $a, b \in X$ we have $a E b \Leftrightarrow f(a) F f(b)$. We denote it by

$$
E \leq_{B} F .
$$

We say that E and F are Borel bireducible if $E \leq_{B} F$ and $F \leq_{B} E$. We denote it by

$$
E \sim_{B} F .
$$

Example (Polish space): $\mathcal{M}=$ space of all metrics on \mathbb{N}. On \mathcal{M} we consider a Polish topology inherited from $\mathbb{R}^{\mathbb{N} \times \mathbb{N}}$.

Definition

Let X, Y be Polish spaces and let E, F equivalence relations on X, Y respectively. E is said to be Borel reducible to F, if there is a Borel mapping $f: X \rightarrow Y$ such that for every $a, b \in X$ we have $a E b \Leftrightarrow f(a) F f(b)$. We denote it by

$$
E \leq_{B} F .
$$

We say that E and F are Borel bireducible if $E \leq_{B} F$ and $F \leq_{B} E$. We denote it by

$$
E \sim_{B} F .
$$

Example (Polish space): $\mathcal{M}=$ space of all metrics on \mathbb{N}. On \mathcal{M} we consider a Polish topology inherited from $\mathbb{R}^{\mathbb{N} \times \mathbb{N}}$.

Every $f \in \mathcal{M}$ is then a code for a Polish metric space M_{f}, which is the completion of (\mathbb{N}, f).

Definition

Let X, Y be Polish spaces and let E, F equivalence relations on X, Y respectively. E is said to be Borel reducible to F, if there is a Borel mapping $f: X \rightarrow Y$ such that for every $a, b \in X$ we have $a E b \Leftrightarrow f(a) F f(b)$. We denote it by

$$
E \leq_{B} F .
$$

We say that E and F are Borel bireducible if $E \leq_{B} F$ and $F \leq_{B} E$. We denote it by

$$
E \sim_{B} F .
$$

Example (Polish space): $\mathcal{M}=$ space of all metrics on \mathbb{N}. On \mathcal{M} we consider a Polish topology inherited from $\mathbb{R}^{\mathbb{N} \times \mathbb{N}}$.
Every $f \in \mathcal{M}$ is then a code for a Polish metric space M_{f}, which is the completion of (\mathbb{N}, f).
We refer to \mathcal{M} as to the "(standard Borel) space of all infinite Polish metric spaces".

Definition

Let X, Y be Polish spaces and let E, F equivalence relations on X, Y respectively. E is said to be Borel reducible to F, if there is a Borel mapping $f: X \rightarrow Y$ such that for every $a, b \in X$ we have $a E b \Leftrightarrow f(a) F f(b)$. We denote it by

$$
E \leq_{B} F .
$$

We say that E and F are Borel bireducible if $E \leq_{B} F$ and $F \leq_{B} E$. We denote it by

$$
E \sim_{B} F .
$$

Example (Polish space): $\mathcal{M}=$ space of all metrics on \mathbb{N}. On \mathcal{M} we consider a Polish topology inherited from $\mathbb{R}^{\mathbb{N} \times \mathbb{N}}$.
Every $f \in \mathcal{M}$ is then a code for a Polish metric space M_{f}, which is the completion of (\mathbb{N}, f).
We refer to \mathcal{M} as to the "(standard Borel) space of all infinite Polish metric spaces".
Example (equivalence relation): \cong_{i} is an equivalence relation on \mathcal{M} defined as $f \cong_{i} g$ iff M_{f} is isometric with M_{g}.

Standard Borel space: A set X with σ-algebra \mathcal{B} such that there is a Polish topology on X so that \mathcal{B} is the σ-algebra of Borel sets in this topology.

Standard Borel space: A set X with σ-algebra \mathcal{B} such that there is a Polish topology on X so that \mathcal{B} is the σ-algebra of Borel sets in this topology.
Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace B with the inherited Borel structure is standard Borel.

Standard Borel space: A set X with σ-algebra \mathcal{B} such that there is a Polish topology on X so that \mathcal{B} is the σ-algebra of Borel sets in this topology.
Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace B with the inherited Borel structure is standard Borel.

More concrete example: $V=$ the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.

Standard Borel space: A set X with σ-algebra \mathcal{B} such that there is a Polish topology on X so that \mathcal{B} is the σ-algebra of Borel sets in this topology.
Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace B with the inherited Borel structure is standard Borel.
More concrete example: $V=$ the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.
$\mathcal{B}_{0}=$ norms on V. On \mathcal{B}_{0} we consider a Polish topology inherited from \mathbb{R}^{V}.

Standard Borel space: A set X with σ-algebra \mathcal{B} such that there is a Polish topology on X so that \mathcal{B} is the σ-algebra of Borel sets in this topology.
Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace B with the inherited Borel structure is standard Borel.
More concrete example: $V=$ the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.
$\mathcal{B}_{0}=$ norms on V. On \mathcal{B}_{0} we consider a Polish topology inherited from \mathbb{R}^{V}.
$\mathcal{B}=$ norms for which the canonical extension to c_{00} is still a norm.

Standard Borel space: A set X with σ-algebra \mathcal{B} such that there is a Polish topology on X so that \mathcal{B} is the σ-algebra of Borel sets in this topology.
Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace B with the inherited Borel structure is standard Borel.
More concrete example: $V=$ the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.
$\mathcal{B}_{0}=$ norms on V. On \mathcal{B}_{0} we consider a Polish topology inherited from \mathbb{R}^{V}.
$\mathcal{B}=$ norms for which the canonical extension to C_{00} is still a norm.
\mathcal{B} is standard Borel space (Borel subset of \mathcal{B}_{0}).

Standard Borel space: A set X with σ-algebra \mathcal{B} such that there is a Polish topology on X so that \mathcal{B} is the σ-algebra of Borel sets in this topology.
Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace B with the inherited Borel structure is standard Borel.
More concrete example: $V=$ the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.
$\mathcal{B}_{0}=$ norms on V. On \mathcal{B}_{0} we consider a Polish topology inherited from \mathbb{R}^{V}.
$\mathcal{B}=$ norms for which the canonical extension to c_{00} is still a norm. \mathcal{B} is standard Borel space (Borel subset of \mathcal{B}_{0}).
Every $\nu \in \mathcal{B}$ is then a code for an infinite-dimensional Banach space X_{ν} which is the completion of (V, ν).

Standard Borel space: A set X with σ-algebra \mathcal{B} such that there is a Polish topology on X so that \mathcal{B} is the σ-algebra of Borel sets in this topology.
Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace B with the inherited Borel structure is standard Borel.
More concrete example: $V=$ the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.
$\mathcal{B}_{0}=$ norms on V. On \mathcal{B}_{0} we consider a Polish topology inherited from \mathbb{R}^{V}.
$\mathcal{B}=$ norms for which the canonical extension to c_{00} is still a norm.
\mathcal{B} is standard Borel space (Borel subset of \mathcal{B}_{0}).
Every $\nu \in \mathcal{B}$ is then a code for an infinite-dimensional Banach space X_{ν} which is the completion of (V, ν).
We refer to \mathcal{B} as to the "(standard Borel) space of all infinite-dimensional Banach spaces".

Standard Borel space: A set X with σ-algebra \mathcal{B} such that there is a Polish topology on X so that \mathcal{B} is the σ-algebra of Borel sets in this topology.
Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace B with the inherited Borel structure is standard Borel.
More concrete example: $V=$ the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.
$\mathcal{B}_{0}=$ norms on V. On \mathcal{B}_{0} we consider a Polish topology inherited from \mathbb{R}^{V}.
$\mathcal{B}=$ norms for which the canonical extension to c_{00} is still a norm.
\mathcal{B} is standard Borel space (Borel subset of \mathcal{B}_{0}).
Every $\nu \in \mathcal{B}$ is then a code for an infinite-dimensional Banach space X_{ν} which is the completion of (V, ν).
We refer to \mathcal{B} as to the "(standard Borel) space of all infinite-dimensional Banach spaces".
Example (equivalence relation): \cong_{L} is an equivalence relation on \mathcal{B} defined as $\nu \cong_{L} \mu$ iff X_{ν} is linearly isometric with X_{μ}.

Standard Borel space: A set X with σ-algebra \mathcal{B} such that there is a Polish topology on X so that \mathcal{B} is the σ-algebra of Borel sets in this topology.
Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace B with the inherited Borel structure is standard Borel.
More concrete example: $V=$ the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.
$\mathcal{B}_{0}=$ norms on V. On \mathcal{B}_{0} we consider a Polish topology inherited from \mathbb{R}^{V}.
$\mathcal{B}=$ norms for which the canonical extension to c_{00} is still a norm.
\mathcal{B} is standard Borel space (Borel subset of \mathcal{B}_{0}).
Every $\nu \in \mathcal{B}$ is then a code for an infinite-dimensional Banach space X_{ν} which is the completion of (V, ν).
We refer to \mathcal{B} as to the "(standard Borel) space of all infinite-dimensional Banach spaces".
Example (equivalence relation): \cong_{L} is an equivalence relation on \mathcal{B} defined as $\nu \cong_{L} \mu$ iff X_{ν} is linearly isometric with X_{μ}.

Definition

Let X, Y be standard Borel spaces and let E, F equivalence relations on X, Y respectively. E is said to be Borel reducible to F, if there is a Borel mapping $f: X \rightarrow Y$ such that for every $a, b \in X$ we have $a E b \Leftrightarrow f(a) F f(b)$. We denote it by

$$
E \leq_{B} F .
$$

We say that E and F are Borel bireducible if $E \leq_{B} F$ and $F \leq_{B} E$. We denote it by

$$
E \sim_{B} F .
$$

$\mathcal{M}=$ space of all infinite Polish metric spaces
$\mathcal{B}=$ space of all infinite-dimensional Banach spaces

Definition

Let X, Y be standard Borel spaces and let E, F equivalence relations on X, Y respectively. E is said to be Borel reducible to F, if there is a Borel mapping $f: X \rightarrow Y$ such that for every $a, b \in X$ we have $a E b \Leftrightarrow f(a) F f(b)$. We denote it by

$$
E \leq_{B} F .
$$

We say that E and F are Borel bireducible if $E \leq_{B} F$ and $F \leq_{B} E$. We denote it by

$$
E \sim_{B} F .
$$

$\mathcal{M}=$ space of all infinite Polish metric spaces
$\mathcal{B}=$ space of all infinite-dimensional Banach spaces
By the Mazur-Ulam theorem, we have $\cong_{L} \leq_{B} \cong_{i}$.

Definition

Let X, Y be standard Borel spaces and let E, F equivalence relations on X, Y respectively. E is said to be Borel reducible to F, if there is a Borel mapping $f: X \rightarrow Y$ such that for every $a, b \in X$ we have $a E b \Leftrightarrow f(a) F f(b)$. We denote it by

$$
E \leq_{B} F .
$$

We say that E and F are Borel bireducible if $E \leq_{B} F$ and $F \leq_{B} E$. We denote it by

$$
E \sim_{B} F .
$$

$\mathcal{M}=$ space of all infinite Polish metric spaces
$\mathcal{B}=$ space of all infinite-dimensional Banach spaces
By the Mazur-Ulam theorem, we have $\cong_{L} \leq_{B} \cong_{i}$.
It is even known (Melleray 2007) that $\cong_{L} \sim_{B} \cong_{i}$.

Gromov-Hausdorff distance

Gromov-Hausdorff distance:

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$
\rho_{H}^{M}(A, B):=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\} .
$$

Gromov-Hausdorff distance

Gromov-Hausdorff distance:

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$
\rho_{H}^{M}(A, B):=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\}
$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$
\rho_{G H}(M, N):=\inf _{\substack{\iota_{M}: M \hookrightarrow X \\ \iota_{N}: N \hookrightarrow X}} \rho_{H}^{X}\left(\iota_{M}(M), \iota_{N}(N)\right)
$$

Gromov-Hausdorff distance:

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$
\rho_{H}^{M}(A, B):=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\} .
$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$
\rho_{G H}(M, N):=\inf _{\substack{\iota_{M}: M \hookrightarrow X \\ \iota_{N}: N \hookrightarrow X}} \rho_{H}^{X}\left(\iota_{M}(M), \iota_{N}(N)\right) .
$$

Equivalence relation $E_{G H}$:

$$
E_{G H}=\left\{(d, e) \in \mathcal{M}: \rho_{G H}\left(M_{d}, M_{e}\right)=0\right\} .
$$

Gromov-Hausdorff distance:

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$
\rho_{H}^{M}(A, B):=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\} .
$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$
\rho_{G H}(M, N):=\inf _{\substack{M_{M}: M \hookrightarrow x \\ \iota_{N}: N \rightarrow X}} \rho_{H}^{X}\left(\iota_{M}(M), \iota_{N}(N)\right) .
$$

Equivalence relation $E_{G H}$:

$$
E_{G H}=\left\{(d, e) \in \mathcal{M}: \rho_{G H}\left(M_{d}, M_{e}\right)=0\right\} .
$$

Denote by $\mathcal{M}^{1} \subset \mathcal{M}$ the space of metric spaces with distances bouded by 1 .

Gromov-Hausdorff distance:

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$
\rho_{H}^{M}(A, B):=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\}
$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$
\rho_{G H}(M, N):=\inf _{\substack{\iota_{M}: M \hookrightarrow X \\ \iota_{N}: N \hookrightarrow X}} \rho_{H}^{X}\left(\iota_{M}(M), \iota_{N}(N)\right) .
$$

Equivalence relation $E_{G H}$:

$$
E_{G H}=\left\{(d, e) \in \mathcal{M}: \rho_{G H}\left(M_{d}, M_{e}\right)=0\right\} .
$$

Denote by $\mathcal{M}^{1} \subset \mathcal{M}$ the space of metric spaces with distances bouded by 1 .
Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017):
For every $d \in \mathcal{M}^{1}$, the set $\left\{e \in \mathcal{M}^{1}: \rho_{G H}\left(M_{d}, M_{e}\right)=0\right\}$ is Borel.

Gromov-Hausdorff distance:

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$
\rho_{H}^{M}(A, B):=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\} .
$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$
\rho_{G H}(M, N):=\inf _{\substack{\iota_{M}: M \hookrightarrow X \\ \iota_{N}: N \hookrightarrow X}} \rho_{H}^{X}\left(\iota_{M}(M), \iota_{N}(N)\right) .
$$

Equivalence relation $E_{G H}$:

$$
E_{G H}=\left\{(d, e) \in \mathcal{M}: \rho_{G H}\left(M_{d}, M_{e}\right)=0\right\} .
$$

Denote by $\mathcal{M}^{1} \subset \mathcal{M}$ the space of metric spaces with distances bouded by 1.
Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017):
For every $d \in \mathcal{M}^{1}$, the set $\left\{e \in \mathcal{M}^{1}: \rho_{G H}\left(M_{d}, M_{e}\right)=0\right\}$ is Borel.
Question 1: Is for every $d \in \mathcal{M}^{1}$ the function $\rho_{G H}\left(M_{d}, \cdot\right)$ Borel on \mathcal{M}^{1} ?

Gromov-Hausdorff distance:

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$
\rho_{H}^{M}(A, B):=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\} .
$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$
\rho_{G H}(M, N):=\inf _{\substack{\iota_{M}: M \hookrightarrow X \\ \iota_{N}: N \hookrightarrow X}} \rho_{H}^{X}\left(\iota_{M}(M), \iota_{N}(N)\right) .
$$

Equivalence relation $E_{G H}$:

$$
E_{G H}=\left\{(d, e) \in \mathcal{M}: \rho_{G H}\left(M_{d}, M_{e}\right)=0\right\} .
$$

Denote by $\mathcal{M}^{1} \subset \mathcal{M}$ the space of metric spaces with distances bouded by 1.
Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017):
For every $d \in \mathcal{M}^{1}$, the set $\left\{e \in \mathcal{M}^{1}: \rho_{G H}\left(M_{d}, M_{e}\right)=0\right\}$ is Borel.
Question 1: Is for every $d \in \mathcal{M}^{1}$ the function $\rho_{G H}\left(M_{d}, \cdot\right)$ Borel on \mathcal{M}^{1} ?
Question 2: Is $\left.E_{G H}\right|_{\mathcal{M}^{1}} \leq_{B} \cong_{i}$?

Kadets distance between Banach spaces X, Y is

$$
\rho_{K}(X, Y)=\inf _{\substack{\iota_{X}: X \rightarrow Z \\ \iota_{Y}: Y \leftrightarrow Z}} \rho_{H}^{Z}\left(\iota_{X}\left(B_{X}\right), \iota_{Y}\left(B_{Y}\right)\right),
$$

where ι_{X} and ι_{y} are linear isometric embeddings into a Banach space.

Kadets distance between Banach spaces X, Y is

$$
\rho_{K}(X, Y)=\inf _{\substack{\iota_{X}: X \rightarrow Z \\ \iota_{Y}: Y \leftrightarrow Z}} \rho_{H}^{Z}\left(\iota_{X}\left(B_{X}\right), \iota_{Y}\left(B_{Y}\right)\right),
$$

where ι_{X} and ι_{Y} are linear isometric embeddings into a Banach space.
Equivalence relation E_{K} :

$$
E_{K}=\left\{(\mu, \nu) \in \mathcal{B}: \rho_{K}\left(X_{\mu}, X_{\nu}\right)=0\right\} .
$$

Kadets distance between Banach spaces X, Y is

$$
\rho_{K}(X, Y)=\inf _{\substack{\iota_{X}: X \rightarrow Z \\ \iota_{Y}: Y \leftrightarrow Z}} \rho_{H}^{Z}\left(\iota_{X}\left(B_{X}\right), \iota_{Y}\left(B_{Y}\right)\right),
$$

where ι_{X} and ι_{y} are linear isometric embeddings into a Banach space.
Equivalence relation E_{K} :

$$
E_{K}=\left\{(\mu, \nu) \in \mathcal{B}: \rho_{K}\left(X_{\mu}, X_{\nu}\right)=0\right\} .
$$

Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017):
For every $\mu \in \mathcal{B}$, the set $\left\{\nu \in \mathcal{B}: \rho_{K}\left(X_{\mu}, X_{\nu}\right)=0\right\}$ is Borel.

Kadets distance between Banach spaces X, Y is

$$
\rho_{K}(X, Y)=\inf _{\substack{\iota_{X}: X \rightarrow Z \\ \iota_{Y}: Y \leftrightarrow Z}} \rho_{H}^{Z}\left(\iota_{X}\left(B_{X}\right), \iota_{Y}\left(B_{Y}\right)\right),
$$

where ι_{X} and ι_{Y} are linear isometric embeddings into a Banach space.
Equivalence relation E_{K} :

$$
E_{K}=\left\{(\mu, \nu) \in \mathcal{B}: \rho_{K}\left(X_{\mu}, X_{\nu}\right)=0\right\} .
$$

Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017):
For every $\mu \in \mathcal{B}$, the set $\left\{\nu \in \mathcal{B}: \rho_{K}\left(X_{\mu}, X_{\nu}\right)=0\right\}$ is Borel.
Analogue of question 1: Is for every $\mu \in \mathcal{B}$ the function $\rho_{K}(\mu, \cdot)$ Borel on \mathcal{B} ?

Kadets distance between Banach spaces X, Y is

$$
\rho_{K}(X, Y)=\inf _{\substack{\iota_{X}: X \rightarrow Z \\ \iota_{Y}: Y \leftrightarrow Z}} \rho_{H}^{Z}\left(\iota_{X}\left(B_{X}\right), \iota_{Y}\left(B_{Y}\right)\right),
$$

where ι_{X} and ι_{y} are linear isometric embeddings into a Banach space.
Equivalence relation E_{K} :

$$
E_{K}=\left\{(\mu, \nu) \in \mathcal{B}: \rho_{K}\left(X_{\mu}, X_{\nu}\right)=0\right\} .
$$

Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017):
For every $\mu \in \mathcal{B}$, the set $\left\{\nu \in \mathcal{B}: \rho_{K}\left(X_{\mu}, X_{\nu}\right)=0\right\}$ is Borel.
Analogue of question 1: Is for every $\mu \in \mathcal{B}$ the function $\rho_{K}(\mu, \cdot)$ Borel on \mathcal{B} ?
Analogue of question 2: Is $E_{K} \leq_{B} \cong_{i}$?

Definition

Let X be a standard Borel space. A pseudometric $\rho: X \times X \rightarrow[0, \infty]$ on X is called an analytic pseudometric, if for every $r>0$ the set $\left\{(x, y) \in X^{2}: \rho(x, y)<r\right\}$ is analytic.

Definition

Let X be a standard Borel space. A pseudometric $\rho: X \times X \rightarrow[0, \infty]$ on X is called an analytic pseudometric, if for every $r>0$ the set $\left\{(x, y) \in X^{2}: \rho(x, y)<r\right\}$ is analytic.

- every analytic equivalence relation is induced by an analytic pseudometric

Definition

Let X be a standard Borel space. A pseudometric $\rho: X \times X \rightarrow[0, \infty]$ on X is called an analytic pseudometric, if for every $r>0$ the set $\left\{(x, y) \in X^{2}: \rho(x, y)<r\right\}$ is analytic.

- every analytic equivalence relation is induced by an analytic pseudometric
- $\rho_{G H}(d, e):=\rho_{G H}\left(M_{d}, M_{e}\right)$ is analytic pseudometric on \mathcal{M}

Definition

Let X be a standard Borel space. A pseudometric $\rho: X \times X \rightarrow[0, \infty]$ on X is called an analytic pseudometric, if for every $r>0$ the set $\left\{(x, y) \in X^{2}: \rho(x, y)<r\right\}$ is analytic.

- every analytic equivalence relation is induced by an analytic pseudometric
- $\rho_{G H}(d, e):=\rho_{G H}\left(M_{d}, M_{e}\right)$ is analytic pseudometric on \mathcal{M}
- Banach-Mazur and Kadets distances are analytic pseudometrics on \mathcal{B}

Definition

Let X be a standard Borel space. A pseudometric $\rho: X \times X \rightarrow[0, \infty]$ on X is called an analytic pseudometric, if for every $r>0$ the set $\left\{(x, y) \in X^{2}: \rho(x, y)<r\right\}$ is analytic.

- every analytic equivalence relation is induced by an analytic pseudometric
- $\rho_{G H}(d, e):=\rho_{G H}\left(M_{d}, M_{e}\right)$ is analytic pseudometric on \mathcal{M}
- Banach-Mazur and Kadets distances are analytic pseudometrics on \mathcal{B}
- Lipschitz distance between metric spaces M, N is

$$
\rho_{L}(M, N)=\log \inf \left\{\max \left\{\operatorname{Lip}(T), \operatorname{Lip}\left(T^{-1}\right)\right\}: T: M \rightarrow N \text { is bi-Lipschitz }\right\} .
$$

Definition

Let X be a standard Borel space. A pseudometric $\rho: X \times X \rightarrow[0, \infty]$ on X is called an analytic pseudometric, if for every $r>0$ the set $\left\{(x, y) \in X^{2}: \rho(x, y)<r\right\}$ is analytic.

- every analytic equivalence relation is induced by an analytic pseudometric
- $\rho_{G H}(d, e):=\rho_{G H}\left(M_{d}, M_{e}\right)$ is analytic pseudometric on \mathcal{M}
- Banach-Mazur and Kadets distances are analytic pseudometrics on \mathcal{B}
- Lipschitz distance between metric spaces M, N is

$$
\rho_{L}(M, N)=\log \inf \left\{\max \left\{\operatorname{Lip}(T), \operatorname{Lip}\left(T^{-1}\right)\right\}: T: M \rightarrow N \text { is bi-Lipschitz }\right\} .
$$

The Lipschitz distance is analytic pseudometric on both \mathcal{M} and \mathcal{B}.

Definition

Let X, Y be standard Borel spaces and let ρ_{X}, resp. ρ_{Y} be analytic pseudometrics on X, resp. on Y.

Definition

Let X, Y be standard Borel spaces and let ρ_{X}, resp. ρ_{Y} be analytic pseudometrics on X, resp. on Y. We say that ρ_{X} is Borel-uniformly continuous reducible to $\rho_{Y}, \rho_{X} \leq_{B, u} \rho_{Y}$ in symbols, if there exists a Borel function $f: X \rightarrow Y$ such that,

Definition

Let X, Y be standard Borel spaces and let ρ_{X}, resp. ρ_{Y} be analytic pseudometrics on X, resp. on Y. We say that ρ_{X} is Borel-uniformly continuous reducible to $\rho_{Y}, \rho_{X} \leq_{B, u} \rho_{Y}$ in symbols, if there exists a Borel function $f: X \rightarrow Y$ such that, for every $\varepsilon>0$ there are $\delta_{X}>0$ and $\delta_{Y}>0$ satisfying

$$
\forall x, y \in X: \quad \rho_{X}(x, y)<\delta_{X} \Rightarrow \rho_{Y}(f(x), f(y))<\varepsilon
$$

and

$$
\forall x, y \in X: \quad \rho_{Y}(f(x), f(y))<\delta_{Y} \Rightarrow \rho_{X}(x, y)<\varepsilon .
$$

Definition

Let X, Y be standard Borel spaces and let ρ_{X}, resp. ρ_{Y} be analytic pseudometrics on X, resp. on Y. We say that ρ_{X} is Borel-uniformly continuous reducible to $\rho_{Y}, \rho_{X} \leq_{B, u} \rho_{Y}$ in symbols, if there exists a Borel function $f: X \rightarrow Y$ such that, for every $\varepsilon>0$ there are $\delta_{X}>0$ and $\delta_{Y}>0$ satisfying

$$
\forall x, y \in X: \quad \rho_{X}(x, y)<\delta_{X} \Rightarrow \rho_{Y}(f(x), f(y))<\varepsilon
$$

and

$$
\forall x, y \in X: \quad \rho_{Y}(f(x), f(y))<\delta_{Y} \Rightarrow \rho_{X}(x, y)<\varepsilon .
$$

In this case we say that f is a Borel-uniformly continuous reduction.

Definition

Let X, Y be standard Borel spaces and let ρ_{X}, resp. ρ_{Y} be analytic pseudometrics on X, resp. on Y. We say that ρ_{X} is Borel-uniformly continuous reducible to $\rho_{Y}, \rho_{X} \leq_{B, u} \rho_{Y}$ in symbols, if there exists a Borel function $f: X \rightarrow Y$ such that, for every $\varepsilon>0$ there are $\delta_{X}>0$ and $\delta_{Y}>0$ satisfying

$$
\forall x, y \in X: \quad \rho_{X}(x, y)<\delta_{X} \Rightarrow \rho_{Y}(f(x), f(y))<\varepsilon
$$

and

$$
\forall x, y \in X: \quad \rho_{Y}(f(x), f(y))<\delta_{Y} \Rightarrow \rho_{X}(x, y)<\varepsilon .
$$

In this case we say that f is a Borel-uniformly continuous reduction. If $\rho_{X} \leq_{B, u} \rho_{Y}$ and $\rho_{Y} \leq_{B, u} \rho_{X}$, we say that ρ_{X} is Borel-uniformly continuous bi-reducible with ρ_{Y} and write $\rho_{X} \sim_{B, u} \rho_{Y}$.

Definition

Let X, Y be standard Borel spaces and let ρ_{X}, resp. ρ_{Y} be analytic pseudometrics on X, resp. on Y. We say that ρ_{X} is Borel-uniformly continuous reducible to $\rho_{Y}, \rho_{X} \leq_{B, u} \rho_{Y}$ in symbols, if there exists a Borel function $f: X \rightarrow Y$ such that, for every $\varepsilon>0$ there are $\delta_{X}>0$ and $\delta_{Y}>0$ satisfying

$$
\forall x, y \in X: \quad \rho_{X}(x, y)<\delta_{X} \Rightarrow \rho_{Y}(f(x), f(y))<\varepsilon
$$

and

$$
\forall x, y \in X: \quad \rho_{Y}(f(x), f(y))<\delta_{Y} \Rightarrow \rho_{X}(x, y)<\varepsilon .
$$

In this case we say that f is a Borel-uniformly continuous reduction. If $\rho_{X} \leq_{B, u} \rho_{Y}$ and $\rho_{Y} \leq_{B, u} \rho_{X}$, we say that ρ_{X} is Borel-uniformly continuous bi-reducible with ρ_{Y} and write $\rho_{X} \sim_{B, u} \rho_{Y}$.

- note that $\rho_{X} \leq_{B, u} \rho_{Y}$ implies the reducibility between the corresponding equivalence relations, i.e. $E_{\rho_{X}} \leq_{B} E_{\rho_{Y}}$.

A correspondence between A and B is a binary relation $\mathcal{R} \subseteq A \times B$ such that for every $a \in A$ there is $b \in B$ such that $a \mathcal{R} b$, and for every $b \in B$ there is $a \in A$ such that $a R b$.

A correspondence between A and B is a binary relation $\mathcal{R} \subseteq A \times B$ such that for every $a \in A$ there is $b \in B$ such that $a \mathcal{R} b$, and for every $b \in B$ there is $a \in A$ such that $a R b$.

Lemma

Let M and N be two metric spaces. For every $r>0$ we have $\rho_{G H}(M, N)<r$ if and only if there exists a correspondence \mathcal{R} between M and N such that $\sup \left|d_{M}\left(m, m^{\prime}\right)-d_{N}\left(n, n^{\prime}\right)\right|<2 r$, where the supremum is taken over all $m, m^{\prime} \in M$ and $n, n^{\prime} \in N$ with $m \mathcal{R} n$ and $m^{\prime} \mathcal{R} n^{\prime}$.

A correspondence between A and B is a binary relation $\mathcal{R} \subseteq A \times B$ such that for every $a \in A$ there is $b \in B$ such that $a \mathcal{R} b$, and for every $b \in B$ there is $a \in A$ such that $a R b$.

Lemma

Let M and N be two metric spaces. For every $r>0$ we have $\rho_{G H}(M, N)<r$ if and only if there exists a correspondence \mathcal{R} between M and N such that $\sup \left|d_{M}\left(m, m^{\prime}\right)-d_{N}\left(n, n^{\prime}\right)\right|<2 r$, where the supremum is taken over all $m, m^{\prime} \in M$ and $n, n^{\prime} \in N$ with $m \mathcal{R} n$ and $m^{\prime} \mathcal{R} n^{\prime}$.

For two metrics on natural numbers $f, g \in \mathcal{M}$ and $\varepsilon>0$, we consider the relation

$$
f \simeq_{\varepsilon} g \quad \Leftrightarrow \quad \exists \pi \in S_{\infty} \forall\{n, m\} \in[\mathbb{N}]^{2}:|f(\pi(n), \pi(m))-g(n, m)| \leq \varepsilon .
$$

Reductions concerning GH distance

A correspondence between A and B is a binary relation $\mathcal{R} \subseteq A \times B$ such that for every $a \in A$ there is $b \in B$ such that $a \mathcal{R} b$, and for every $b \in B$ there is $a \in A$ such that $a R b$.

Lemma

Let M and N be two metric spaces. For every $r>0$ we have $\rho_{G H}(M, N)<r$ if and only if there exists a correspondence \mathcal{R} between M and N such that $\sup \left|d_{M}\left(m, m^{\prime}\right)-d_{N}\left(n, n^{\prime}\right)\right|<2 r$, where the supremum is taken over all $m, m^{\prime} \in M$ and $n, n^{\prime} \in N$ with $m \mathcal{R} n$ and $m^{\prime} \mathcal{R} n^{\prime}$.

For two metrics on natural numbers $f, g \in \mathcal{M}$ and $\varepsilon>0$, we consider the relation

$$
f \simeq_{\varepsilon} g \quad \Leftrightarrow \quad \exists \pi \in S_{\infty} \forall\{n, m\} \in[\mathbb{N}]^{2}:|f(\pi(n), \pi(m))-g(n, m)| \leq \varepsilon
$$

Lemma

Let $p>0$ be a real number. For any two metrics on natural numbers
$f, g \in \mathcal{M}_{p}$ we have $\rho_{G H}(f, g)=\inf \left\{r: f \simeq_{2 r} g\right\}$ provided that $\rho_{G H}(f, g)<p / 2$.

Lemma

Let X and Y be separable Banach spaces, let $\left(e_{n}\right)_{n \in \mathbb{N}}$ and $\left(f_{n}\right)_{n \in \mathbb{N}}$ be linearly independent and linearly dense sequences in X and Y, respectively, and put $V=\mathbb{Q} \operatorname{span}\left\{e_{n}: n \in \mathbb{N}\right\}, W=\mathbb{Q} \operatorname{span}\left\{f_{n}: n \in \mathbb{N}\right\}$.

Lemma

Let X and Y be separable Banach spaces, let $\left(e_{n}\right)_{n \in \mathbb{N}}$ and $\left(f_{n}\right)_{n \in \mathbb{N}}$ be linearly independent and linearly dense sequences in X and Y, respectively, and put $V=\mathbb{Q} \operatorname{span}\left\{e_{n}: n \in \mathbb{N}\right\}, W=\mathbb{Q} \operatorname{span}\left\{f_{n}: n \in \mathbb{N}\right\}$.
Then $\rho_{B M}(X, Y)<r$ if and only if there exists a surjective linear isomorphism $T: X \rightarrow Y$ with $\log \|T\|\left\|T^{-1}\right\|<r$ and $T(V)=W$.

Theorem

- The following pseudometrics are mutually Borel-uniformly continuous bi-reducible: the Gromov-Hausdorff distance when restricted to Polish metric spaces, to metric spaces bounded from above, from below, from both above and below, to Banach spaces; the Lipschitz distance when restricted to metric spaces bounded from below and above, and to uniformly discrete metric spaces; the Banach-Mazur distance; the Kadets distance on Banach spaces; the Hausdorff-Lipschitz and net distances on Banach spaces.
- The pseudometrics above are Borel-uniformly continuous reducible to the uniform and Lipschitz distances on Banach spaces.

Theorem

Let ρ be any pseudometric to which the Kadets distance is Borel-uniformly continuous reducible (e.g. the Kadets distance itself, or the Gromov-Hausdorff distance). Then there are elements A from the domain of ρ such that the function $\rho(A, \cdot)$ is not Borel.

Theorem

Let ρ be any pseudometric to which the Kadets distance is Borel-uniformly continuous reducible (e.g. the Kadets distance itself, or the
Gromov-Hausdorff distance). Then there are elements A from the domain of ρ such that the function $\rho(A, \cdot)$ is not Borel.

Sketch of the proof:
$\mathcal{P}(\mathbb{N})=$ all subsets of \mathbb{N} endowed with the coarsest topology for which $\{A \in \mathcal{P}(\mathbb{N}): n \in A\}$ is clopen for every n (a copy of the Cantor space $2^{\mathbb{N}}$).

Theorem

Let ρ be any pseudometric to which the Kadets distance is Borel-uniformly continuous reducible (e.g. the Kadets distance itself, or the
Gromov-Hausdorff distance). Then there are elements A from the domain of ρ such that the function $\rho(A, \cdot)$ is not Borel.

Sketch of the proof:
$\mathcal{P}(\mathbb{N})=$ all subsets of \mathbb{N} endowed with the coarsest topology for which $\{A \in \mathcal{P}(\mathbb{N}): n \in A\}$ is clopen for every n (a copy of the Cantor space $2^{\mathbb{N}}$).
$K(\mathcal{P}(\mathbb{N}))=$ all compact subsets of $\mathcal{P}(\mathbb{N})$ endowed by the Vietoris topology.

Theorem

Let ρ be any pseudometric to which the Kadets distance is Borel-uniformly continuous reducible (e.g. the Kadets distance itself, or the
Gromov-Hausdorff distance). Then there are elements A from the domain of ρ such that the function $\rho(A, \cdot)$ is not Borel.

Sketch of the proof:
$\mathcal{P}(\mathbb{N})=$ all subsets of \mathbb{N} endowed with the coarsest topology for which $\{A \in \mathcal{P}(\mathbb{N}): n \in A\}$ is clopen for every n (a copy of the Cantor space $2^{\mathbb{N}}$).
$K(\mathcal{P}(\mathbb{N}))=$ all compact subsets of $\mathcal{P}(\mathbb{N})$ endowed by the Vietoris topology.

Theorem (Hurewicz)

The set

$$
\mathfrak{H}=\{\mathcal{A} \in K(\mathcal{P}(\mathbb{N})): \mathcal{A} \text { contains an infinite set }\}
$$

is not Borel.

Proposition

Let us consider the space

$$
X=\left(\bigoplus G_{n}\right)_{\ell_{1}}
$$

where G_{1}, G_{2}, \ldots is a dense sequence of finite-dimensional spaces. Then, for every $\varepsilon>0$, there exists a Borel mapping $\mathfrak{S}: K(\mathcal{P}(\mathbb{N})) \rightarrow \mathcal{B}$ such that (a) if $\mathcal{A} \in K(\mathcal{P}(\mathbb{N}))$ contains an infinite set, then $\rho_{B M}(\mathcal{S}(\mathcal{A}), X) \leq \varepsilon$, and thus $\rho_{K}(\mathfrak{S}(\mathcal{A}), X) \leq \varepsilon$,
(b) if $\mathcal{A} \in K(\mathcal{P}(\mathbb{N}))$ consists of finite sets only, then $\mathfrak{S}(\mathcal{A})$ contains a normalized 1 -separated shrinking basic sequence, and thus $\rho_{K}(\mathfrak{S}(\mathcal{A}), X) \geq 1 / 8$.

Proposition

Let us consider the space

$$
X=\left(\bigoplus G_{n}\right)_{\ell_{1}}
$$

where G_{1}, G_{2}, \ldots is a dense sequence of finite-dimensional spaces. Then, for every $\varepsilon>0$, there exists a Borel mapping $\mathfrak{S}: K(\mathcal{P}(\mathbb{N})) \rightarrow \mathcal{B}$ such that (a) if $\mathcal{A} \in K\left(\mathcal{P}(\mathbb{N})\right.$) contains an infinite set, then $\rho_{B M}(\mathcal{S}(\mathcal{A}), X) \leq \varepsilon$, and thus $\rho_{K}(\mathfrak{S}(\mathcal{A}), X) \leq \varepsilon$,
(b) if $\mathcal{A} \in K(\mathcal{P}(\mathbb{N}))$ consists of finite sets only, then $\mathfrak{S}(\mathcal{A})$ contains a normalized 1-separated shrinking basic sequence, and thus $\rho_{K}(\mathfrak{S}(\mathcal{A}), X) \geq 1 / 8$.

Sketch of the proof:
Given $\varepsilon>0$, we put $\theta=e^{-\varepsilon}$ and

$$
X_{\mathcal{A}}=T\left[\mathcal{A}_{1}, \theta\right] \oplus_{1} X, \quad \mathcal{A} \in K(\mathcal{P}(\mathbb{N}))
$$

Proposition

Let us consider the space

$$
X=\left(\bigoplus G_{n}\right)_{\ell_{1}}
$$

where G_{1}, G_{2}, \ldots is a dense sequence of finite-dimensional spaces. Then, for every $\varepsilon>0$, there exists a Borel mapping $\mathfrak{S}: K(\mathcal{P}(\mathbb{N})) \rightarrow \mathcal{B}$ such that (a) if $\mathcal{A} \in K(\mathcal{P}(\mathbb{N}))$ contains an infinite set, then $\rho_{B M}(\mathcal{S}(\mathcal{A}), X) \leq \varepsilon$, and thus $\rho_{K}(\mathfrak{S}(\mathcal{A}), X) \leq \varepsilon$,
(b) if $\mathcal{A} \in K(\mathcal{P}(\mathbb{N}))$ consists of finite sets only, then $\mathfrak{S}(\mathcal{A})$ contains a normalized 1-separated shrinking basic sequence, and thus $\rho_{K}(\mathfrak{S}(\mathcal{A}), X) \geq 1 / 8$.

Sketch of the proof:
Given $\varepsilon>0$, we put $\theta=e^{-\varepsilon}$ and

$$
X_{\mathcal{A}}=T\left[\mathcal{A}_{1}, \theta\right] \oplus_{1} X, \quad \mathcal{A} \in K(\mathcal{P}(\mathbb{N}))
$$

where $\mathcal{A}_{1}=\{A \cup\{1\}: A \in \mathcal{A}\}$. We check that $X_{\mathcal{A}}$ satisfies the requirements (a) and (b) on $\mathfrak{S}(\mathcal{A})$.

