Complexity of distances between metric and Banach spaces

Marek Cúth, Michal Doucha, Ondřej Kurka

Non Linear Functional Analysis, CIRM

Let X, Y be Polish spaces and let E, F equivalence relations on X, Y respectively.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Let *X*, *Y* be Polish spaces and let *E*, *F* equivalence relations on *X*, *Y* respectively. *E* is said to be *Borel reducible* to *F*, if there is a Borel mapping $f : X \to Y$ such that for every $a, b \in X$ we have $aEb \Leftrightarrow f(a)Ff(b)$. We denote it by

$$E \leq_B F$$
.

A > + = + + =

Let *X*, *Y* be Polish spaces and let *E*, *F* equivalence relations on *X*, *Y* respectively. *E* is said to be *Borel reducible* to *F*, if there is a Borel mapping $f : X \to Y$ such that for every $a, b \in X$ we have $aEb \Leftrightarrow f(a)Ff(b)$. We denote it by

$$E \leq_B F$$
.

We say that *E* and *F* are *Borel bireducible* if $E \leq_B F$ and $F \leq_B E$. We denote it by

$$E \sim_B F$$
.

A (10) > A (10) > A (10)

Let *X*, *Y* be Polish spaces and let *E*, *F* equivalence relations on *X*, *Y* respectively. *E* is said to be *Borel reducible* to *F*, if there is a Borel mapping $f : X \to Y$ such that for every $a, b \in X$ we have $aEb \Leftrightarrow f(a)Ff(b)$. We denote it by

$$E \leq_B F$$
.

We say that *E* and *F* are *Borel bireducible* if $E \leq_B F$ and $F \leq_B E$. We denote it by

$$E \sim_B F$$
.

Example (Polish space): $\mathcal{M} =$ space of all metrics on \mathbb{N} . On \mathcal{M} we consider a Polish topology inherited from $\mathbb{R}^{\mathbb{N} \times \mathbb{N}}$.

A (10) A (10)

Let *X*, *Y* be Polish spaces and let *E*, *F* equivalence relations on *X*, *Y* respectively. *E* is said to be *Borel reducible* to *F*, if there is a Borel mapping $f : X \to Y$ such that for every $a, b \in X$ we have $aEb \Leftrightarrow f(a)Ff(b)$. We denote it by

$$E \leq_B F$$
.

We say that *E* and *F* are *Borel bireducible* if $E \leq_B F$ and $F \leq_B E$. We denote it by

$$E \sim_B F$$
.

Example (Polish space): \mathcal{M} =space of all metrics on \mathbb{N} . On \mathcal{M} we consider a Polish topology inherited from $\mathbb{R}^{\mathbb{N}\times\mathbb{N}}$.

Every $f \in \mathcal{M}$ is then a code for a Polish metric space M_f , which is the completion of (\mathbb{N}, f) .

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Let *X*, *Y* be Polish spaces and let *E*, *F* equivalence relations on *X*, *Y* respectively. *E* is said to be *Borel reducible* to *F*, if there is a Borel mapping $f : X \to Y$ such that for every $a, b \in X$ we have $aEb \Leftrightarrow f(a)Ff(b)$. We denote it by

$$E \leq_B F$$
.

We say that *E* and *F* are *Borel bireducible* if $E \leq_B F$ and $F \leq_B E$. We denote it by

$$E \sim_B F$$
.

Example (Polish space): \mathcal{M} =space of all metrics on \mathbb{N} . On \mathcal{M} we consider a Polish topology inherited from $\mathbb{R}^{\mathbb{N}\times\mathbb{N}}$.

Every $f \in \mathcal{M}$ is then a code for a Polish metric space M_f , which is the completion of (\mathbb{N}, f) .

We refer to ${\cal M}$ as to the "(standard Borel) space of all infinite Polish metric spaces".

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *X*, *Y* be Polish spaces and let *E*, *F* equivalence relations on *X*, *Y* respectively. *E* is said to be *Borel reducible* to *F*, if there is a Borel mapping $f : X \to Y$ such that for every $a, b \in X$ we have $aEb \Leftrightarrow f(a)Ff(b)$. We denote it by

$$E \leq_B F$$
.

We say that *E* and *F* are *Borel bireducible* if $E \leq_B F$ and $F \leq_B E$. We denote it by

$$E \sim_B F$$
.

Example (Polish space): \mathcal{M} =space of all metrics on \mathbb{N} . On \mathcal{M} we consider a Polish topology inherited from $\mathbb{R}^{\mathbb{N}\times\mathbb{N}}$.

Every $f \in \mathcal{M}$ is then a code for a Polish metric space M_f , which is the completion of (\mathbb{N}, f) .

We refer to ${\cal M}$ as to the "(standard Borel) space of all infinite Polish metric spaces".

Example (equivalence relation): \cong_i is an equivalence relation on \mathcal{M} defined as $f \cong_i g$ iff M_f is isometric with M_g .

< ロ > < 同 > < 回 > < 回 >

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace *B* with the inherited Borel structure is standard Borel.

A (10) A (10)

Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace *B* with the inherited Borel structure is standard Borel.

More concrete example: V = the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.

A (10) A (10)

Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace *B* with the inherited Borel structure is standard Borel.

More concrete example: V = the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.

 \mathcal{B}_0 = norms on V. On \mathcal{B}_0 we consider a Polish topology inherited from \mathbb{R}^V .

A > + = + + =

Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace *B* with the inherited Borel structure is standard Borel.

More concrete example: V = the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.

 \mathcal{B}_0 = norms on *V*. On \mathcal{B}_0 we consider a Polish topology inherited from \mathbb{R}^V .

 $\mathcal{B} =$ norms for which the canonical extension to c_{00} is still a norm.

🗇 🕨 🖌 🖻 🕨 🖌 🖻

Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace *B* with the inherited Borel structure is standard Borel.

More concrete example: V = the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.

- \mathcal{B}_0 = norms on *V*. On \mathcal{B}_0 we consider a Polish topology inherited from \mathbb{R}^V .
- $\mathcal{B} = \text{norms}$ for which the canonical extension to c_{00} is still a norm.

 \mathcal{B} is standard Borel space (Borel subset of \mathcal{B}_0).

🗇 🕨 🖌 🖻 🕨 🖌 🖻

Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace *B* with the inherited Borel structure is standard Borel.

More concrete example: V = the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.

 \mathcal{B}_0 = norms on *V*. On \mathcal{B}_0 we consider a Polish topology inherited from \mathbb{R}^V .

 $\mathcal{B} =$ norms for which the canonical extension to c_{00} is still a norm.

 \mathcal{B} is standard Borel space (Borel subset of \mathcal{B}_0).

Every $\nu \in \mathcal{B}$ is then a code for an infinite-dimensional Banach space X_{ν} which is the completion of (V, ν) .

A > + = + + =

Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace *B* with the inherited Borel structure is standard Borel.

More concrete example: V = the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.

 \mathcal{B}_0 = norms on *V*. On \mathcal{B}_0 we consider a Polish topology inherited from \mathbb{R}^V .

 \mathcal{B} = norms for which the canonical extension to c_{00} is still a norm.

 \mathcal{B} is standard Borel space (Borel subset of \mathcal{B}_0).

Every $\nu \in \mathcal{B}$ is then a code for an infinite-dimensional Banach space X_{ν} which is the completion of (V, ν) .

We refer to \mathcal{B} as to the "(standard Borel) space of all infinite-dimensional Banach spaces".

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace *B* with the inherited Borel structure is standard Borel.

More concrete example: V = the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.

 \mathcal{B}_0 = norms on *V*. On \mathcal{B}_0 we consider a Polish topology inherited from \mathbb{R}^V .

 $\mathcal{B} =$ norms for which the canonical extension to c_{00} is still a norm.

 \mathcal{B} is standard Borel space (Borel subset of \mathcal{B}_0).

Every $\nu \in \mathcal{B}$ is then a code for an infinite-dimensional Banach space X_{ν} which is the completion of (V, ν) .

We refer to \mathcal{B} as to the "(standard Borel) space of all infinite-dimensional Banach spaces".

Example (equivalence relation): \cong_L is an equivalence relation on \mathcal{B} defined as $\nu \cong_L \mu$ iff X_{ν} is linearly isometric with X_{μ} .

< □ > < 同 > < 回 > < 回 > .

Example: If X is a Polish space and $B \subset X$ is a Borel set, then the subspace *B* with the inherited Borel structure is standard Borel.

More concrete example: V = the vector space over \mathbb{Q} of all finitely supported sequences of rational numbers.

 \mathcal{B}_0 = norms on *V*. On \mathcal{B}_0 we consider a Polish topology inherited from \mathbb{R}^V .

 $\mathcal{B} =$ norms for which the canonical extension to c_{00} is still a norm.

 \mathcal{B} is standard Borel space (Borel subset of \mathcal{B}_0).

Every $\nu \in \mathcal{B}$ is then a code for an infinite-dimensional Banach space X_{ν} which is the completion of (V, ν) .

We refer to \mathcal{B} as to the "(standard Borel) space of all infinite-dimensional Banach spaces".

Example (equivalence relation): \cong_L is an equivalence relation on \mathcal{B} defined as $\nu \cong_L \mu$ iff X_{ν} is linearly isometric with X_{μ} .

< □ > < 同 > < 回 > < 回 > .

Let *X*, *Y* be standard Borel spaces and let *E*, *F* equivalence relations on *X*, *Y* respectively. *E* is said to be *Borel reducible* to *F*, if there is a Borel mapping $f : X \to Y$ such that for every $a, b \in X$ we have $aEb \Leftrightarrow f(a)Ff(b)$. We denote it by

$$E \leq_B F$$
.

We say that *E* and *F* are *Borel bireducible* if $E \leq_B F$ and $F \leq_B E$. We denote it by

$$E \sim_B F$$
.

 \mathcal{M} =space of all infinite Polish metric spaces

 \mathcal{B} =space of all infinite-dimensional Banach spaces

伺 ト イ ヨ ト イ ヨ

Let *X*, *Y* be standard Borel spaces and let *E*, *F* equivalence relations on *X*, *Y* respectively. *E* is said to be *Borel reducible* to *F*, if there is a Borel mapping $f : X \to Y$ such that for every $a, b \in X$ we have $aEb \Leftrightarrow f(a)Ff(b)$. We denote it by

$$E \leq_B F$$
.

We say that *E* and *F* are *Borel bireducible* if $E \leq_B F$ and $F \leq_B E$. We denote it by

$$E \sim_B F$$
.

 \mathcal{M} =space of all infinite Polish metric spaces

 \mathcal{B} =space of all infinite-dimensional Banach spaces

By the Mazur-Ulam theorem, we have $\cong_L \leq_B \cong_i$.

A (10) > A (10) > A (10)

Let *X*, *Y* be standard Borel spaces and let *E*, *F* equivalence relations on *X*, *Y* respectively. *E* is said to be *Borel reducible* to *F*, if there is a Borel mapping $f : X \to Y$ such that for every $a, b \in X$ we have $aEb \Leftrightarrow f(a)Ff(b)$. We denote it by

$$E \leq_B F$$
.

We say that *E* and *F* are *Borel bireducible* if $E \leq_B F$ and $F \leq_B E$. We denote it by

$$E \sim_B F$$
.

 $\mathcal{M} =$ space of all infinite Polish metric spaces

 \mathcal{B} =space of all infinite-dimensional Banach spaces

By the Mazur-Ulam theorem, we have $\cong_L \leq_B \cong_i$.

It is even known (Melleray 2007) that $\cong_L \sim_B \cong_i$.

A (10) A (10) A (10)

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$\rho_H^M(A, B) := \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(A, b)\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$ho^M_H(A,B) := \max\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\}.$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$\rho_{GH}(M,N) := \inf_{\substack{\iota_M: M \hookrightarrow X \\ \iota_N: N \hookrightarrow X}} \rho_H^X(\iota_M(M), \iota_N(N)).$$

A > + = + + =

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$ho^M_H(A,B) := \max\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\}.$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$\rho_{GH}(M,N) := \inf_{\substack{\iota_M: M \hookrightarrow X \\ \iota_N: N \hookrightarrow X}} \rho_H^X(\iota_M(M), \iota_N(N)).$$

Equivalence relation E_{GH} :

$$E_{GH} = \{ (d, e) \in \mathcal{M} : \rho_{GH}(M_d, M_e) = 0 \}.$$

A > + = + + =

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$\rho_H^M(A,B) := \max\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\}.$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$\rho_{GH}(M,N) := \inf_{\substack{\iota_M: M \hookrightarrow X \\ \iota_N: N \hookrightarrow X}} \rho_H^X(\iota_M(M), \iota_N(N)).$$

Equivalence relation E_{GH} :

$$E_{\textit{GH}} = \{(\textit{d},\textit{e}) \in \mathcal{M}: \ \rho_{\textit{GH}}(\textit{M}_{\textit{d}},\textit{M}_{\textit{e}}) = 0\}.$$

Denote by $\mathcal{M}^1 \subset \mathcal{M}$ the space of metric spaces with distances bouded by 1.

伺 と く ヨ と く ヨ と

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$\rho_H^M(A,B) := \max\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\}.$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$\rho_{GH}(M,N) := \inf_{\substack{\iota_M: M \hookrightarrow X \\ \iota_N: N \hookrightarrow X}} \rho_H^X(\iota_M(M), \iota_N(N)).$$

Equivalence relation E_{GH} :

$$\textit{E}_{\textit{GH}} = \{(\textit{d},\textit{e}) \in \mathcal{M}: \ \rho_{\textit{GH}}(\textit{M}_{\textit{d}},\textit{M}_{\textit{e}}) = 0\}.$$

Denote by $\mathcal{M}^1 \subset \mathcal{M}$ the space of metric spaces with distances bouded by 1.

Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017): For every $d \in \mathcal{M}^1$, the set $\{e \in \mathcal{M}^1 : \rho_{GH}(M_d, M_e) = 0\}$ is Borel.

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$\rho_H^M(A,B) := \max\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\}.$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$\rho_{GH}(M,N) := \inf_{\substack{\iota_M: M \hookrightarrow X \\ \iota_N: N \hookrightarrow X}} \rho_H^X(\iota_M(M), \iota_N(N)).$$

Equivalence relation E_{GH} :

$$E_{\textit{GH}} = \{(\textit{d},\textit{e}) \in \mathcal{M}: \ \rho_{\textit{GH}}(\textit{M}_{\textit{d}},\textit{M}_{\textit{e}}) = 0\}.$$

Denote by $\mathcal{M}^1 \subset \mathcal{M}$ the space of metric spaces with distances bouded by 1.

Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017): For every $d \in \mathcal{M}^1$, the set { $e \in \mathcal{M}^1 : \rho_{GH}(M_d, M_e) = 0$ } is Borel.

Question 1: Is for every $d \in \mathcal{M}^1$ the function $\rho_{GH}(M_d, \cdot)$ Borel on \mathcal{M}^1 ?

- for $A, B \subseteq M$ two non-empty subsets of a metric space M, the Hausdorff distance between A and B is

$$\rho_H^M(A,B) := \max\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\}.$$

- Gromov-Hausdorff distance between metric spaces M, N is

$$\rho_{GH}(M,N) := \inf_{\substack{\iota_M: M \hookrightarrow X \\ \iota_N: N \hookrightarrow X}} \rho_H^X(\iota_M(M), \iota_N(N)).$$

Equivalence relation E_{GH} :

$$E_{\textit{GH}} = \{(\textit{d},\textit{e}) \in \mathcal{M}: \ \rho_{\textit{GH}}(\textit{M}_{\textit{d}},\textit{M}_{\textit{e}}) = 0\}.$$

Denote by $\mathcal{M}^1 \subset \mathcal{M}$ the space of metric spaces with distances bouded by 1.

Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017): For every $d \in \mathcal{M}^1$, the set $\{e \in \mathcal{M}^1 : \rho_{GH}(M_d, M_e) = 0\}$ is Borel.

Question 1: Is for every $d \in \mathcal{M}^1$ the function $\rho_{GH}(M_d, \cdot)$ Borel on \mathcal{M}^1 ?

Question 2: Is $E_{GH}|_{\mathcal{M}^1} \leq_B \cong_i$?

$$\rho_{\mathcal{K}}(X,Y) = \inf_{\substack{\iota_X:X \hookrightarrow Z\\ \iota_Y:Y \hookrightarrow Z}} \rho_{\mathcal{H}}^{Z}(\iota_X(B_X),\iota_Y(B_Y)),$$

where ι_X and ι_Y are linear isometric embeddings into a Banach space.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\rho_{\mathcal{K}}(X,Y) = \inf_{\substack{\iota_X:X \hookrightarrow Z\\ \iota_Y:Y \hookrightarrow Z}} \rho_{\mathcal{H}}^Z(\iota_X(B_X),\iota_Y(B_Y)),$$

where ι_X and ι_Y are linear isometric embeddings into a Banach space. Equivalence relation E_K :

$$E_{\mathcal{K}} = \{(\mu,\nu) \in \mathcal{B}: \ \rho_{\mathcal{K}}(X_{\mu},X_{\nu}) = 0\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\rho_{\mathcal{K}}(X,Y) = \inf_{\substack{\iota_X:X \hookrightarrow Z\\ \iota_Y:Y \hookrightarrow Z}} \rho_{\mathcal{H}}^Z(\iota_X(B_X),\iota_Y(B_Y)),$$

where ι_X and ι_Y are linear isometric embeddings into a Banach space. Equivalence relation E_K :

$$E_{\mathcal{K}} = \{(\mu,\nu) \in \mathcal{B}: \ \rho_{\mathcal{K}}(X_{\mu},X_{\nu}) = 0\}.$$

Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017): For every $\mu \in \mathcal{B}$, the set { $\nu \in \mathcal{B} : \rho_{\mathcal{K}}(X_{\mu}, X_{\nu}) = 0$ } is Borel.

< 回 > < 三 > < 三 >

$$\rho_{\mathcal{K}}(X,Y) = \inf_{\substack{\iota_X:X \hookrightarrow Z\\ \iota_Y:Y \hookrightarrow Z}} \rho_{\mathcal{H}}^Z(\iota_X(B_X),\iota_Y(B_Y)),$$

where ι_X and ι_Y are linear isometric embeddings into a Banach space. Equivalence relation E_K :

$$E_{\mathcal{K}} = \{(\mu,\nu) \in \mathcal{B}: \ \rho_{\mathcal{K}}(X_{\mu},X_{\nu}) = 0\}.$$

Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017): For every $\mu \in \mathcal{B}$, the set { $\nu \in \mathcal{B} : \rho_{\mathcal{K}}(X_{\mu}, X_{\nu}) = 0$ } is Borel.

Analogue of question 1: Is for every $\mu \in \mathcal{B}$ the function $\rho_{\mathcal{K}}(\mu, \cdot)$ Borel on \mathcal{B} ?

不得る とうちょうちょ

$$\rho_{\mathcal{K}}(X,Y) = \inf_{\substack{\iota_X:X \hookrightarrow Z\\ \iota_Y:Y \hookrightarrow Z}} \rho_{\mathcal{H}}^Z(\iota_X(B_X),\iota_Y(B_Y)),$$

where ι_X and ι_Y are linear isometric embeddings into a Banach space. Equivalence relation E_K :

$$E_{\mathcal{K}} = \{(\mu,\nu) \in \mathcal{B}: \ \rho_{\mathcal{K}}(X_{\mu},X_{\nu}) = 0\}.$$

Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017): For every $\mu \in \mathcal{B}$, the set { $\nu \in \mathcal{B} : \rho_{\mathcal{K}}(X_{\mu}, X_{\nu}) = 0$ } is Borel.

Analogue of question 1: Is for every $\mu \in \mathcal{B}$ the function $\rho_{\mathcal{K}}(\mu, \cdot)$ Borel on \mathcal{B} ? Analogue of question 2: Is $E_{\mathcal{K}} \leq_{\mathcal{B}} \cong_{i}$?

イベト イモト イモト

Let *X* be a standard Borel space. A pseudometric $\rho : X \times X \to [0, \infty]$ on *X* is called *an analytic pseudometric*, if for every r > 0 the set $\{(x, y) \in X^2 : \rho(x, y) < r\}$ is analytic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let X be a standard Borel space. A pseudometric $\rho : X \times X \to [0, \infty]$ on X is called *an analytic pseudometric*, if for every r > 0 the set $\{(x, y) \in X^2 : \rho(x, y) < r\}$ is analytic.

- every analytic equivalence relation is induced by an analytic pseudometric

< 回 > < 三 > < 三 >

Let X be a standard Borel space. A pseudometric $\rho : X \times X \to [0, \infty]$ on X is called *an analytic pseudometric*, if for every r > 0 the set $\{(x, y) \in X^2 : \rho(x, y) < r\}$ is analytic.

- every analytic equivalence relation is induced by an analytic pseudometric

- $\rho_{GH}(d, e) := \rho_{GH}(M_d, M_e)$ is analytic pseudometric on \mathcal{M}

Let X be a standard Borel space. A pseudometric $\rho : X \times X \to [0, \infty]$ on X is called *an analytic pseudometric*, if for every r > 0 the set $\{(x, y) \in X^2 : \rho(x, y) < r\}$ is analytic.

- every analytic equivalence relation is induced by an analytic pseudometric
- $\rho_{GH}(d, e) := \rho_{GH}(M_d, M_e)$ is analytic pseudometric on \mathcal{M}
- Banach-Mazur and Kadets distances are analytic pseudometrics on $\ensuremath{\mathcal{B}}$

ヘロト 人間 とくほとく ほとう

Let X be a standard Borel space. A pseudometric $\rho : X \times X \to [0, \infty]$ on X is called *an analytic pseudometric*, if for every r > 0 the set $\{(x, y) \in X^2 : \rho(x, y) < r\}$ is analytic.

- every analytic equivalence relation is induced by an analytic pseudometric
- $\rho_{GH}(d, e) := \rho_{GH}(M_d, M_e)$ is analytic pseudometric on \mathcal{M}
- Banach-Mazur and Kadets distances are analytic pseudometrics on $\ensuremath{\mathcal{B}}$
- Lipschitz distance between metric spaces M, N is

 $\rho_L(M, N) = \log \inf\{\max\{\operatorname{Lip}(T), \operatorname{Lip}(T^{-1})\}: T: M \to N \text{ is bi-Lipschitz}\}.$

- ロ ト - 4 同 ト - 4 回 ト - - 三 日

Let X be a standard Borel space. A pseudometric $\rho : X \times X \to [0, \infty]$ on X is called *an analytic pseudometric*, if for every r > 0 the set $\{(x, y) \in X^2 : \rho(x, y) < r\}$ is analytic.

- every analytic equivalence relation is induced by an analytic pseudometric
- $\rho_{GH}(d, e) := \rho_{GH}(M_d, M_e)$ is analytic pseudometric on \mathcal{M}
- Banach-Mazur and Kadets distances are analytic pseudometrics on $\ensuremath{\mathcal{B}}$
- Lipschitz distance between metric spaces M, N is

 $\rho_L(M, N) = \log \inf\{\max\{\operatorname{Lip}(T), \operatorname{Lip}(T^{-1})\}: T: M \to N \text{ is bi-Lipschitz}\}.$

The Lipschitz distance is analytic pseudometric on both \mathcal{M} and \mathcal{B} .

Let *X*, *Y* be standard Borel spaces and let ρ_X , resp. ρ_Y be analytic pseudometrics on *X*, resp. on *Y*.

• • • • • • •

Let *X*, *Y* be standard Borel spaces and let ρ_X , resp. ρ_Y be analytic pseudometrics on *X*, resp. on *Y*. We say that ρ_X is *Borel-uniformly continuous reducible* to ρ_Y , $\rho_X \leq_{B,u} \rho_Y$ in symbols, if there exists a Borel function $f : X \to Y$ such that,

A = A = A

Let *X*, *Y* be standard Borel spaces and let ρ_X , resp. ρ_Y be analytic pseudometrics on *X*, resp. on *Y*. We say that ρ_X is *Borel-uniformly continuous reducible* to ρ_Y , $\rho_X \leq_{B,u} \rho_Y$ in symbols, if there exists a Borel function $f : X \to Y$ such that, for every $\varepsilon > 0$ there are $\delta_X > 0$ and $\delta_Y > 0$ satisfying

$$\forall x, y \in X: \quad \rho_X(x, y) < \delta_X \Rightarrow \rho_Y(f(x), f(y)) < \varepsilon$$

and

$$\forall x, y \in X: \quad \rho_Y(f(x), f(y)) < \delta_Y \Rightarrow \rho_X(x, y) < \varepsilon.$$

A > + = + + =

Let *X*, *Y* be standard Borel spaces and let ρ_X , resp. ρ_Y be analytic pseudometrics on *X*, resp. on *Y*. We say that ρ_X is *Borel-uniformly continuous reducible* to ρ_Y , $\rho_X \leq_{B,u} \rho_Y$ in symbols, if there exists a Borel function $f : X \to Y$ such that, for every $\varepsilon > 0$ there are $\delta_X > 0$ and $\delta_Y > 0$ satisfying

$$\forall x, y \in X: \quad \rho_X(x, y) < \delta_X \Rightarrow \rho_Y(f(x), f(y)) < \varepsilon$$

and

$$\forall x, y \in X: \quad \rho_Y(f(x), f(y)) < \delta_Y \Rightarrow \rho_X(x, y) < \varepsilon.$$

In this case we say that *f* is a *Borel-uniformly continuous reduction*.

A (10) > A (10) > A (10)

Let *X*, *Y* be standard Borel spaces and let ρ_X , resp. ρ_Y be analytic pseudometrics on *X*, resp. on *Y*. We say that ρ_X is *Borel-uniformly continuous reducible* to ρ_Y , $\rho_X \leq_{B,u} \rho_Y$ in symbols, if there exists a Borel function $f : X \to Y$ such that, for every $\varepsilon > 0$ there are $\delta_X > 0$ and $\delta_Y > 0$ satisfying

$$\forall x, y \in X: \quad \rho_X(x, y) < \delta_X \Rightarrow \rho_Y(f(x), f(y)) < \varepsilon$$

and

$$\forall x, y \in X: \quad \rho_Y(f(x), f(y)) < \delta_Y \Rightarrow \rho_X(x, y) < \varepsilon.$$

In this case we say that *f* is a *Borel-uniformly continuous reduction*. If $\rho_X \leq_{B,u} \rho_Y$ and $\rho_Y \leq_{B,u} \rho_X$, we say that ρ_X is *Borel-uniformly continuous bi-reducible* with ρ_Y and write $\rho_X \sim_{B,u} \rho_Y$.

A (10) > A (10) > A (10)

Let *X*, *Y* be standard Borel spaces and let ρ_X , resp. ρ_Y be analytic pseudometrics on *X*, resp. on *Y*. We say that ρ_X is *Borel-uniformly continuous reducible* to ρ_Y , $\rho_X \leq_{B,u} \rho_Y$ in symbols, if there exists a Borel function $f : X \to Y$ such that, for every $\varepsilon > 0$ there are $\delta_X > 0$ and $\delta_Y > 0$ satisfying

$$\forall x, y \in X: \quad \rho_X(x, y) < \delta_X \Rightarrow \rho_Y(f(x), f(y)) < \varepsilon$$

and

$$\forall x, y \in X: \quad \rho_Y(f(x), f(y)) < \delta_Y \Rightarrow \rho_X(x, y) < \varepsilon.$$

In this case we say that *f* is a *Borel-uniformly continuous reduction*. If $\rho_X \leq_{B,u} \rho_Y$ and $\rho_Y \leq_{B,u} \rho_X$, we say that ρ_X is *Borel-uniformly continuous bi-reducible* with ρ_Y and write $\rho_X \sim_{B,u} \rho_Y$.

- note that $\rho_X \leq_{B,u} \rho_Y$ implies the reducibility between the corresponding equivalence relations, i.e. $E_{\rho_X} \leq_B E_{\rho_Y}$.

< ロ > < 同 > < 回 > < 回 >

A > + = + + =

Lemma

Let *M* and *N* be two metric spaces. For every r > 0 we have $\rho_{GH}(M, N) < r$ if and only if there exists a correspondence \mathcal{R} between *M* and *N* such that $\sup |d_M(m, m') - d_N(n, n')| < 2r$, where the supremum is taken over all $m, m' \in M$ and $n, n' \in N$ with $m\mathcal{R}n$ and $m'\mathcal{R}n'$.

Lemma

Let *M* and *N* be two metric spaces. For every r > 0 we have $\rho_{GH}(M, N) < r$ if and only if there exists a correspondence \mathcal{R} between *M* and *N* such that $\sup |d_M(m, m') - d_N(n, n')| < 2r$, where the supremum is taken over all $m, m' \in M$ and $n, n' \in N$ with $m\mathcal{R}n$ and $m'\mathcal{R}n'$.

For two metrics on natural numbers $f,g\in\mathcal{M}$ and $\varepsilon>0,$ we consider the relation

$$f\simeq_arepsilon g \quad \Leftrightarrow \quad \exists \pi\in \mathcal{S}_\infty \, orall \{n,m\}\in \left[\mathbb{N}
ight]^2: \left|f(\pi(n),\pi(m))-g(n,m)
ight|\leq arepsilon.$$

🗇 🕨 🖌 🖻 🕨 🔺 🖻

Lemma

Let *M* and *N* be two metric spaces. For every r > 0 we have $\rho_{GH}(M, N) < r$ if and only if there exists a correspondence \mathcal{R} between *M* and *N* such that $\sup |d_M(m, m') - d_N(n, n')| < 2r$, where the supremum is taken over all $m, m' \in M$ and $n, n' \in N$ with $m\mathcal{R}n$ and $m'\mathcal{R}n'$.

For two metrics on natural numbers $f,g\in\mathcal{M}$ and $\varepsilon>0,$ we consider the relation

$$f\simeq_{arepsilon} g \quad \Leftrightarrow \quad \exists \pi\in \mathcal{S}_{\infty}\, orall \{n,m\}\in \left[\mathbb{N}
ight]^2: \left|f(\pi(n),\pi(m))-g(n,m)
ight|\leq arepsilon.$$

Lemma

Let p > 0 be a real number. For any two metrics on natural numbers $f, g \in \mathcal{M}_p$ we have $\rho_{GH}(f, g) = \inf\{r : f \simeq_{2r} g\}$ provided that $\rho_{GH}(f, g) < p/2$.

Lemma

Let X and Y be separable Banach spaces, let $(e_n)_{n \in \mathbb{N}}$ and $(f_n)_{n \in \mathbb{N}}$ be linearly independent and linearly dense sequences in X and Y, respectively, and put $V = \mathbb{Q} \operatorname{span} \{e_n : n \in \mathbb{N}\}, W = \mathbb{Q} \operatorname{span} \{f_n : n \in \mathbb{N}\}.$

.

Lemma

Let X and Y be separable Banach spaces, let $(e_n)_{n \in \mathbb{N}}$ and $(f_n)_{n \in \mathbb{N}}$ be linearly independent and linearly dense sequences in X and Y, respectively, and put $V = \mathbb{Q} \operatorname{span} \{e_n : n \in \mathbb{N}\}, W = \mathbb{Q} \operatorname{span} \{f_n : n \in \mathbb{N}\}.$ Then $\rho_{BM}(X, Y) < r$ if and only if there exists a surjective linear isomorphism $T : X \to Y$ with $\log ||T|| ||T^{-1}|| < r$ and T(V) = W.

伺 ト く ヨ ト く ヨ

- The following pseudometrics are mutually Borel-uniformly continuous bi-reducible: the **Gromov-Hausdorff distance** when restricted to Polish metric spaces, to metric spaces bounded from above, from below, from both above and below, to Banach spaces; the **Lipschitz distance** when restricted to metric spaces bounded from below and above, and to uniformly discrete metric spaces; the **Banach-Mazur distance**; the **Kadets distance** on Banach spaces; the **Hausdorff-Lipschitz** and **net distances** on Banach spaces.
- The pseudometrics above are Borel-uniformly continuous reducible to the **uniform** and **Lipschitz** distances on Banach spaces.

A > + = + + =

Let ρ be any pseudometric to which the Kadets distance is Borel-uniformly continuous reducible (e.g. the Kadets distance itself, or the Gromov-Hausdorff distance). Then there are elements A from the domain of ρ such that the function $\rho(A, \cdot)$ is not Borel.

A D A D A D A

Let ρ be any pseudometric to which the Kadets distance is Borel-uniformly continuous reducible (e.g. the Kadets distance itself, or the Gromov-Hausdorff distance). Then there are elements A from the domain of ρ such that the function $\rho(A, \cdot)$ is not Borel.

Sketch of the proof:

 $\mathcal{P}(\mathbb{N})$ = all subsets of \mathbb{N} endowed with the coarsest topology for which $\{A \in \mathcal{P}(\mathbb{N}) : n \in A\}$ is clopen for every *n* (a copy of the Cantor space $2^{\mathbb{N}}$).

A > + = + + =

Let ρ be any pseudometric to which the Kadets distance is Borel-uniformly continuous reducible (e.g. the Kadets distance itself, or the Gromov-Hausdorff distance). Then there are elements A from the domain of ρ such that the function $\rho(A, \cdot)$ is not Borel.

Sketch of the proof:

 $\mathcal{P}(\mathbb{N})$ = all subsets of \mathbb{N} endowed with the coarsest topology for which $\{A \in \mathcal{P}(\mathbb{N}) : n \in A\}$ is clopen for every n (a copy of the Cantor space $2^{\mathbb{N}}$). $K(\mathcal{P}(\mathbb{N}))$ = all compact subsets of $\mathcal{P}(\mathbb{N})$ endowed by the Vietoris topology.

A (10) A (10) A (10)

Let ρ be any pseudometric to which the Kadets distance is Borel-uniformly continuous reducible (e.g. the Kadets distance itself, or the Gromov-Hausdorff distance). Then there are elements A from the domain of ρ such that the function $\rho(A, \cdot)$ is not Borel.

Sketch of the proof:

 $\mathcal{P}(\mathbb{N})$ = all subsets of \mathbb{N} endowed with the coarsest topology for which $\{A \in \mathcal{P}(\mathbb{N}) : n \in A\}$ is clopen for every n (a copy of the Cantor space $2^{\mathbb{N}}$). $K(\mathcal{P}(\mathbb{N}))$ = all compact subsets of $\mathcal{P}(\mathbb{N})$ endowed by the Vietoris topology.

Theorem (Hurewicz)

The set

$$\mathfrak{H}=\Big\{\mathcal{A}\in\mathcal{K}(\mathcal{P}(\mathbb{N})):\mathcal{A} ext{ contains an infinite set}\Big\}$$

is not Borel.

Proposition

Let us consider the space

$$X=\left(\bigoplus G_n\right)_{\ell_1},$$

where G_1, G_2, \ldots is a dense sequence of finite-dimensional spaces. Then, for every $\varepsilon > 0$, there exists a Borel mapping $\mathfrak{S} : K(\mathcal{P}(\mathbb{N})) \to \mathcal{B}$ such that (a) if $\mathcal{A} \in K(\mathcal{P}(\mathbb{N}))$ contains an infinite set, then $\rho_{BM}(\mathfrak{S}(\mathcal{A}), X) \leq \varepsilon$, and thus $\rho_K(\mathfrak{S}(\mathcal{A}), X) \leq \varepsilon$, (b) if $\mathcal{A} \in K(\mathcal{P}(\mathbb{N}))$ consists of finite sets only, then $\mathfrak{S}(\mathcal{A})$ contains a normalized 1-separated shrinking basic sequence, and thus $\rho_K(\mathfrak{S}(\mathcal{A}), X) \geq 1/8$.

A (10) A (10) A (10)

Proposition

Let us consider the space

$$X=\left(\bigoplus G_n\right)_{\ell_1},$$

where G_1, G_2, \ldots is a dense sequence of finite-dimensional spaces. Then, for every $\varepsilon > 0$, there exists a Borel mapping $\mathfrak{S} : K(\mathcal{P}(\mathbb{N})) \to \mathcal{B}$ such that (a) if $\mathcal{A} \in K(\mathcal{P}(\mathbb{N}))$ contains an infinite set, then $\rho_{BM}(\mathfrak{S}(\mathcal{A}), X) \leq \varepsilon$, and thus $\rho_K(\mathfrak{S}(\mathcal{A}), X) \leq \varepsilon$, (b) if $\mathcal{A} \in K(\mathcal{P}(\mathbb{N}))$ consists of finite sets only, then $\mathfrak{S}(\mathcal{A})$ contains a normalized 1-separated shrinking basic sequence, and thus $\rho_K(\mathfrak{S}(\mathcal{A}), X) \geq 1/8$.

Sketch of the proof:

Given $\varepsilon > 0$, we put $\theta = e^{-\varepsilon}$ and

$$X_{\mathcal{A}} = T[\mathcal{A}_1, \theta] \oplus_1 X, \quad \mathcal{A} \in K(\mathcal{P}(\mathbb{N})),$$

A (10) > A (10) > A (10)

Proposition

Let us consider the space

$$X=\left(\bigoplus G_n\right)_{\ell_1},$$

where G_1, G_2, \ldots is a dense sequence of finite-dimensional spaces. Then, for every $\varepsilon > 0$, there exists a Borel mapping $\mathfrak{S} : K(\mathcal{P}(\mathbb{N})) \to \mathcal{B}$ such that (a) if $\mathcal{A} \in K(\mathcal{P}(\mathbb{N}))$ contains an infinite set, then $\rho_{BM}(\mathfrak{S}(\mathcal{A}), X) \leq \varepsilon$, and thus $\rho_K(\mathfrak{S}(\mathcal{A}), X) \leq \varepsilon$, (b) if $\mathcal{A} \in K(\mathcal{P}(\mathbb{N}))$ consists of finite sets only, then $\mathfrak{S}(\mathcal{A})$ contains a normalized 1-separated shrinking basic sequence, and thus $\rho_K(\mathfrak{S}(\mathcal{A}), X) \geq 1/8$.

Sketch of the proof:

Given $\varepsilon > 0$, we put $\theta = e^{-\varepsilon}$ and

$$X_{\mathcal{A}} = T[\mathcal{A}_1, \theta] \oplus_1 X, \quad \mathcal{A} \in K(\mathcal{P}(\mathbb{N})),$$

where $A_1 = \{A \cup \{1\} : A \in A\}$. We check that X_A satisfies the requirements (a) and (b) on $\mathfrak{S}(A)$.