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Borel reductions

Definition

Let X , Y be Polish spaces and let E , F equivalence relations on X , Y
respectively.

E is said to be Borel reducible to F , if there is a Borel mapping
f : X → Y such that for every a, b ∈ X we have aEb ⇔ f (a)Ff (b). We denote
it by

E ≤B F .

We say that E and F are Borel bireducible if E ≤B F and F ≤B E . We denote
it by

E ∼B F .

Example (Polish space): M =space of all metrics on N. OnM we consider
a Polish topology inherited from RN×N.

Every f ∈M is then a code for a Polish metric space Mf , which is the
completion of (N, f ).

We refer toM as to the “(standard Borel) space of all infinite Polish metric
spaces”.

Example (equivalence relation): ∼=i is an equivalence relation onM
defined as f ∼=i g iff Mf is isometric with Mg .
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Borel reductions

Standard Borel space: A set X with σ-algebra B such that there is a Polish
topology on X so that B is the σ-algebra of Borel sets in this topology.

Example: If X is a Polish space and B ⊂ X is a Borel set, then the subspace
B with the inherited Borel structure is standard Borel.

More concrete example: V = the vector space over Q of all finitely
supported sequences of rational numbers.
B0 = norms on V . On B0 we consider a Polish topology inherited from RV .
B = norms for which the canonical extension to c00 is still a norm.
B is standard Borel space (Borel subset of B0).

Every ν ∈ B is then a code for an infinite-dimensional Banach space Xν
which is the completion of (V , ν).

We refer to B as to the “(standard Borel) space of all infinite-dimensional
Banach spaces”.

Example (equivalence relation): ∼=L is an equivalence relation on B defined
as ν ∼=L µ iff Xν is linearly isometric with Xµ.
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Borel reductions

Definition

Let X , Y be standard Borel spaces and let E , F equivalence relations on X ,
Y respectively. E is said to be Borel reducible to F , if there is a Borel
mapping f : X → Y such that for every a, b ∈ X we have aEb ⇔ f (a)Ff (b).
We denote it by

E ≤B F .

We say that E and F are Borel bireducible if E ≤B F and F ≤B E . We denote
it by

E ∼B F .

M =space of all infinite Polish metric spaces
B =space of all infinite-dimensional Banach spaces

By the Mazur-Ulam theorem, we have ∼=L ≤B ∼=i .

It is even known (Melleray 2007) that ∼=L ∼B ∼=i .
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Gromov-Hausdorff distance

Gromov-Hausdorff distance:
- for A,B ⊆ M two non-empty subsets of a metric space M, the Hausdorff
distance between A and B is

ρM
H (A,B) := max{sup

a∈A
d(a,B), sup

b∈B
d(A, b)}.

- Gromov-Hausdorff distance between metric spaces M, N is

ρGH(M,N) := inf
ιM :M↪→X
ιN :N↪→X

ρX
H(ιM(M), ιN(N)).

Equivalence relation EGH :

EGH = {(d , e) ∈M : ρGH(Md ,Me) = 0}.

Denote byM1 ⊂M the space of metric spaces with distances bouded by 1.

Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017):
For every d ∈M1, the set {e ∈M1 : ρGH(Md ,Me) = 0} is Borel.

Question 1: Is for every d ∈M1 the function ρGH(Md , ·) Borel onM1?

Question 2: Is EGH |M1 ≤B∼=i?
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Kadets distance

Kadets distance between Banach spaces X , Y is

ρK (X ,Y ) = inf
ιX :X ↪→Z
ιY :Y ↪→Z

ρZ
H(ιX (BX ), ιY (BY )),

where ιX and ιY are linear isometric embeddings into a Banach space.

Equivalence relation EK :

EK = {(µ, ν) ∈ B : ρK (Xµ,Xν) = 0}.

Recent result (Ben Yaacov, Doucha, Nies, Tsankov 2017):
For every µ ∈ B, the set {ν ∈ B : ρK (Xµ,Xν) = 0} is Borel.
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Analytic pseudometrics

Definition

Let X be a standard Borel space. A pseudometric ρ : X × X → [0,∞] on X is
called an analytic pseudometric, if for every r > 0 the set
{(x , y) ∈ X 2 : ρ(x , y) < r} is analytic.

- every analytic equivalence relation is induced by an analytic pseudometric

- ρGH(d , e) := ρGH(Md ,Me) is analytic pseudometric onM

- Banach-Mazur and Kadets distances are analytic pseudometrics on B

- Lipschitz distance between metric spaces M, N is

ρL(M,N) = log inf{max{Lip(T ), Lip(T−1)} : T : M → N is bi-Lipschitz}.

The Lipschitz distance is analytic pseudometric on bothM and B.
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Borel-uniformly continuous reduction

Definition

Let X , Y be standard Borel spaces and let ρX , resp. ρY be analytic
pseudometrics on X , resp. on Y .

We say that ρX is Borel-uniformly
continuous reducible to ρY , ρX ≤B,u ρY in symbols, if there exists a Borel
function f : X → Y such that, for every ε > 0 there are δX > 0 and δY > 0
satisfying

∀x , y ∈ X : ρX (x , y) < δX ⇒ ρY (f (x), f (y)) < ε

and
∀x , y ∈ X : ρY (f (x), f (y)) < δY ⇒ ρX (x , y) < ε.

In this case we say that f is a Borel-uniformly continuous reduction. If
ρX ≤B,u ρY and ρY ≤B,u ρX , we say that ρX is Borel-uniformly continuous
bi-reducible with ρY and write ρX ∼B,u ρY .

- note that ρX ≤B,u ρY implies the reducibility between the corresponding
equivalence relations, i.e. EρX ≤B EρY .
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Reductions concerning GH distance

A correspondence between A and B is a binary relation R ⊆ A× B such that
for every a ∈ A there is b ∈ B such that aRb, and for every b ∈ B there is
a ∈ A such that aRb.

Lemma

Let M and N be two metric spaces. For every r > 0 we have ρGH(M,N) < r if
and only if there exists a correspondence R between M and N such that
sup |dM(m,m′)− dN(n, n′)| < 2r , where the supremum is taken over all
m,m′ ∈ M and n, n′ ∈ N with mRn and m′Rn′.

For two metrics on natural numbers f , g ∈M and ε > 0, we consider the
relation

f 'ε g ⇔ ∃π ∈ S∞ ∀{n,m} ∈ [N]2 : |f (π(n), π(m))− g(n,m)| ≤ ε.

Lemma

Let p > 0 be a real number. For any two metrics on natural numbers
f , g ∈Mp we have ρGH(f , g) = inf{r : f '2r g} provided that ρGH(f , g) < p/2.
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Reductions concerning Lipschitz and Banach-Mazur distances

Lemma

Let X and Y be separable Banach spaces, let (en)n∈N and (fn)n∈N be linearly
independent and linearly dense sequences in X and Y , respectively, and put
V = Q span{en : n ∈ N}, W = Q span{fn : n ∈ N}.

Then ρBM(X ,Y ) < r if and only if there exists a surjective linear isomorphism
T : X → Y with log ‖T‖‖T−1‖ < r and T (V ) = W.
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Reducibility results

Theorem

The following pseudometrics are mutually Borel-uniformly continuous
bi-reducible: the Gromov-Hausdorff distance when restricted to Polish
metric spaces, to metric spaces bounded from above, from below, from
both above and below, to Banach spaces; the Lipschitz distance when
restricted to metric spaces bounded from below and above, and to
uniformly discrete metric spaces; the Banach-Mazur distance; the
Kadets distance on Banach spaces; the Hausdorff-Lipschitz and net
distances on Banach spaces.

The pseudometrics above are Borel-uniformly continuous reducible to
the uniform and Lipschitz distances on Banach spaces.
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Balls are not Borel

Theorem

Let ρ be any pseudometric to which the Kadets distance is Borel-uniformly
continuous reducible (e.g. the Kadets distance itself, or the
Gromov-Hausdorff distance). Then there are elements A from the domain of
ρ such that the function ρ(A, ·) is not Borel.

Sketch of the proof:

P(N) = all subsets of N endowed with the coarsest topology for which
{A ∈ P(N) : n ∈ A} is clopen for every n (a copy of the Cantor space 2N).

K (P(N)) = all compact subsets of P(N) endowed by the Vietoris topology.

Theorem (Hurewicz)

The set
H =

{
A ∈ K (P(N)) : A contains an infinite set

}
is not Borel.
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Proposition

Let us consider the space

X =
(⊕

Gn

)
`1

,

where G1,G2, . . . is a dense sequence of finite-dimensional spaces. Then,
for every ε > 0, there exists a Borel mapping S : K (P(N))→ B such that
(a) if A ∈ K (P(N)) contains an infinite set, then ρBM(S(A),X ) ≤ ε, and thus
ρK (S(A),X ) ≤ ε,
(b) if A ∈ K (P(N)) consists of finite sets only, then S(A) contains a
normalized 1-separated shrinking basic sequence, and thus
ρK (S(A),X ) ≥ 1/8.

Sketch of the proof:

Given ε > 0, we put θ = e−ε and

XA = T [A1, θ]⊕1 X , A ∈ K (P(N)),

where A1 = {A ∪ {1} : A ∈ A}. We check that XA satisfies the requirements
(a) and (b) on S(A).
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Proposition

Let us consider the space

X =
(⊕

Gn

)
`1

,

where G1,G2, . . . is a dense sequence of finite-dimensional spaces. Then,
for every ε > 0, there exists a Borel mapping S : K (P(N))→ B such that
(a) if A ∈ K (P(N)) contains an infinite set, then ρBM(S(A),X ) ≤ ε, and thus
ρK (S(A),X ) ≤ ε,
(b) if A ∈ K (P(N)) consists of finite sets only, then S(A) contains a
normalized 1-separated shrinking basic sequence, and thus
ρK (S(A),X ) ≥ 1/8.

Sketch of the proof:

Given ε > 0, we put θ = e−ε and

XA = T [A1, θ]⊕1 X , A ∈ K (P(N)),

where A1 = {A ∪ {1} : A ∈ A}. We check that XA satisfies the requirements
(a) and (b) on S(A).
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