Unlikely intersections in a family of semi-abelian surfaces.

D. Bertrand (IMJ-PRG)

CIRM, Géométrie diophantienne, Mai 2018
(Joint work with H. Schmidt)

Abstract

[Joint with Harry Schmidt, see ArXiV:1803.04835v1).]
Let E_{0} be an elliptic curve with $C M$, and let G / S be a one-dimensional family of extensions of E_{0} by \mathbb{G}_{m}. Then, G contains a dense set \mathcal{C} of special curves, known as Ribet curves. This set \mathcal{C} contains all the torsion curves of G.

Let W be an irreducible curve in G. With everything over $\overline{\mathbb{Q}}$, we show that W meets \mathcal{C} Zariski densely if and only if it is a translate of a Ribet curve by a multiplicative section, or it lies in a fiber of the family.

The proof involves the Pila-Zannier/Masser-Zannier strategy, a new type of bounded height, and the Mordell-Lang theorem.

See also D.B.-B. Edixhoven (ArXiv:1104.5178v1), and current work of Bas.

Motivation

Pink's conjecture for an irreducible curve $Z / \overline{\mathbb{Q}}$ in a mixed Shimura variety \mathfrak{S} says: let $\mathfrak{S}^{[2]}=$ union of all the special subvarieties of codimension ≥ 2. Assume that $Z \cap \mathfrak{S}^{[2]}$ is infinite. Then, Z is contained in a proper special subvariety \mathfrak{S}^{\prime} of \mathfrak{S}.
Special points are usually easy to describe, higher dim'l ones less so.
Examples with $\operatorname{dim} \mathfrak{S}=2(\Rightarrow Z$ is a special curve) :

- pure $\mathfrak{S}=Y(2) \times Y(2)$ (André);
- mixed $\mathfrak{S}=$ the Legendre family $\mathcal{E} / Y(2)$ (André, Pila).

Examples with $\operatorname{dim} \mathfrak{S}=3$ ($\Rightarrow Z$ is special or lies in a special surface) :

- mixed $\mathfrak{S}=\mathcal{E} \times_{Y_{(2)}} \mathcal{E}$. Two types of special curves (see Gao) :
- torsion curves (dominant over $Y(2)$) : see Masser-Zannier;
- torsion translates of elliptic curves in a CM fiber $E_{0} \times E_{0}$: see Barroero.
- "doubly mixed" $\mathfrak{S}=\mathcal{P}_{0}$, the Poincaré \mathbb{G}_{m}-torsor over $E_{0} \times \hat{E}_{0}$.

Relative Manin-Mumford

A reduction in mixed cases: instead of $Z \subset \mathfrak{S}$, study a section s of a group scheme G / S over a curve $S / \overline{\mathbb{Q}}$, with $s(S)=Z^{\prime} \subset G$.

Theorem

[Masser-Zannier] Let $A=E \times s E$, with E / S non isoconstant and let $s=(p, q) \in A(S)$. The set

$$
S_{s}^{\text {tor }}:=\left\{\lambda \in S(\overline{\mathbb{Q}}), s(\lambda) \in A_{\lambda}^{\text {tor }}\right\}
$$

is infinite if and only if one of the following conditions holds :
a) s is a torsion section;
b) there exists an elliptic subscheme E^{\prime} / S of A / S such that a multiple of s factors through E^{\prime} [and is not a constant section if E^{\prime} / S is isoconstant].
(b) = relative dimension $1^{\prime \prime}$: if s is a section of E^{\prime} / S which is not constant (and not torsion), it meets $E^{\prime t o r}$ densely (but with bounded height).
In relative dimension 2, same for $G / S \in \operatorname{Ext}_{S}\left(E, \mathbb{G}_{a}\right)$ (H. Schmidt), but
for $G / S \in E_{x t s}\left(E_{0}, \mathbb{G}_{m}\right) \simeq \hat{E}_{0}(S) \simeq E_{0}(S)$,

Theorem

[B-Masser-Pillay-Zannier] Let $S / \overline{\mathbb{Q}}, G / S$, parametrized by a non constant $q \in E_{0}(S)$, and let $s \in G(S)$ be a section, with projection $p \in E_{0}(S)$.
Then, the set

$$
S_{s}^{\text {tor }}:=\left\{\lambda \in S(\overline{\mathbb{Q}}), s(\lambda) \in G_{\lambda}^{\text {tor }}\right\}
$$

is infinite if and only if one of the following conditions is satisfied :
a) s is a torsion section, or more generally :
a') s is a Ribet section.
b) a multiple of s factors though $\mathbb{G}_{m / S}$ and is not constant.

At the generic fiber of G, Ribet sections form a group of rank 1. They satisfy $p(\lambda) \in E_{\lambda}^{\text {tor }} \Rightarrow s(\lambda) \in G_{\lambda}^{\text {tor }}$, so their $S_{s}^{\text {tor }}$ is infinite. Their image (Ribet curves) form a set of special curves of \mathcal{P}_{0}, strictly containing the torsion curves.
Ribet points at any fiber G_{λ} are defined in the same way. If $q(\lambda) \notin\left(\hat{E}_{0}\right)^{\text {tor }}$, they form a group of rank 1. Every Ribet point lies on a Ribet curve.

Ribet curves

Let $\mathcal{S}=\operatorname{Pic}^{0}\left(E_{0}\right)=\hat{E}_{0}$ be the moduli space of extensions of E_{0} by \mathbb{G}_{m}, and let $\pi: \mathcal{G} \rightarrow \mathcal{S}$ be the universal semi-abelian scheme over \mathcal{S} : dimension 3 , relative dim. 2.
This \mathcal{G} can also be viewed as the Poincaré biextension \mathcal{P}_{0} of $E_{0} \times \hat{E}_{0}$ by \mathbb{G}_{m}.
Let B be an elliptic curve in $E_{0} \times \hat{E}_{0} \simeq E_{0} \times E_{0}$, so there is an isogeny: $(a, b): E_{0} \rightarrow B$, with $a, b \in \operatorname{End}\left(E_{0}\right)$. Then, the \mathbb{G}_{m}-torsor $\mathcal{P}_{0 \mid B}$, or at least $\left(\mathcal{P}_{0 \mid B}\right)^{\otimes 2}$, is trivial iff $N(a-b)=N(a)+N(b)$, i.e. iff $\alpha:=a / b$ (or $(b / a))$ is purely imaginary. If so, the "isotropic"

$$
B \subset\{(p, q), b p-a q=0\}
$$

has a canonical lift to \mathcal{P}_{0}, which we call a basic Ribet curve of \mathcal{P}_{0}. More generally, any curve C in \mathcal{G} such that $[n]_{\mathcal{G}} . C$ is a basic Ribet curve for some $n \in \mathbb{Z}_{>0}$ is called a Ribet curve (in the sense of \mathcal{G}). So, these include all the (local) torsion curves of \mathcal{G}.
Duality \rightsquigarrow Ribet curves in the sense of $\mathcal{G}^{\prime} \in \operatorname{Ext}_{E_{0}}\left(\hat{E}_{0}, \mathbb{G}_{m}\right)$.

"Relative Mordell-Lang"

Let $G \in \operatorname{Ext}_{S}\left(E_{0}, \mathbb{G}_{m}\right)$ as above, so $G=G_{q}$ for a non constant $q \in E_{0}(S)$.

Theorem

[D.B.-H. Schmidt] Let $s \in G(S)$. Assume that the set

$$
S_{s}^{R i b}=\left\{\lambda \in S(\overline{\mathbb{Q}}), s(\lambda) \text { is a Ribet point of its fiber } G_{\lambda} \cdot\right\}
$$

is infinite. Then, $s=s^{\prime}+s^{\prime \prime}$, where s^{\prime} is a Ribet section, and $s^{\prime \prime}$ factors through \mathbb{G}_{m}. (So s factors trough $\mathbb{G}_{m} \times$ some isotropic B.)

List of special curves of $\mathfrak{S}=\mathcal{P}_{0}$: if Z is special, then :

- if $Z \rightarrow \hat{E}_{0}$ is dominant, Z is a Ribet curves in the sense of \mathcal{G};
- if $Z \rightarrow E_{0}$ is dominant, Z is a Ribet curves in the sense of \mathcal{G}^{\prime};
- if $Z \sim \mathbb{G}_{m}$ projects to a point $\left(p_{0}, q_{0}\right) \in E_{0} \times \hat{E}_{0}$, then $\left(p_{0}, q_{0}\right)$ is torsion and Z is the fibre of \mathcal{P}_{0} above $\left(p_{0}, q_{0}\right)$.
[WiP] : check that the list is complete, and conclude the proof that Pink's conjecture holds [for a curve] over $\overline{\mathbb{Q}}$ in the MSV \mathcal{P}_{0}.

Sketch of proof

As a first case, assume that p and q are linearly independent over $\operatorname{End}\left(E_{0}\right)$, modulo constants. Then,
$-\lambda \in S_{s}^{R i b} \Rightarrow$ bounded height, since $b_{\lambda} p(\lambda)-a_{\lambda} q(\lambda)=0$.

- height of relations controled by degrees (Masser-type estimate for $\left.n s(\lambda)=m s_{R}(\lambda)\right)$
- o-minimal count on an incidence variety (Habegger-Pila) ;
- logarithmic $A x \rightsquigarrow$ no algebraic subset under the "non-weakly" assumption. NB : the Betti coordinates of a Ribet section s_{R} generate the same field as the torsion sections.

2nd case: same argument if $p=r q+p_{0}$ with $r \in \mathbb{Z}$, reducing finally to
3rd case : $p=p_{0}$. Using duality, transfer the problem into a special case of Mordell-Lang for the semi-abelian variety $G_{p_{0}}^{\prime} \in \operatorname{Ext}\left(\hat{E}_{0}, \mathbb{G}_{m}\right)$, and the rank 1 subgroup of $G_{p_{0}}^{\prime}(\overline{\mathbb{Q}})$ formed by its Ribet points.

