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Illustrating context-dependent clustering
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Context clusters
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Summary

• Global clusters with context coordinates, i.e. model parameters
are based on the context and not the global cluster

• Information sharing between the different contexts
(coordinates) via the global clusters: patients in the same
global cluster are in the same context cluster for each context
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Graphical illustration
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Description

• Global clusters, and clusters for each data type (’context’)
• Integrates several data sets, e.g. several cancer types or

subtypes
• Prior selection of genes, miRNAs expression levels ...

associated with a particular outcome, e.g. survival (Cox’s
model)

• Known outcome only used for this prior feature selection, not
for the clustering (prediction)

• Bayesian model
• Hierarchical structure using tensor products of finite Dirichlet

priors

MRC   |   Medical Research Council



Bayesian methods

• Parameters as stochastic quantities with a probability
distribution −→ posterior distribution

• There may be prior information concerning the parameter −→
prior distribution

• Bayes’ theorem: P(A | B) = P(A∩B)
P(B)

• That is if H(θ) is the prior distribution of a parameter θ, and
p(x | θ) is the distribution of the data, then for the posterior
distribution q(θ | x): q(θ | x) = p(x |θ)H(θ)∫

p(x |θ)dθ

• Sample from the posterior distributions of the parameters
using, e.g, MCMC or importance sampling methods

• Suited to the modelling of complicated hierarchical structures
• Methods to obtain summary clustering as well
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Modelling a single context: Mixture models

Mixture models
We model each context using a mixture model:

p(x) =
K∑

j=1

πjF (x |θj). (1)

• K is the number of mixture components
• πj are the mixture proportions
• F is a parametric density (such as a Gaussian)
• θj are the parameters associated with the j-th component
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Mixture models: quick illustration

We model as a mixture of 3 Gaussians:

p(x) = π1f (x|µ1,Σ1) + π2f (x|µ2,Σ2) + π3f (x|µ3,Σ3)
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Mixture models: quick illustration

We model as a mixture of 3 Gaussians:

p(x) = π1f (x|µ1,Σ1) + π2f (x|µ2,Σ2) + π3f (x|µ3,Σ3)

Figure by P. Kirk
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Bayesian mixture models

π | α ∼ Dirichlet
(α

K
, . . . ,

α

K

)
kn | π ∼ π, n = 1, . . . ,N
θ | H ∼ H

xn ∼ F (· | θ))

• Observed data x1, . . . , xn

• π = (π1, . . . , πK ) is the collection of K mixture proportions
• α is a concentration parameter
• H is the prior for the component parameters
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Prior and posterior distribution of mixture weights

Prior distribution: Dirichlet
(
α
K , . . . ,

α
K

)
Posterior distribution: Dirichlet

(
α
K + n1, . . . ,

α
K + nK

)
nj number of samples in cluster j
Dirichlet (α1, . . . , αK ) (π) ∝

∏K
j=1 π

αj−1
j

Plot by Thomas Boggs. https://gist.github.com/tboggs
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Context-dependent clustering model

ρ | γ ∼ Dirichlet
( γ

S
, . . . ,

γ

S

)
global clusters

π(c) | α(c) ∼ Dirichlet
(
α(c)

K (c) , . . . ,
α(c)

K (c)

)
context clusters

sn | ρ ∼ ρ, n = 1, . . . ,N global clusters

k (c)(s) | π(c) ∼ π(c), s = 1, . . . ,S context clusters

θ(c)(k (c)) | H(c) ∼ H(c), k (c) = 1, . . . ,K (c)

x (c)
n ∼ F (c)(· | θ(c)(k (c)(sn)))

Context likelihoods weighted by inverse of context dimensions
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Graphical model description
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Hierarchical model

For integration of different data types, and to improve sampling
properties and avoid collapse to very few context clusters
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Hierarchical model
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Mathematical model description

ρ(m) | η(m) ∼ Dirichlet
(
η(m)

Tm
, . . . ,

η(m)

Tm

)
ρ | γ ∼ Dirichlet

( γ
S
, . . . ,

γ

S

)
π(c) | α(c) ∼ Dirichlet

(
α(c)

K (c) , . . . ,
α(c)

K (c)

)
t (mn)
n | ρ(m) ∼ ρ(m), n = 1, . . . ,N

s(m)(t (m)) | ρ ∼ ρ, t (m) = 1, . . . ,Tm

k (c)(s) | π(c) ∼ π(c), s = 1, . . . ,S

θ(c)(k (c)) | H(c) ∼ H(c), k (c) = 1, . . . ,K (c)

x (c)
n ∼ F (c)(· | θ(c)(k (c)(s(mn)(t (mn)

n ))))
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Graphical model representation
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Difference to non-hierarchical model

• Integrates several data sets/cancer types
• For just one data set, we use a larger number of possibly empty

global clusters and allocate them to context clusters at each
iteration

• The number of group clusters is smaller
• The larger number of global clusters explores all possible

combinations of context clusters more accurately
• The smaller number of group clusters leads to information

sharing across the contexts
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Hierarchical model: across-clustering

Cluster several data sets hierarchically in terms of the distances
from their respective means
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GBM data (1)

TCGA data, gene expression, DNA methylation, miRNA expression data,
also analysed as part of the CancerSubtypes bioconductor package (Xu,
T. et al. (2017). Bioinformatics). 276 patients
hyper-parameters: η, γ, α = 100,K = 4,S = 43,Sm = 20
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GBM data (2)
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Strength of association with the survival outcome differs for the different
contexts.
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GBM data (3)

0 20 40 60 80 100 120

0.
0

0.
4

0.
8

p−value = 2.4e−04

Survival time (Months)

S
ur

vi
va

l p
ro

ba
bi

lit
y

miRNA

MRC   |   Medical Research Council



Comparison to clustering only one context on its
own

Fitting using finite mixture model with optimised number of
clusters (2 to 9), mclust R package
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Adjusted Rand index to proposed method: 0.93
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miRNA
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Adjusted Rand index to proposed method: 0.08
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Several types

Global clusters
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3 cancer types, 2 contexts (RNA expr, RPPA). Cervical Squamous Cell
Carcinoma and Endocervical Adenocarcinoma(CESC, 162 patients),
Pancreatic Adenocarcinoma(PAAD, 114 patients), Uterine
Carcinosarcoma(UCS, 46 patients); primary solid tumours; data from
TCGA.
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Several types: context clusters

RPPA
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Discussion and future work

• Posterior distribution of cluster allocations tends to be
multimodal −→ multiple runs, more effective sampling
strategies

• Testing methods of selecting covariates relevant to outcome for
different outcomes (sparse variable selection, deep learning)

• More systematic testing of sensitivity of context cluster
structures to maximum number of global clusters

• Systematic testing of relevance of context to outcome for
different contexts

• Integration of imaging data would be interesting
• Interested in Bayesian statistics, clustering, sparse regression?

Talk to me
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