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Outline

� The problem and its modelling by selection-mutation models

� MTD strategy versus "optimal" strategy

� Robustness in the presence of genetic instability
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The chemotherapy and its drawbacks

Two main types of chemotherapies

∗ cytotoxic agents which kill cancer cells,

∗ cytostatic agents which slow their proliferation down.

Two main drawbacks

∗ resistance to drugs,

∗ toxicity to the healthy tissue.
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Aims of the mathematical modelling

Modelling must reproduce the clinical observations which show that maximal doses

∗ cannot be given for too long

∗ will in the end lead to tumour regrowth because of acquired resistance.

It must also allow for the design of alternative strategies, cf the emerging therapeutical
paradigm

Figure: Change of strategy in the war against cancer.
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Modelling resistance to treatment

What determines the level of resistance to a given drug? It correlates to

∗ the level of expression of some stem-cell like markers,

∗ the concentration of transporters eliminating the drug,

∗ the level of DNA methylation,

... all continuous variables, making a continuous representation of resistance relevant.

Abstract version:
phenotype variable x ∈ [0, 1] from sensitiveness (x = 0) to resistance (x = 1).

Advantages and disadvantages:

∗ might be a more faithful representation of resistance,

∗ models much more difficult to parametrise.
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From ODEs to IDEs

Let us start from the logistic model

dN

dt
= [r − dN]N

∗ r : intrinsic reaction rate

∗ d N: logistic death rate

Generalisation: depending on some (resistance) phenotype, r and d might vary.

x : continuous variable
r → r(x)
d → d(x)
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Typical integrodifferential logistic model

Prototype model, where n(t, x) is the density of individuals of phenotype x ∈ [0, 1]:

∂n

∂t
(t, x) =

(
r(x)− d(x)ρ(t)

)
n(t, x)

with

ρ(t) :=

∫ 1

0
n(t, x) dx .
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Typical integrodifferential logistic model

Prototype model, where n(t, x) is the density of individuals of phenotype x ∈ [0, 1]:

∂n

∂t
(t, x) =

(
r(x)− d(x)ρ(t)

)
n(t, x)

with

ρ(t) :=

∫ 1

0
n(t, x) dx .

Asymptotic analysis

� of the total number of individuals ρ(t)?

� of the phenotypes in the population (i.e., of n(t, ·) inM1(0, 1))?
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Motivation: selection of the fittest phenotypes

Interest in the field of adaptive dynamics.

∂n

∂t
(t, x) = (r(x)− d(x)ρ(t)) n(t, x),

ρ(t) =

∫ 1

0
n(t, x) dx .
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Figure: Evolution of ρ(t) from t = 0 to t = 400, with r(x) = 1
2 (5− 3(1− x)2), d(x) = 1 + 2x.
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Motivation: selection of the fittest phenotypes

Interest in the field of adaptive dynamics.

∂n

∂t
(t, x) = (r(x)− d(x)ρ(t)) n(t, x),

ρ(t) =

∫ 1

0
n(t, x) dx .

Figure: Evolution of n(t, ·) from t = 0 to t = 2000, with r(x) = 1
2 (5− 3(1− x)2),

d(x) = 1 + 2x.
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The convergence and concentration theorem

∂n

∂t
(t, x) = (r(x)− d(x)ρ(t)) n(t, x),

ρ(t) =

∫ 1

0
n(t, x) dx .

Theorem (Perthame ’07)

ρ converges to ρ∞ = max
(
r
d

)
. Furthermore, n(t, ·) concentrates on argmax

(
r
d

)
. In

particular, if this set is reduced to a singleton x∞,

n(t, ·) ⇀ ρ∞δx∞ inM1(0, 1).
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The model [Lorz et al. ’13]

∂

∂t
nH(t, x) = [rH(x)− dH(x)ρH(t)] nH(t, x),

∂

∂t
nC (t, x) = [rC (x)− dC (x)ρC (t)] nC (t, x).

x ∈ [0, 1] from 0 (sensitiveness) to 1 (resistance)

nH(t, x): density of healthy cells, of phenotype x .

nC (t, x): density of cancer cells, of phenotype x .

10 / 23



The model [Lorz et al. ’13]

∂

∂t
nH(t, x) =

[
rH(x)− dH(x) (aHHρH(t) + aHCρC (t))︸ ︷︷ ︸

=:IH (t)

]
nH(t, x),

∂

∂t
nC (t, x) =

[
rC (x)− dC (x) (aCCρC (t) + aCHρH(t))︸ ︷︷ ︸

=:IC (t)

]
nC (t, x).

∗ interspecific competition (lower that the intraspecific one), with

IH = aHHρH + aHCρC , aHC < aHH

IC = aCCρC + aCHρH , aCH < aCC
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The model [Lorz et al. ’13]

∂

∂t
nH(t, x) = [rH(x)− dH(x)IH(t)− u1(t)µH(x)] nH(t, x),

∂

∂t
nC (t, x) = [rC (x)− dC (x)IC (t)− u1(t)µC (x)] nC (t, x).

∗ interspecific competition (lower that the intraspecific one), with

IH = aHHρH + aHCρC , aHC < aHH

IC = aCCρC + aCHρH , aCH < aCC

∗ cytotoxic agents u1
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The model [Lorz et al. ’13]

∂

∂t
nH(t, x) =

[
rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(t, x),

∂

∂t
nC (t, x) =

[
rC (x)

1 + αCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (t, x).

∗ interspecific competition (lower that the intraspecific one), with

IH = aHHρH + aHCρC , aHC < aHH

IC = aCCρC + aCHρH , aCH < aCC

∗ cytotoxic agents u1

∗ cytostatic agents u2
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Asymptotic behaviour for constant controls

Theorem (Clairambault, Lorz, Pouchol, Trélat, JMPA ’18)

Let u1, u2 ∈ BV (0,+∞), ū1, ū2 their limits as t → +∞.
Then
• ρH(t), ρC (t) converge to ρ∞H , ρ∞C ,
• nH(t, ·), nC (t, ·) concentrate on AH , AC .
If AH = {x∞

H }, AC = {x∞
C }, then

nH(t, ·) ⇀ ρ∞H δx∞H , nC (t, ·) ⇀ ρ∞C δx∞C .

Here (ρ∞H , ρ∞C ) solves the system

aHHρ
∞
H + aHCρ

∞
C = I∞H ,

aCHρ
∞
H + aCCρ

∞
C = I∞C ,

(1)

where for i = H,C , I∞i ≥ 0, is the smallest real such that

ri (x)

1 + αi ū2
− ū1µi (x)− di (x)I∞i ≤ 0. (2)

The sets AH , AC are defined for i = H,C by

Ai :=

{
x ∈ [0, 1],

ri (x)

1 + αi ū2
− ū1µi (x)− di (x)I∞i ≤ 0

}
.
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Strategy with high constant doses
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Figure: Simulation with u1 ≡ 2, u2 ≡ 2.
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Optimal control problem (OCP1)

Let T > 0. We define (OCP1)

inf
(u1,u2)

(1− λ0)ρC (T ) + λ0

∫ T

0
ρC (s) ds

among controls (u1, u2) ∈ BV (0,T )2 such that

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2 ,

ρH(t)

ρH(t) + ρC (t)
≥ θHC ,

ρH(t) ≥ θH ρH(0).
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Numerical simulation of (OCP1)
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Figure: Simulation of the optimal solution for λ0 = 0. Done with AMPL + IpOpt.
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Numerical simulation of (OCP1)
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Theoretical analysis

(Quasi-)optimal strategy in a reduced control set BT , for T large, λ0 = 0:

Theorem (Clairambault, Lorz, Pouchol, Trélat, JMPA ’18)

As T tends to +∞, the optimal solution to (OCP1) in BT is such that

� at the end of the first phase, the cancer cell density has concentrated on a sensitive
phenotype,

� the optimal trajectory is the concatenation of the three following arcs
• a boundary arc with saturation of the quotient ρH

ρH+ρC
.

• a free arc with u1 = umax
1 and u2 = umax

2 ,
• a boundary arc on the constraint for the healthy cells, and u2 = umax

2 .
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Numerical approach for a generalised model

We consider

∂nH
∂t
− βH∆nH =

[
rH(x)

1 + αHu2
− dH(x)IH − u1µH(x)

]
nH

∂nC
∂t
− βC∆nC =

[
rC (x)

1 + αCu2
− dC (x)IC − u1µC (x)

]
nC

with Neumann boundary conditions in 0 and 1.

Expected results: same structure of the optimal controls, if mutation rates are small
enough.

Difficulties: out of reach theoretically, very costly numerically.
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Direct methods and continuations

(OCP1)

P1P0
λ = 0 to λ = 1
Nt, Nx, T

Figure: Direct methods and continuations: previous method.

(Pλ) is a family of optimisation problems linking an easy-to-solve problem P0 and the
hard one P1 that we want to solve.

Algorithm:

1: Solve P0, and set λ = 0

2: while λ ≤ 1,
λ← λ+ dλ.
Solve Pλ+dλ with the solution of Pλ as initial guess.
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From (OCP1) to (OCP0)

∂nH
∂t
− βH∆nH =

[
rH(x)

1 + αHu2
− dH(x) (aHHρH + aHCρC )− u1µH(x)

]
nH

∂nC
∂t
− βC∆nC =

[
rC (x)

1 + αCu2
− dC (x) (aCCρC + aCHρH)− u1µC (x)

]
nC

inf
(u1,u2)

(1− λ0)ρC (T ) + λ0

∫ T

0
ρC (s) ds

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2 ,

ρH(t)

ρH(t) + ρC (t)
≥ θHC ,

ρH(t) ≥ θH ρH(0).

Idea: simplify the problem by setting aCH = θH = θHC = βH = βC = 0, λ0 = 0.
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The problem (OCP0)

∂nC
∂t

=

(
rC (x)

1 + αCu2
− aCCdC (x)ρC − µC (x)u1

)
nC ,

inf
(u1,u2)

ρC (T )

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2 .

Proposition (Olivier, Pouchol, submitted)

Let (nC (·), u(·)) be an optimal solution for (OCP0). There exist t1 ∈ [0,T ) and
t2 ∈ [0,T ) such that

u1(t) = umax
1 1[t1,T ], u2(t) = umax

2 1[t2,T ].

Proof: Pontryagin Maximum Principle in infinite dimension, here in L2(0, 1).

Consequence: (OCP0) is reduced to a problem from R2 onto R with variables (t1, t2),
leads to an easily solvable problem P0, even for high discretisation parameters Nt , Nx .
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Summary of the method

(OCP1)

P1P0
λ = 0 to λ = 1
Nt, Nx, T

Figure: Direct methods and continuations: previous method.
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Summary of the method

(OCP0) (OCP1)
λ = 0 to λ = 1
aCH , θHC , θH , . . .

P1P0
λ = 0 to λ = 1
aCH , θHC , θH , . . .

Figure: Direct methods and continuations: new1method [Olivier, Pouchol, submitted].

1cf. the approach with indirect methods in [Cerf-Hakerborn-Trélat ’12].
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Optimal strategy for (OCP1): conclusions

Simulations suggest that, for large T , there are two main phases:

∗ A first long phase without cytotoxic drugs and intermediate constant doses of
cytostatic drugs, at the end of which cancer cells have concentrated on a sensitive
phenotype.

∗ A second short phase with the maximal doses, up until the constraint on ρH
decreases, and then boundary controls to saturate the constraint while ρC still
decreases.

Very different from the MTD strategy, but also from alternative strategies such as

� metronomic chemotherapy [Scharovsky et al. ’09]: infusion of low doses,

� adaptive chemotherapy [Gatenby et al. ’09]: decreasing (feedback) doses...

and reminiscent of drug holiday+rechallenge strategies.
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