Parameter identification of a model for prostate cancer treated by intermittent therapy

Clément Draghi Biomedical Engineer

Fabrice Denis oncologist

Alain Tolédano oncologist

& Christophe Letellier

Evolution of prostate cancer: Tumor, Node, Metastasis Classification

Gleason grading and prognostic factors in carcinoma of the prostate

Peter A Humphrey

Prognosis factor for survival

Age at diagnosis (year)

 \succ The doubling duration τ_{PSA} of PSA level is also a prognosis factor

Biology of cancer in 2 min...

Chemical castration

✓ Evolution of prostate cancer

$\checkmark \text{ A model for prostate cancer}$ $\begin{cases} \dot{p} = \rho_p \ p(1-p) - \alpha_{pa} \ (1-a)p - \delta_{pB} \ p \ B(t) \\ \dot{a} = \rho_a a(1-a) - \delta_{aL} \ a \ L(t) \\ \dot{t}_d = \rho_d t_d - \left[\delta_{da}(a) + \delta_{dB} \ B(t)\right] \ t_d^2 - \alpha_{dp} \ t_d \ p - \epsilon(1-a) \ t_d \ \text{Hormone-dependent} \\ \dot{t}_i = \rho_i \ t_i - \alpha_{ip} \ t_i \ p + \epsilon(1-a)t_d \quad \text{Mutation} \end{aligned}$

Reduce the level of androgens

Anti-androgen drug

Prevent the effects of androgens

✓ Parameter identification performed using a genetic algorithm

✓ **Recovery rate** ρ_p of patient's **global status**

✓ **Decrease rate** α_{dp} in the **PSA level** due to the **environment**

The strength of barriers against tumor progression decreases with the age

Correlated to the increase in cancer incidence with the age

75 years old

Gleason score = 6

Model parameter values

	ρ_p	α_{pa}	$ ho_a$	$ ho_{ m d}$	$\delta_{\mathrm{d}a}$	$\alpha_{\mathrm{d}p}$	$ ho_{\mathrm{i}}$	α_{ip}	ϵ	
Patient P ₂ (75 years, $G = 6$): $\delta_{aL} = 300$, Er = 15%										
1	89	81	159	64	275	59	0	0	0	
2	75	60	185	71	255	66	0	0	0	
3	76	52	196	89	293	84	0	0	0	
4	72	59	130	62	222	58	0	0	0	
5	53	36	199	80	234	76	0	0	0	

Aggressive cancer strongly dependent on androgens

Balanced by a

Strong environment

No hormone-hypersensitive tumor cells

✓ Another easy case

S

S

S,

Off

11 E

10 E

9

8

6

5

3 2

 O_n^0

0

PSA level $\rho_{PSA}~(ng/ml)$

75 years old Gleason score = 6Alcohol disorders & arterial hypertension Leuroprelin $\tau_{\rm PSA} = 8.8$ months ահահահահահահահ **LHRH** analogs Measured

7

8

6

5

Time (year)

Model parameter values \succ

2

	ρ_p	α_{pa}	ρ_a	$ ho_{ m d}$	$\delta_{\mathrm{d}a}$	$\alpha_{\mathrm{d}p}$	$ ho_{\mathrm{i}}$	α_{ip}	ϵ
	Ра	atient P ₃	(61 y	ears,	G = 6):	δ_{aL} =	= 300,	Er=	11%
1	6	46	89	9	132	85	0	0	0
2	8	46	93	10	148	97	0	0	0
3	12	59	96	10	173	96	0	0	0
4	9	49	89	10	171	94	0	0	0
5	6	37	81	10	168	72	0	0	0

3

- Weak cancer \succ
- Weak environment

(Small ρ_d and ρ_a)

No hormone-hypersensitive tumor cells

77 years old \checkmark An evolutive case Gleason score = 6 $11_{\text{Ensuremannehamiltum}}$ No particular medical history 10 E Leuroprelin $\tau_{\rm PSA} = 11.5$ month 9E S **LHRH** analogs 8 PSA level ρ_{PSA} (ng/ml) $\tau_{PSA} = 2.8 \text{ month}$ 7 6 euprolide Acetate for Iniec 5 Measured 4 3 2 o_n^0 Off 8 10 7 9 11 0 2 3 4 5 6 Time (year)

Model parameter values

	ρ_p	α_{pa}	$ ho_a$	$ ho_{ m d}$	$\delta_{\mathrm{d}a}$	$\alpha_{\mathrm{d}p}$	$ ho_{ m i}$	$\alpha_{\mathbf{i}p}$	ϵ
Patient P ₇ (77 years, $G = 6$): $\delta_{aL} = 300$, Er = 18%									
1	45	90	115	24	170	16	15	47	0.160
2	52	90	103	23	153	15	15	8	0.154
3	19	39	86	23	176	15	15	2	0.145
4	27	78	142	22	169	14	14	38	0.140
5	27	43	91	23	169	15	13	18	0.104

- "Normal" cancer
- Slightly weak environment

Hormone evasion initiated

Recommended intermittent treatment

1 injection per 14 month

> Optimal intermittent treatment

1 injection per year

LHRH analogs are efficient!

Treatment duration (month)

Conclusion

Clinically

Gleason score and doubling duration are prognosis factors

- ✓ For metastasis free survival
- \checkmark For survival
- But do not allow to optimize treatment

Biologically motivated mathematical models for better understanding the dynamics underlying tumor growth

- Numerical simulations could allow to optimize intermittent treatment
- > Individualized modelling could become a **predictive factor**

Weekly self-reported symptoms

> Phase III (randomized) clinical trial: survival curve

More than 20% at 18 month

Cancer relapses are treated earlier (5 weeks), leading to a more efficient treatment and a better quality of life (less stress, less pain, ...)

How can cancer risk depend on normal cells?

The probability to detect a tumor depends on the growth rate of host cells, that is, on how competitive are the normal cells

CHAOS 27, 093101 (2017)

How the growth rate of host cells affects cancer risk in a deterministic way

Clément Draghi,¹ Louise Viger,¹ Fabrice Denis,^{1,2} and Christophe Letellier¹

of cell divisions during life **Corollary**: The longer the life, the larger the cancer risk True but... In the United-Kingdom Evolution of life expectancy (all types of cancer included) Australia 90 Iceland Average number of deaths per year O Japan N_{woman} Olshansky et al N_{man} hs ho_{woman} ρ_{man} The Netherlands Life expectancy (year) A New Zealand non-Maor 20,000 Norway 40 years Sweden ourgeois-Pichat, UN 80 Switzerland * 3 months per yar eois-Pichat 16,000 75 Dublin 70 Dublin & Lotk 12,000 CANCER RESEARCH 65 Dubli 8,000 60 55

Cancer incidence versus age

Hypothesis: the probability to present tumor cells depends on the number

POLICY FORUM: DEMOGRAPHY Broken Limits to 4.000 50 Life Expectancy 40 years 340 Jim Oeppen and Jar 15 to 20 to 25 to 30 to 35 to 40 to 45 to 50 to 55 to 60 to 65 to 70 to 75 to 1860 1880 1900 1920 24 29 34 39 4.4 4.9 5.4 50 64 69 74 19 year Age at death

> The probability does not increase linearly with age...

Biology of cancer in 2 min...

Strongly competitive host tissue

Weakly competitive host tissue

BUT...