Using perturbation data for ensemble modeling to infer vulnerabilities in colon cancer cells

Mihály Koltai

Institut Curie - INSERM U900 / Mines ParisTech

PSL Research University

Marseille, CIRM

Mathematical Perspectives in the Biology and Therapeutics of Cancer 12/07/2018

Drug resistance in colon cancer

Project description:

"Current treatment involves chemotherapy combined with anti-EGFR [...] drugs and radiotherapy. First-line combinations of chemotherapy and EGFRinhibitors for patients being RAS wild-type have led to an increase in overall survival to more than 30 months.

However, most patients develop **RAS mutations** under anti-EGFR therapy, or do not respond to EGFRi for unknown reasons. The majority of patients develop resistance and succumb to the disease."

Combinatorial drug effects in colon cancer cells

A Synergistic Interaction between Chk1- and MK2 Cell Inhibitors in KRAS-Mutant Cancer

Dietlein et al., 2015, Cell *162*, 146–159 July 2, 2015 ©2015 Elsevier Inc. http://dx.doi.org/10.1016/j.cell.2015.05.053

- KRAS mutants: high DNA damage
- intact DNA repair mechanism: cell cycle arrest → resumed proliferation
- parallel blocking of MK2 (MAPK) and CHK1 (DNA repair) leads to mitotic catastrophe
- single inhibition of MK2 or CHK1 does *not* lead to killing

Combinatorial drug effects in colon cancer cells

A Synergistic Interaction between Chk1- and MK2 Cell Inhibitors in KRAS-Mutant Cancer

Dietlein et al., 2015, Cell *162*, 146–159 July 2, 2015 ©2015 Elsevier Inc. http://dx.doi.org/10.1016/j.cell.2015.05.053

- KRAS mutants: high DNA damage
- intact DNA repair mechanism: cell cycle arrest → resumed proliferation
- parallel blocking of MK2 (MAPK) and CHK1 (DNA repair) leads to mitotic catastrophe
- single inhibition of MK2 or CHK1 does not lead to killing

Use modeling to mechanistically explain combinatorial effect in KRAS/BRAF mutants & find further vulnerabilities

Institute of Pathology

Prof. Christine Sers Dr Markus Morkel Natalie Bubitz

Perturbations of DNA damage-related cell cycle arrest proteins (MK2, CHEK1) in different concentrations – **readout**:

Growth

	summary all	PF477736					
S	5W620 KRAS G12V	Chk1i 0µM	Chk1i 0,1µM	Chk1i 0,25µM	Chk1i 0,5µM	Chk1i 1µM	Chk1i 2,5µM
PF3644022	Mk2i 0µM	1.00	1.10	1.05	0.97	0.62	0.29
	Mk2i 0,5µM	1.01	0.98	0.98	0.86	0.52	0.24
	Mk2i 1µM	0.85	0.76	0.76	0.70	0.45	0.22
	Mk2i 2,5µM	0.76	0.78	0.73	0.58	0.34	0.21

Growth rate of cell line SW620 under different [Chk1i] and [MK2i]

Perturbations of DNA damage-related cell cycle arrest proteins (MK2, CHEK1) in different concentrations – **readout**:

Growth

Perturbations of DNA damage-related cell cycle arrest proteins (MK2, CHEK1) in different concentrations – **readout**:

Phosphoprotein concentrations by WES[™] (capillary immunoassay / quantifiable 'Western')

Perturbations of DNA damage-related cell cycle arrest proteins (MK2, CHEK1) in different concentrations – **readout**:

Phosphoprotein concentrations by WES[™] (capillary immunoassay / quantifiable 'Western')

Data from literature

- Western blots on activation state of key components
- 'wild type' cell lines: no DNA damage, no effect of MK2i/CHK1i
- cell lines with DNA damage, but no KRAS/BRAF mutation (HT1703)
- BRAF, CDKN2A, KRAS mutant cell lines: killing only by MK2i & CHK1i

Combinatorial drug effects in colon cancer cells

- 3 markers of *mitotic catastrophe* = γH2AX (DNA damage) + CC3 (cleaved caspase, apoptotic cell death) + pHH3 (histone, mitosis)
- Triple positivity indicates cell death in mitosis

Combinatorial drug effects in colon cancer cells

- 3 markers of *mitotic catastrophe* = γH2AX (DNA damage) + CC3 (cleaved caspase, apoptotic cell death) + pHH3 (histone, mitosis)
- Triple positivity indicates cell death in mitosis
- Growth experiments showing synergistic effect

Western Blots + conditions (mutations, inhibitors) as binary constraints:

Generate biologically justified topologies

(intermediate nodes omitted, CHK1 is not a direct repair protein etc.)

Generate biologically justified topologies

variable edges

'Variable' edges *supported* by
literature / database:
MK2, CHEK1 activated by
DNA damage
MK2, CHEK1 implicated in

DNA repair

- MK2 negative feedback loop to upstream MAPK elements

stochastic, continuous time implementation of logical model

- stochastic, continuous time implementation of logical model
- one node selected for updating: one simulation is a sample trajectory

- stochastic, continuous time implementation of logical model
- one node selected for updating: one simulation is a sample trajectory
- fraction of given states across *many* sample trajectories

- stochastic, continuous time implementation of logical model
- one node selected for updating: one simulation is a sample trajectory
- fraction of given states across *many* sample trajectories

Best topologies

MSE=0.106, model #12

0.6

0.3

0.5

0.5

0.5

0.3

0.5

0.6

0.5

0.6

dna dam

chek1

mk2

cdc25b

cell death

0.6

0.3

MSE=0.106, model #48

Discrepancy: unexpected killing for MK2i

Ensemble modeling: model expansion

Ensemble modeling: model expansion

Adding DNA repair module (CHEK1 and MK2 not directly implicated in DNA repair)

Ensemble modeling: model expansion

Adding DNA repair module (CHEK1 and MK2 not directly implicated in DNA repair)

Direction of causality: CHEK1/MK2 \leftarrow ? \rightarrow DNA

[Dietlein 2015]

Ensemble modeling (new edges)

0.00 0.25 0.50 0.75 1.00

MSE=0.108, model #19											
0	0	0	0	0	0.1	0	0.1	0.1	0	0	0.1
0	0	0	0	0.8	0	0.8	0	0.8	0	0.8	0
0	0	0	0	0	0	0	0	0.8	0.8	0	0
1	1	1	1	0.9	1	0.9	1	0.9	0.9	0.9	1
0	0	0	0	0.3	0.8	0.3	0.8	0.2	0.3	0.3	0.8

Cell death pattern correct, but dependence of DNA damage-repair on MK2-CHEK1 perturbations not explained by model

Allowing for CHK1/MK2 \rightarrow DNA repair causality can explain DNA damage pattern as a function of perturbations

Perspective: CRISPRi screen

High throughput gene-inactivation method, superior to sh/siRNA

CS(CPISPR score) - average		[final sgRNA abundance]		
CS(CMSFR Score) – uveruge	\log_2	initial sgRNA abundance		

Perspective: generating hypotheses for CRISPRi

- from model to CRISPRi: target genes
- from CRISPRi to model: CHEK1i-sensitizing deletions help model (resistance mechanism) identification

Perspective: generating hypotheses for CRISPRi

Perspective: generating hypotheses for CRISPRi

Conclusions

- Quantitative phosphoproteomics + growth data from perturbation experiments are powerful data sources
- Ensemble modeling of small, well-constrained models ideal to distinguish between mechanisms of drug resistance
- Results of ensemble modeling can be used to propose targets of perturbation experiments
- Small, transparent models still have their merits if our aim is mechanistic understanding, not only reproduction

Acknowledgments

Computational Systems Biology group

Institute of Pathology

Prof. Christine Sers Dr Markus Morkel Natalie Bubitz

Prof. Lodewyk Wessels Dr Roderick Beijersbergen (CRISPR)