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Clinical trials failure

» Most positive phase Il clinical trials with combination
therapy fail in phase Il

» The failure is partly due to the fact that not sufficient
forethought is given to the interaction that may take place
between the diverse agents

» If there is antagonism between the two agents, how
to schedule the protocol in order to reduce it ?

» How reduce negative side-effect without
compromising efficacy of treatment ?

» We can use mathematical models and
simulations to address these questions



The mathematics involved in the model

The mathematical models are given by a system of PDEs in the
tumor region, and the tumor boundary is a free boundary, one of
the unknown of the problem

A network is introduced which is only ‘as large as necessary’
in order to address the question

The main effort is then to estimate the parameters, simulate
the model and perform sensitivity analysis

| will give one example in detail
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T cells kill cancer cells but they have checkpoints . Checkpoint inhibitor drugs are

now in use in clinical treatment of cancer

CTLA-4 is a receptor on T cells and
B7 is a ligand on dendritic cells.
The complex CTLA-4 —B7 blocks
the activities of T cells; anti-CTLA-4
is anti-cancer drug

A

IL-2 production
positive Proliferation
signal Increased survival

Net Reduced IL-2 production
negative Reduced proliferation
Reduced survival

signal

PD-1is a receptor on T cells and PD-L1 is
a ligand on tumor cells (and alsoon T
cells). The complex PD-1 ---PD-L1 blocks
the activities of the T cells; anti-PD-1 is
anti-cancer drug




Oncolytic virus

Oncolytic virus is a genetically modified virus that can invade cancer
cells but not normal healthy cells

When the virus-infected cancer cell dies, the released virus
particles proceed to infected more cancer cells



Table 1. List of variables (in units of g/cm’).

Notation Description Notation Description

C density of cancer cells Tg density of activated CD8" T cells
C; density of infected cancer cells I [L-12 concentration

V Drug density of extracellular virus I [L-2 concentration

V; density of intracellular virus P PD-1 concentration

M density of macrophages L PD-L1 concentration

D density of dentritic cells Q PD-1-PD-L1 concentration

T, density of activated CD4" T cells A Drug anti-PD-L1 concentration




When PD-L1 combine with PD-1 receptor on Anti-PD-1 is anti-cancer drug. Oncolytic
effector T cells, the T cells activity is reduced virus is also used as anti-cancer drug
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Equation for free boundary (R): We assume that the free boundary r = R(f) moves with the

velocity of cells, so that

dR(t)
Boundary conditions
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Table 2. Summary of parameter values.

Notation Description Value used References
dp diffusion coefficient of DCs 8.64 x 10~ cm? «1:[;1}1_1 [38]*

T, diffusion coefficient of CD4" T cells 8.64 x 107" cm” day ' [38]*

1, diffusion coefficient of CD8" T cells 8.64 x 107" cm” day ' [38]*
dc diffusion coefficient of tumor cells 8.64 x 10~ cm? «1:[;1}1_1 [38]*
O diffusion coefficient of macrophages 8.64 x 10" cm” day ' [38]*

L, diffusion coefficient of IL-12 6.0472 % 1072 cm? rlajyf_1 [39]
o, diffusion coefficient of IL-2 9.9956 x 10~* cm” day ' [39]
da diffusion coefficient of IL-2 473 x 10 " cm” da)r_l [39]
ar flux rate of T cells on the boundary lem™! estimated
he growth rate of cancer cells 0.65 day ' estimated
hy. growth rate of intracellular virus 6x 107" dajr_l estimated
A growth rate of macrophages 0.009 da}r_1 [51]*
Ayc, activation rate of macrophages by C; 0.04 cm’/g estimated
Apv activation rate of DCs by virus infection 5.2 % 10" em?/ g - day estimated
ADC activation rate of DCs by tumor cells 5.2 dajr_1 estimated
hp g, activation rate of CD4" T cells by IL-12 9.32 day ' [39]
}le L activation rate of CD4" T cells by IL-2 0.25 dajr_l [39]




'.cle L activation rate of CD4" T cells by IL-2 0.25 day * 139]
hor,1, activation rate of CD8" T cells by IL-12 8.30 1:1;1](_1 [39]
}“Taiz activation rate of CD8" T cells by IL-2 0.25 «da)r_1 [39]
AL D production rate of IL-12 by DCs 276 x 107° dajr_1 [39]
Ayt production rate of IL-2 by CD4" T cells 2.82 x 10 " day ' [39]
Bec infection rate of cancer cells by virus 9% 10* cm”/ g - day estimated
By rate of transition from V, to V; by infection 0.09 cm’/ g - day estimated
He. m killing rate of C; by M 48 x 107 em?/ g - day estimated
Hy m clearance rate of V. by M 2cm’/g - day estimated
Hy, death rate of infected cell due to viral burden 5% 10" day ™' estimated
N burst size of V; from natural death of C; 100 estimated
s killing rate of tumor cellsby CD8" T cells 1.38 x 10° da}r_l -em’/ g estimated
Hsc, killing rate of infected cancer cells by CD8" T cells 7.59 x 10° day' - cm’/g estimated
Hpa blocking rate of PD-1 by anti-PD-1 6.87 x 10* cm?/ g - day [39]
Pp expression of PD-11in T cells 249 x 1077 [39]
Pr expression of PD-L1in T cells 522 x 1077 [39]
£ relative expression of PD-L1 in tumor cells 0.01 [39]
de death rate of uninfected tumor cells 0.17 «da}f1 [50]
dpg death rate of macrophages 0.015 day ' [51]
dp death rate of DCs 0.1 1:1;1](_1 [50]
dy, death rate of CD4" T cells 0.197 day ' [50]
dy, death rate of CD8" T cells 0.18 day ™" [50]
dfu degradation rate of IL-12 1.38 1:1;1](_1 [50]
dfz degradation rate of IL-2 2.376 «1:[;131_1 [50]




‘Table 3. Summary of parameter values.

K« half-saturation of tumor cells 0.4 gfcm3 [50]
Kp half-saturation of DCs 0.4 %107 g;n'[cm3 [39]
Kfu half-saturation of IL-12 1.5 % 10710 g,r'cm3 [50]
K, half-saturation of IL-2 2.37 x 107" g/em’ [50]
Ky half-saturation of CD4" T cells 2% 107 g/em® [39]
Ky, half-saturation of CD8" T cells 1 %10~ g/em® [39]
K, inhibition of function of T cells by PD-1-PD-L1 1.365 x 10" g/cm’ [39]*
g total cell density 0.6034 g/cm’ **

, density of immature DCs 2%x107° g."cms [50]
Tio density of naive CD4" T cells 4% 10 g/em® [39]*
Tso density of naive CD8" T cells 2% 107 g/em® [39]*
Cu carrying capacity of cancer cells 0.8 g;"cms [50]
'f"l density of CD4" T cells from lymph node 4% 107 g/em® [39]*
T, density of CD8" T cells from lymph node 2% 107 g/em® [39]*

" In this reference the value was estimated but not obtained directly from experimental results.

** The value is determined by Eq (1) with steady state densities of the cells.



Methods for
estimating
parameters are
explained, with
examples, in
Chapter 5 of this
recent monograph
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Control case
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Fig 2. Average densities/concentrations, in g/cm’, of all the variables in the model in the control case. All parameter values are the same as in Tables
2 and 3. Initial values are as in (21).



Sensitivity analysis
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Fig 8. Statistically significant PRCC values (p-value< 0.01) for R(f) at day 60.

Fig 9. Statistically significant PRCC values (p-value< 0.01) for R(t) at day 60.




Qualitative agreement with mice models
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Parameter values are the same as in Fig 2.




The two drugs, anti-PD-1 and oncolytic
therapy may be antagonistic:

Anti-PD-1 increases the killing rate by T cells of
cancer cells, including those infected with virus, so
this may not necessarily be a good thing, since the
virus is also killing cancer cells



Antagonism

Vo, (0,0) — V_ (7..7
Efficacy E(y,,74) = 24(0,0) 24(7v>74) :

V,4(0,0)

We marked the tumor
volume on the equi-
efficacy curves




Conclusion

Avoid “zones of antagonism”: for some valuesof Vv

or of viral growth in cancer cells /1V, an increase in the

dose v, actually increases the tumor volume------
“more is not always better”



BET inhibitor

The BET family proteins perform transcriptional

regulatory function for many genes, including
oncogenes

For this reason, BET inhibitor is being studied in
mice experiments as anti-cancer drug



Combination therapy for breast cancer with BET

inhibitor and immune checkpoint inhibitor: A
mathematical model
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Negative side effects

Cancer treatment may give rise to negative
side effects, for example, to increase in the
inflammatory cytokine TNF - alpha
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are the same as in Tables S2, S3 and S4.



Conclusion

One can achieve the same tumor reduction with many different
amounts of BETi and anti-CTLA-4 inhibitor, but the

best choice that will reduce TNF-alpha (and the associated gastro-
intestinal reaction) is to take the pair with the smallest BETi
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This was established by mice experiments and,
independently, by a mathematical model.



Final conclusion

Before starting clinical trials with two or more
drugs, a thought should be given to the
possible interaction between the drugs



