

Resistance to anticancer agents : a multifactorial problem

Charles Dumontet

- Cancer treatment options the cancer cell, the environment
- What is resistance to therapy ? *clinical and preclinical definitions*
- Why do treatments fail ?
- How can we improve the activity of cancer therapy ?

Cancer treatment options

A brief history of cancer therapy options

```
surgery +++
radiotherapy (Hodgkin's)
hormone therapy
cytotoxic agents
immunotherapy
```

Currently > 50% of cancer patients are treated with an exclusively local treatment

Only systemic therapy can cure disseminated or locally advanced disease

Curative ablation

Operable localized disease Surgery and other localized therapies early diagnosis +++ basal cell carcinoma, majority of breast, cervix, surveillance of colorectal polyps, ...

Operable disease with high risk of dissemination Adjuvant therapy: destroy residual tumor cells Locally invasive colorectal cancer, breast cancer with involved lymph node, deep melanoma, ...

« radical »

« conservative »

Radiotherapy

electrons, X rays, protontherapy + metabolic, brachytherapy

Penetration Depth

Conformational administration

Deliver maximal dose to tumor minimal dose to healthy tissues

Other physical approaches

Thermodestruction or « thermoablation » microwave, radiofrequency, US, thermocoagulation HIPEC = hyperthermic intraperitoneal chemotherapy

Cryotherapy or « cryoablation » cervical cancer, skin cancer

Electrotherapy glioblastoma

Local therapies ablate the tumor as a whole: tumor cells and the microenvironment, irrespectively of tumor cell properties and/or role of microenvironment

Unoperable disease

Locally advanced disease (unoperable) physical treatment, « debulking », neoadjuvant Majority of pancreatic, lung, ovary, glioblastoma, colorectal with local invasion, ...

Disseminated disease systemic therapies Metastases Hematological malignancies

Very heterogeneous situations

Years from Randomization

Systemic therapies take into account specific characteristics of the tumor cell and/or the microenvironment

Cancer cells are characterized by:

- Uncontrolled proliferation
- Dependence on hormones
- Dedifferentiation
- Expression of a specific target membrane antigen molecular abnormality
- Inability to initiate or complete apoptosis

Hormone therapy

Differenciating agents

Targeted therapies

Apoptosis inducers

Targeted therapies: kinase inhibitors

Months After Beginning of Treatment

2002 : approval of imatinib in

Vemurafenib and melanoma

Targeted therapies: tumor antigen specific immunotherapy

Therapeutic monoclonal antibodies targeting a tumor antigen (CD20 in lymphoma, Her2 in breast cancer)

T cell engagers: recruitment of a cytotoxic T lymphocyte to a CD19+ leukemic cell by a CD3xCD19 bispecific antibody

CAR-T cells: chimeric engineered T cells designed to amplify in the host, directed against tumor antigen

The tumor microenvironment:

- Provides nutrients through tumor vasculature
- Contains immune cells, including antitumor cells and immunosuppressive cells
- -Is perverted by the tumor cells to become protumorigenic: Cancer Associated Fibroblasts (CAF) Cancer Associated Adipocytes (CAA), ...

Immune checkpoint inhibitors

The immune system is regulated by activators and inhibitors

- Inhibitory signals = antagonist agents
- Co stimulatory signals = agonist agents

Immune checkpoint inhibitors

Mutliple indications Prolonged effect

Ipilimumab and melanoma

Hodi et al. Abstract #3008 ASCO 2008

Lung tumor after 6 weeks of anti PDL1 therapy

Side effects

Autoimmune diseases

Champiat, Ann Oncol 2016

Therapeutic index

Most cytotoxic agents are more active at higher dose. In the curative setting the aim is to use the highest « tolerable » dose, which is highly context-dependent

Targetted agents provide, to some degree, a better toxicity profile.

Aim is to combine agents with non-overlapping toxicities.

What is resistance to therapy?

Clinical and Experimental Definition(s) of chemoresistance

Clinical definition of resistance for solid tumors

Is defined by the lack of « clinical response »

- complete response (CR): no trace of disease
 Partial response (PR): > 50% reduction of all
 measurable tumor sites
- Progressive disease: increase of at least
 25% of one site or new tumor site
- Stable disease (SD): no PR, no PD

Disease is considered *sensitive* when tumor mass decreases by at least 50%.

Includes a number of very different situations:

-"authentic" complete remission = cure

- Infraclinical disease: 10⁶ to 10⁹ cells
- Partial response: 10^{10...12} cells

Concept of Minimal Residual Disease (MRD)

Biological definition

In vitro, chemoresistance can only be *relative*

A « resistant line » will be compared to, and often derived from, a « parental » sensitive line.

In vitro sensitivity can be determined by a variety of assays, which directly or indirectly cell proliferation in the presence or absence of cytotoxic agents.

A « resistant » line can be obtained:

- by exposure to incrementally increased concentrations of a selecting agent, usually over a period of several months
- by a short and stringent exposure to a selecting agent
- by modification of a gene of interest (transfection, down regulation) reproducing a resistance mechanism

in vitro sensitivity to anticancer agents

« resistant / parental » cell lines are very useful tools to identify resistance mechanisms or test new agents

However the resistance phenotype may only be valid under *in vitro* conditions. Results obtained in this model cannot be automatically transposed in vivo or to the clinic.

Limits of *in vitro* models

- clinical relevance is uncertain
- difficulty to transpose in vitro results
 to the clinic
- instability of models
- multiplicity of resistance mechanisms

Why do treatments fail?

Patients are different

They will respond positively (tumor response) or negatively (toxicity) differently according to their genetic make-up and living habits

Tumors are different

Each tumor is different. In spite of recurrent abnormalities the number of potential diagnostic entities is huge.

Tumors are heterogeneous and unstable

Allowing massive opportunities for emergence of resistance disease

Resistance is a frequent and dynamic event

Intrinsic chemoresistance

- Some tumors are refractory to therapy from the onset
- example : low reponse rates in pancreatic cancer

Acquired chemoresistance

Some cancer cells develop resistance Example: acute myeloid leukemia patients are in remission in > 80% of cases, but only 30% will be cured of their disease

Clonal heterogeneity

Resistance must now take into account the environment

Immune environment

Increasing number of immune suppressive cells Tregs: T regulatory cells TAM2 : tumor associated macrophages type 2 TAN2: tumor associated neutrophils type 2

Niche effect

Protective effect of Stromal cells Adipocytes

... even the distant environment

Distant immune stimulation has an impact on sensitivity to immune checkpoint inhibitors

Routy & Zitvogel Science, 2018

How can we improve the activity of cancer therapy ?

Personalized medicine: what are we really talking about ?

Also called « precision medicine »

Treatment taking into account: The characteristics of the tumor The characteristics of the patient

Does not mean a different treatment for each patient

Is closer to a « médecine à la carte »

Personalized medicine: not really a recent concept

« Adapted » therapy has been around for some time

Staging

TNM: tumor, lymph node, metastasis

Pronostic factors and indices

clinical parameters biological parameters

Impact de l'âge

Tolerance issues When treated similarly eldely patients respond the same way

Personalized medicine: what does it change?

Several parameters are likely to be adapted:

Type of therapy

RCP : reunion de concertation pluridisciplinaire

Dose and rythm of administration

continous vs. fractionated, low vs. high dose

Depending on age and comorbidities Organ failure Ongoing or previous therapies

Refined diagnosis and classification

Microscopie Anatomo-pathologiste

>10⁸ information/ sample

Will a refined diagnosis lead to better adapted therapy?

The new challenge: understanding the relationships between the tumor, the treatment and the patient

Differences in sensitivity to side effects are at least partly due to genetic make-up or «SNPs » (single nucleotide polymorphisms)

These SNPs have an impact on drug metabolism and/or sensitivity to toxicity

Elimination tissues

Fragile tissues

Emergence of pharmacogenetics

- Example of a child afflicted with Acute Lymphoblastic Leukemia (ALL) and treated with 6-mercaptopurine
- Metabolism by thiopurine méthyl transférase (TPMT)

 Low enzyme activity: accumulation of agent and strong toxicity

Traditionally:

choice of « best possible treatment » Statistical concept based on randomized trials

Is not always correlated with optimal therapy at the individual level

Define and apply predictive factors of response and toxicity

Avoid side effects Use the right treatment before resistance emerges

Biomarkers for targeted therapies

• Is it logical to use the treatment?

= is the target present?

Use other therapy

Try treament

How will treatments be selected in the future?

