# Combination therapies and drug resistance in heterogeneous tumoral population.

#### Marcello Delitala

Department of Mathematical Sciences Politecnico di Torino, Italy marcello.delitala@polito.it

Mathematical Perspectives in the Biology and Therapeutics of Cancer, 9-13 July 2018, CIRM, Marseille, France

Marcello Delitala

#### Guidelines of the research

Mathematical models for complex systems. Data and phenomena driven

• Frameworks: structured populations and population dynamics

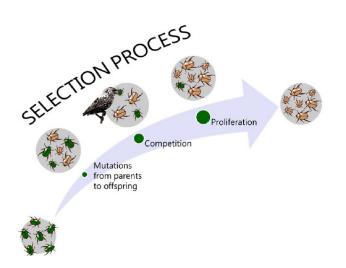
- General aim: study patterns of evolution and adaptation through mathematical modelling, asymptotic analysis and numerical simulations
- Virtual laboratories: test hypothetical scenarios giving new insights into behaviors emerging from the complex interactions

Marcello Delitala

#### Outline of the talk

• Ecology of cancer and evolutionary dynamics

- Mathematical model and asymptotic behaviour
- Experimental data and parameter estimation
- In silico laboratory. Monotherapy and combination therapy: different does and temporal order of administration (concomitant and sequantial)


NSCLC lung cancer

#### Darwinian evolution

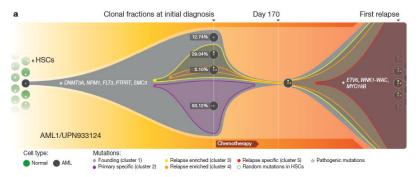
• Phenotypes: organism's observable characteristics

- Fitness of a phenotype: measure of ability to survive and reproduce
- Theory of evolution by means of natural selection. Traits more fitting, i.e. better adapted to survive and reproduce in the environment, are preserved
- Give rise to **diversity** at every level of biological organization

#### Selection



#### Emergence of resistance in cancer


A cell sample ...get exposed to The resistant cells including a therapeutic agents. multiply and become resistant variety... Most of the cells die. more common. Less resistant cells Dead cells Resistant cells

# Heterogeneity and clonal selection in AML

doi:10.1038/nature10738

#### Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing

L1Dbg<sup>2,4</sup>, Tanochy L, 14<sup>3,3,4</sup>, Dynél E, Larson<sup>2</sup>, Carlongher A, Miller<sup>1</sup>, Daniel C, Kohodli<sup>2</sup>, John S, Wolch<sup>3</sup>, Juliu K, Ritscher<sup>1</sup>, Magner A, Young<sup>2</sup>, Tamari J, amperdel<sup>1</sup>, Washell M, Kalla K, Kitscher<sup>1</sup>, Josep Sher, Christopher C, Hurri A, Donffar<sup>3</sup>, Bobert S, Patoler S, <sup>1</sup> Morton<sup>2</sup>, Linchen L, Shorton<sup>2</sup>, Justen Berlin, <sup>1</sup> Mortani, Janopher M, Washell C, Maratin S, Joney Sher, Christopher C, Hurri V, Donffar<sup>3</sup>, Bobert S, Patoler S, <sup>1</sup> Michael I, Hardin Y, Kin Chen<sup>2</sup>, Justen Hendri, <sup>1</sup> Mortani, <sup>1</sup> Mittamin D, Shamon Y, Michael C, Mardi Y, <sup>3</sup> Mano Hendri, <sup>1</sup> William D, Shamon Y, Michael W, and <sup>1</sup> Maria K, Mikael W, <sup>1</sup> Maria K, Mikael W, <sup>1</sup> Maria K, Mikael W, <sup>1</sup> Michael K, Handri Y, <sup>1</sup> Michael H, Tomsson<sup>1</sup>, <sup>1</sup> Mittamin D, Shamon M, <sup>1</sup> Michael K, Mardel<sup>1</sup>, <sup>1</sup> Michael K, Handri Y, <sup>1</sup> Michael H, Filter S, <sup>1</sup> Michael H, Filter S, <sup>1</sup> Michael K, <sup></sup>



#### From primary tumour to relapse with selection of resistant clones

Marcello Delitala

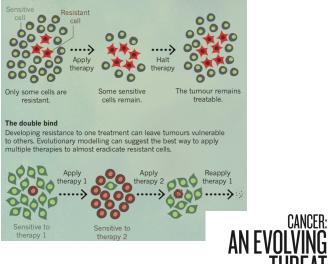
## Cancer progression from an evolutionary perspective

|                                | Nature Reviews Cancer   AOP, published online 16 November 2006; doi:10.1038/nrc2013 REVIEWS |                             |
|--------------------------------|---------------------------------------------------------------------------------------------|-----------------------------|
| OPINION                        | Cancer as an evolutionary and                                                               |                             |
| Darwinian medicine: a case     | ecological process                                                                          |                             |
| for cancer                     | Lauren M.F. Merlo*, John W. Pepper*, Brian J. Reid <sup>6</sup> and Carlo C. Maley*         |                             |
|                                | REVIEW                                                                                      |                             |
| Mel Greaves                    |                                                                                             | dei: 10. 3338/ nature 18762 |
|                                | ME7   MARCH 2007   288                                                                      |                             |
| © 2007 Nature Publishing Group | Clonal evolution                                                                            | in cancer                   |
|                                | Mel Greaver' & Carlo C. Malere <sup>2</sup>                                                 |                             |

- Competition for space and resources (e.g. oxygen and glucose) among healthy and cancer cells
- Evolutionary bottleneck due to different selective pressures, e.g. the immune system and anti-cancer therapies
- **Darwinian micro-evolution** selecting for increased proliferation and survival, and might lead to invasion, metastasis and therapeutic resistance

Marcello Delitala

# Adaptive therapy




- Integrate the principles of evolution into quantitative and experimental methods, and into new strategies for cancer therapy
- Avoid extinction of sensitive clones to therapies with low doses of drugs
- Limit (in certain cases) the emergence of the new clone of resistant cells, and ultimately allow to control the total number of tumor cells.

#### and double blind strategies

#### Adapting for balance

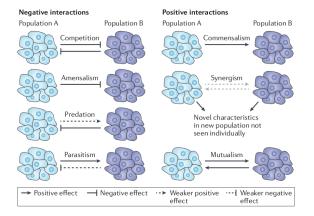
Cancer-cell populations compete, so completely killing cells that are sensitive to a particular drug lets resistant cells grow unfettered. Adjusting dosage according to tumour response could maintain balance in the populations.



# Ecology of cancer



CANCER ORIGINS


Tumorigenesis: it takes a village

Doris P. Tabassum<sup>1,2</sup> and Kornelia Polyak<sup>1-4</sup>

What Can Ecology Teach Us About Cancer?<sup>1</sup>

#### Irina Kareva\*.\*

\*School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA; <sup>1</sup>Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA



### Role of the immune system



#### Leading Edge Review

#### Hallmarks of Cancer: The Next Generation

Douglas Hanahan<sup>1,3,4</sup> and Robert A. Weinberg<sup>3,4</sup> Coglas Hanahan --- and Robert A. Weinberg-The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne CH 1015, Switzerland The Department of Biochemistry & Biophysics, UCSF, San Francisco, CA 94158, USA Whitehead Institute for Biomedical Research, Ludwig/MIT Center for Molecular Oncology, and MIT Department of Biology, Cambridge, MA 02142, USA "Conspondence: driftedt.ch (D.H.), weinbergiftet.mit.edu (R.A.W.) DOI 10.1016(.cell.2011.02.013 **Emerging Hallmarks** Deregulating cellular energetics destruction Ó  $\mathbf{\alpha}$ Genome instability and mutation **Enabling Characteristics** 

#### Immunotherapies

• Forefront of cancer treatment





Oncology Meets Immunology: The Cancer-Immunity Cycle

Daniel S. Chen<sup>1,3</sup> and Ira Mellman<sup>2,3,\*</sup>

- Immunotherapy and antigen-specific protocols to boost or restore the ability of the immune system to fight cancer, see e.g. U. Ledzewicz, M.S. Faraji Mosalman, and H. Schhattler, DCDS-B 2013.
- Adoptive cell transfer identification of immune cells in a tumor, in lab expansion and re-infusion into the patients
  - Dendritic cell **(DC)-based vaccines** to induce a long-lasting tumor specific CTL response (sustaining memory T cells)

Published OnlineFirst March 28, 2013; DOI: 10.1158/0008-5472.CAN-12-2449

Cance Researc

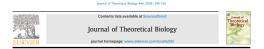
Microenvironment and Immunology

#### Booster Vaccinations against Cancer Are Critical in Prophylactic but Detrimental in Therapeutic Settings

Alessia Ricupito<sup>1,2,4</sup>, Matteo Grioni<sup>1,2</sup>, Arianna Calcinotto<sup>1,2,4</sup>, Rodrigo Hess Michelini<sup>1,2,3</sup>, Renato Longhi<sup>5</sup>, Anna Mondino<sup>9,3</sup>, and Matteo Bellone<sup>1,2</sup>

#### TUMOR IMMUNOLOGY

#### Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade


Nicholas McGranaban, <sup>1,3,4,7</sup> Andrew J. S. Furzess, <sup>3,4,4</sup> Rachel Rassethal, <sup>3,4</sup> Sofo Ramskow, <sup>1</sup>Rick Lyrgan, <sup>3</sup> Smit Limmer Sainh, <sup>3</sup> Armain, Janam Hanjunk, <sup>3</sup> Gareth A. Wilton, <sup>1,4</sup> Nicola, <sup>1</sup> Althola, <sup>1,4</sup> Crispin T. Hilby, <sup>1,4</sup> Thomas B. K. Watkin, <sup>1,4</sup> Seema Sainf, <sup>3</sup> Nicreia J. Birkhak, <sup>1,4</sup> Crispin T. Hilby, <sup>1,4</sup> Elezer M. Van Alen, <sup>2,4,4</sup> Joseph Linares, <sup>5,4</sup> Teresa Maraffeli, <sup>4,5</sup> Jake Y. Henry, <sup>3,4</sup> Elezer M. Van Alen, <sup>2,4,4</sup> Joseph Linares, <sup>5,4</sup> Teresa Maraffeli, <sup>4,5</sup> Jake Y. Henry, <sup>5,4</sup> Elezer M. Van Alen, <sup>2,4,6</sup> Juna Mala, <sup>5,4</sup> Jake Y. Henry, <sup>5,4</sup> Kachardenf, <sup>1,5,1</sup> Jake S. Horty, <sup>5,4</sup> Shukhay, <sup>1,4</sup> Cather, <sup>1,4,1</sup> Alexandre Styder, <sup>1,4,1</sup> Sachet A. Shukha, <sup>5,1</sup> Catherine, <sup>1,5,1</sup> Maraffeli, <sup>1,5,1</sup> Jake S. Horty, <sup>5,4,1</sup> Catherine, <sup>1,5,1</sup> Maraffeli, <sup>1,5,1</sup> Jakess, <sup>1,5,1</sup> Timothy, A Chan, <sup>1,2,1</sup> Sacht A. Shukha, <sup>3,5,1</sup> Catherine, <sup>1,5,1</sup> Maraffeli, <sup>1,5,1</sup> Jakess, <sup>1,5,1</sup> Timothy, A Chan, <sup>1,4,1</sup>

#### Marcello Delitala

### Aims of the virtual laboratory

- Better comprehension of mechanisms underlying cancer cell evolution
- Support the design of optimized anti-cancer protocols
- Suggestion of hypothesis-driven experiments

#### **Reference papers**



Combination therapies and intra-tumoral competition: Insights from mathematical modeling



Elena Piretto<sup>a,b</sup>, Marcello Delitala<sup>b,\*</sup>, Mario Ferraro<sup>c</sup>

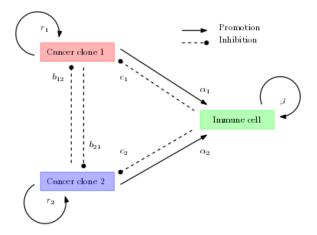


How combination therapies shape drug resistance in heterogeneous tumoral populations

E. Piretto<sup>a,b</sup>, M. Delitala<sup>a</sup> () and M. Ferraro<sup>c</sup>

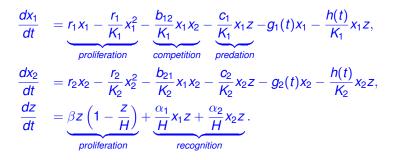
### **Biological questions**

• Which are the **evolutionary mechanisms** that modify the efficacy of the medical treatments?


- Monotherapy or combination therapy. What to choose?
- In combination therapy, how do different therapy doses and the temporal order of administration affect the outcome?
- Focusing on **Lung Cancer**, how it is possible to reduce the insurgence of resistance?

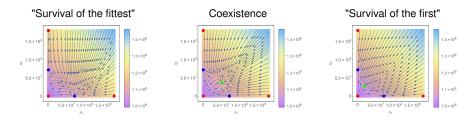
## Modeling approach and populations

- Population dynamics approach
- **Cancer cells**: Two clones *x<sub>i</sub>* sensitive and resistant to specific therapies
- Immune system: activated T-cells z
- Cells are homogeneously mixed *i.e.* no space effects
- Two types of therapies:
  - g<sub>i</sub>(t) therapeutic drug such as **chemotherapy**
  - *h*(*t*) **immunotherapy** boosting the immune system


Marcello Delitala

#### A mathematical model




Marcello Delitala

#### **Evolution equations**



8 stationary points:

- Four unstable points, of no importance from a biological perspective;
- One point representing cancer eradication by the immune system;
- Two points representing the **survival of one cancer clone**: (*EC*1, *EC*2)
- One point of **coexistence** (*COE*).



Correspondence between different trends and parameters, i.e. composition of the cancer population.

- Cancer eradication is guaranteed if both  $r_1K_1$  and  $r_2K_2$  are smaller than *cH*.
- If r<sub>1</sub>K<sub>1</sub> > cH and r<sub>2</sub>K<sub>2</sub> < cH, just the species x<sub>1</sub> survives and vice versa.

• If both  $r_1k_1$  and  $r_2K_2$  are larger than cH, the competitive exclusion applies. Survival of the species depends on parameters  $A_1 = \frac{c\alpha/\beta + r_1}{K_1r_1 - cH}, A_2 = \frac{c\alpha/\beta + b_{12}}{K_1r_1 - cH}, B_1 = \frac{c\alpha/\beta + b_{21}}{K_2r_2 - cH}$  and  $B_2 = \frac{c\alpha/\beta + r_2}{K_2r_2 - cH}$ .

- If A<sub>1</sub> < B<sub>1</sub> and A<sub>2</sub> < B<sub>2</sub>, the species x<sub>1</sub> dominates (and vice versa). "Survival of the fittest".
- If A<sub>1</sub> < B<sub>1</sub> and A<sub>2</sub> > B<sub>2</sub>, only one of the two cancer clones survives depending on the initial conditions. "Survival of the first".
- If  $A_1 > B_1$  and  $A_2 < B_2$ , coexistence point is stable.

- **Coexistence** (*COE*). Before therapy,  $x_1$ , the susceptible clone, is also the fittest, as it has the larger rate of growth and also a competitive advantage ( $b_{12} = 0.02$  and  $b_{21} = 0.07$ ) even though  $x_2$  is not totally eliminated.
- **Competitive exclusion** (*EC*1).  $x_1$  is the dominant clone. In this configuration  $x_1$  increases its competitive advantage ( $b_{12} = 0.1$  and  $b_{21} = 0.5$ ) so that, asymptotically,  $x_2$  is wiped out.
- **Competitive exclusion** (*EC2*). The resistant clone  $x_2$  dominates  $x_1$  ( $b_{12} = 0.5$  and  $b_{21} = 0.09$ ), so that, asymptotically,  $x_1$  disappears.

### Modelling of therapies

r-th Therapies decreasing the rate of growth r<sub>i</sub> to f<sub>i</sub>: Chemotherapy such as *paclitaxel* (TAX) or Molecular Target-therapy: such as the anti-EGFR, *Cetuximab*, and the anti-MEK, *Pimasertib*.

c-th Therapeutic agents increasing the efficiency of the immune system, from  $c_i$  to  $\kappa_i$ : **Immunotherapy** such as adenovirus containing full-length mouse wild-type p53 *Adp53 DC*.

We have investigated the action of monotherapies alone and in combination, concomitant and sequential administration.

#### **Therapies Dose**

Administered doses:

$$\begin{aligned} \mathrm{Ch} &= \int_{T_i}^{T_f} g(t) \mathrm{d}t = \int_{T_i}^{T_f} \left[ r_i - f_i(t) \right] \ \mathrm{d}t, \\ \mathrm{I} &= \int_{T_i}^{T_f} h(t) \mathrm{d}t = \int_{T_i}^{T_f} \left[ \kappa_i(t) - c_i \right] \ \mathrm{d}t, \end{aligned}$$

where  $[T_i, T_f]$  is the time interval of administration of the treatments.

#### Efficiency of a treatment

Total cancer loads and resistant clones before and after therapy:

$$\epsilon = \frac{x_{pre} - x_{post}}{x_{pre}} \qquad \delta = \frac{x_{2,pre} - x_{2,post}}{x_{pre}}$$

Normalize by means of a sigmoid function

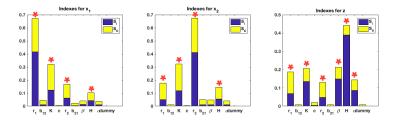
$$g(a)=\frac{1}{1+\exp(-a)}.$$

and define an efficiency index that depends on the decrease of both x and  $x_2$ 

 $\gamma = rac{g(\epsilon)}{g(1)} rac{g(\delta)}{g(1)}.$ 

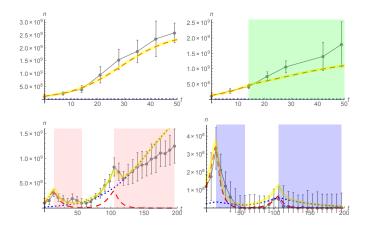
Threshold for the effectiveness of the rapies:  $\widehat{\gamma} = 0.5$ , i.e.  $\epsilon = \delta = 0$ .

#### Parameters


| Parameter      | Unit               | Range or Value                       | Interpretation                       | Source                 |
|----------------|--------------------|--------------------------------------|--------------------------------------|------------------------|
| r <sub>i</sub> | days <sup>-1</sup> | 0.02 - 02                            | Tumour growth rate                   | De Pillis <sup>1</sup> |
| bij            | days <sup>-1</sup> | 0.01 - 0.02                          | Competition                          | Estimated              |
| c/K            | days <sup>-1</sup> | 1.1 · 10 <sup>−7</sup>               | Killing rate                         | Kuznetsov <sup>2</sup> |
| K              | cells              | $10^7 - 5 \cdot 10^9$                | Tumour carrying capacity             | De Pillis <sup>1</sup> |
| H              | cells              | $5 \cdot 10^4 - 5 \cdot 10^5$        | Immune system carrying capacity      | Kuznetsov <sup>2</sup> |
| $\alpha/H$     | days <sup>-1</sup> | $2.4\cdot 10^{-10} - 6\cdot 10^{-9}$ | Immune recruitment                   | Kuznetsov <sup>2</sup> |
| β              | days <sup>-1</sup> | 0.8                                  | Immune system growth rate            | De Pillis <sup>1</sup> |
| f(t)           | days <sup>-1</sup> | 0.22                                 | Death rate due to chemotherapic drug | data                   |
| g(t)           | days <sup>-1</sup> | 4.9 · 10 <sup>−7</sup>               | killing rate due to vaccination      | data                   |

<sup>1</sup>AE Radunskaya, LG de Pillis, W Gu, JTB, 2006

<sup>2</sup>VA Kuznetsov, IA Makalkin, MA Taylor, AS Perelson, Bulletin of Mathematical Biology, 1994.

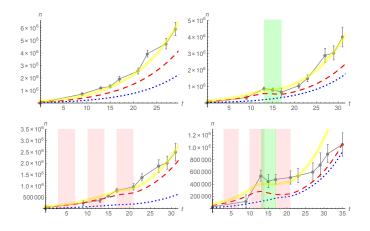

Marcello Delitala

### Global sensitivity analysis



Evaluation of the effects on an error in the parameter estimation: parameters with greater impact on the output of the model are fit to experimental data

#### Parameters estimation from CRC data



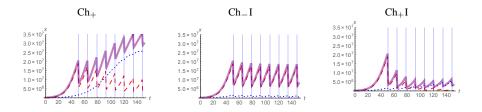

Comparison of the simulations with data from (*Bardelli et alii.*, *Nat. Commun.*, 2015) under two different types of molecular target drugs

Top left panel, control case. Top right, the effect of Pimasertib drug. Bottom left the action of Cetuximab drug. Bottom right, the **combination therapy**.

Only  $x_1$  is sensitive to Cetuximab and correspondingly  $f_1 = -0.1 \ days^{-1}$ ,  $f_2 = r_2$ , whereas Pimasertib affects both clones:  $f_1 = 0.06 \ days^{-1}$  and  $f_2 = -0.015 \ days^{-1}$ ;

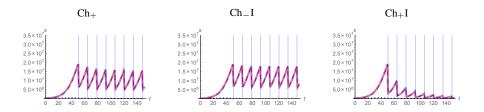
Marcello Delitala




Comparison of the simulations with data from (*Ramakrishnan et alii. J. Clin. Invest.* 2010) under combination of immunotherapy and chemotherapy

Upper panels: on the left the control case, on the right the TAX therapy (chemotherapy); Lower panels: on the left the Ad-p53 therapy (immunotherapy), on the right results of combination therapy.

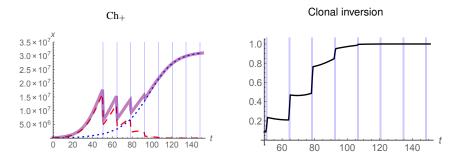
Only  $x_1$  is sensitive to chemotherapy and  $r_1$  is lowered to  $f_1 = -0.072 \ days^{-1}$ , whereas  $r_2$  is kept unchanged. The effect of immunotherapy is to increase  $c_i$  to  $\kappa_i = 21.5 \ days^{-1}$ .


Marcello Delitala

### Clonal composition matters. The COE case



- Standard chemotherapy dose (Ch<sub>+</sub>) is inefficient,  $\gamma = 0.15$
- Combination of low chemotherapy dose and immunotherapy (Ch\_I) is efficient,  $\gamma = 0.61$
- Combination of standard chemotherapy dose and immunotherapy (Ch<sub>+</sub>I) is more efficent, γ = 0.62
- Trade off between decrease the total load and the control of resistant clones. (Ch\_I) has the advantage of less dangerous side effects on the patient

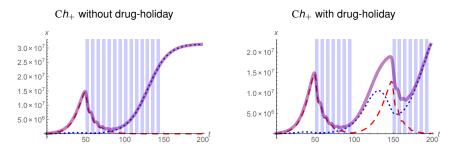

### Competitive exclusion EC1: clone $x_1$ dominates



- Standard chemotherapy (Ch<sub>+</sub>) is effective,  $\gamma = 0.62$
- Combination of low dose chemotherapy and immunotherapy (Ch\_I) is less efficient than in *COE* configuration,  $\gamma = 0.60$
- Combination of standard dose chemotherapy and immunotherapy (Ch<sub>+</sub>I) is an effective treatment, γ = 0.68

#### Competitive exclusion: clone $x_2$ dominates, EC2

Therapy outcomes similar to COE, but with the effect of clonal inversion somehow intensified by the fact that  $x_2$  is now dominant.

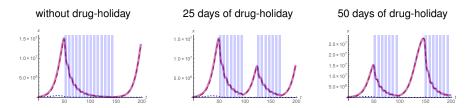



Pulsed chemotherapy  $Ch_+$ . On the left cancer load and on the right fraction of the resistant clone.

Marcello Delitala

## Drug holiday

- Drug resistance is a dynamical process (Sharma et alii 2010)
- Drug holiday enables a regrowth of sensitive cells reestablishing the effectiveness of a therapy, moreover it allows patients to recover from the therapy side effects, e.g. (*Pouchol, Clairambault, Lortz, Trelat, 2017*)

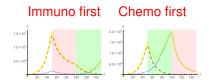



Effect of a drug holiday in the *EC*1 case and the decrease of the resistant clone besides, obviously, confirming that chemotherapy alone is inefficient.

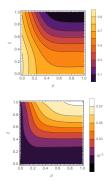
Marcello Delitala

#### Timing and duration of the holiday

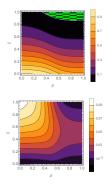
When a combination therapy is adopted,  $Ch_{-}I$ , the action of  $x_1$  over  $x_2$  is less relevant since immunotherapy affects both cancer types.




Values of  $\gamma$  are, respectively,  $\gamma_a = 0.48$ ,  $\gamma_b = 0.57$ ,  $\gamma_c = 0.67$ .


### Influence of temporal order on combination therapies

Fitness of the i-th cancer population:  $w_i = r_i - \frac{b_{ij}}{k}x_j - cz;$ 


Mean fitness:  $\frac{w_1(T)x_1(T)+w_2(T)x_2(T)}{x_1(T)+x_2(T)}$ .

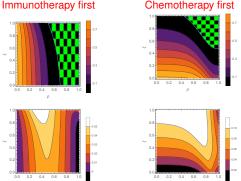


#### Immunotherapy first



Chemotherapy first




Different immunotherapy doses (vertical axes) and chemotherapy doses (horizontal axes) in the **COE** case

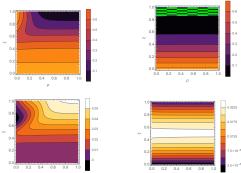
Above Heat map of the fraction of total cancer cells surviving at the end of treatment

Below Heat map of the mean fitness of total cancer cells

#### Marcello Delitala

# Dominating clone sensitive to chemotherapy, EC1.




Above Heat map of the fraction of total cancer cells surviving at the end of treatment

Below Heat map of the mean fitness of total cancer cells

Different immunotherapy doses (vertical axes) and chemotherapy doses (horizontal axes) in the EC1 case

If the dominating clone is susceptible to chemotherapy (EC1), an immuno-first therapy yields better results,

# Dominating clone resistant to chemotherapy, EC2



#### Immunotherapy first

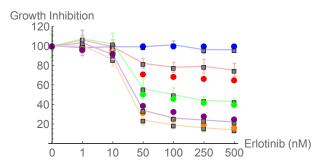
Chemotherapy first

Above Heat map of the fraction of total cancer cells surviving at the end of treatment

Below Heat map of the mean fitness of total cancer cells

Different immunotherapy doses (vertical axes) and chemotherapy doses (horizontal axes) in the *EC*2 case

A chemo-first treatment is better if the dominant clone is resistant to chemical treatment (*EC*2)


#### Summarizing

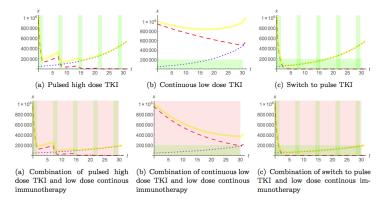
- Relevance of the interactions among cancer species, i.e. cancer types, in designing effective therapies
- Weak competition between cancer clones, COE case, mild environment, the sequence with chemotherapy first appears to be more efficient
- When the competition is strong, harsh environment, the situation is less clear-cut and different strategies yields better results in the EC1 and EC2 case
- These findings may explain why there exist apparently contradictory experimental findings about optimal order of cures administration, e.g. chemo first (*Antonia et al. Cancer Res., 2006*) and immuno first (*Hodi et al. PNAS, 2008*)

Marcello Delitala

#### Application to non-small cell lung cancer (NSCLC)

For NSCLC the problem of resistance seems to be crucial: **controversial results** in the efficacy of the Erlotinib drug (a tyrosin kinase inhibitors).



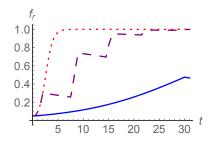

A comparison with some "in vitro" data<sup>1</sup> from literature for NSCLCs.

<sup>&</sup>lt;sup>1</sup>Chmielecki et al. 2011, Science translational medicine.

#### **Clinical protocols**

Test of some clinical protocols used in the treatment of NSCLC<sup>1</sup> where a second mutation resulting in a cancer clone resistant to Erlotinib:

- A pulsed protocol
- Low-dose concentrations in a metronomic schedule
- Mixture schedules of switch to pulse protocol




<sup>1</sup>Foo, Jasmine, Juliann Chmielecki, William Pao, and Franziska Michor. 2012, Journal of Thoracic Oncology

Marcello Delitala

#### Resistance

Relative frequencies of resistant cells in mono and in combination schedules. Fraction is similar while the total cancer load is reduced in the combination protocol:



RedSwitch to pulse protocol: 1600 mg/wk + 150 mg/day;PurplePulsed protocol: 1600 mg/wk;BlueMetronomic protocols<sup>1</sup>: 150 mg/day 50mg/day, 25mg/day.

Marcello Delitala

<sup>&</sup>lt;sup>1</sup>André, Carré, Pasquier, Nat. Rev. clin. Oncol. 2014.

#### Conclusions

#### Influence of temporal order:

- Clonal composition is crucial to the efficacy of treatments
- Inoculation of the 'Maximum Tolerable Dose' (MTD) is not always the best choice

#### Application to Lung Cancer:

- Pulsed protocol (or Switch to Pulse protocol) has stronger results in term of reduction of tumor expansion
- Resistance is accelerated with stronger protocols
- The combination of treatments makes low dose continuous protocols (metronomic) more efficient and reduces considerably the resistance
- Ongoing project with P. Bironzo, San Luigi Hospital, Orbassano, Torino

### Change of strategy

Integrate the principles of evolution to design new strategies for cancer therapy.



R.A. Gatenby, A change of strategy in the war on cancer, Nature, 459 (2009) 508–509.

Marcello Delitala

Thank you for your attention!