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Stochasticity in biological systems

It is widely recognized that stochastic effects play an
important role in many biological systems (e.g. due to low copy
numbers).

Stochastic analysis and simulation of a chemical system is
usually done through the Chemical Master Equation:

dP(x , t |x0, t0)

dt
=

M∑
j=1

{
aj(x − νj)P(x − νj , t |x0, t0)

−aj(x)P(x , t |x0, t0)
}
,

with propensity functions aj(x) defined by

P(event j taking place in [t , t + δt) |x , t) = aj(x) δt + o(δt) .
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Propensity functions and well-mixed systems

Standard propensities in a voxel V = [0,h]d scale as:

aj(x1) ∝ x1, aj(x1, x2) ∝ x1 x2

hd

The derivation of specific formulas for propensities of
bimolecular (and higher order kinetics as well) demand the
system to be well-mixed:

“A randomly selected reactant molecule should no more likely
be found in any one subvolume of the system than in any other
subvolume of the same size”.

(Gillespie, Hellander, Petzold, J. Chem. Phys. 2013)
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Spatially distributed systems

Many situations require relaxing the assumption of a well-mixed
reaction volume.

Standard approach for spatially distributed systems
Use compartmentalized models of the system for which each
compartment is small enough so that the system can be
considered well-mixed within each of them.

Reaction-Diffusion Master Equation. The domain containing
the mixture can be discretized into spatially uniform
compartments. Diffusion is treated as a jump process between
compartments, propensities scaling as h−2.

where q1R;…; qk−1R ; q2L ;…; qkL ; p1; p2 are stochastic transport and
kinetic coefficients (see Fig. 1). Thus, the specific probability rate,
denoted by kj in Eq. (1), is given by one of the parameters
fq1R;…qk−1R ; q2L ;…; qkL ; p1; p2g according to the reaction under con-
sideration. Hence the propensity functions for, respectively, right
movements, left movements, proliferation and saturation induced
cell loss are given by

q1Rn1;…; qk−1R nk−1; q2L n2;…; qkLnk; p1n1;…; p1nk; p2n
2
1;…;p2n

2
k :

ð4Þ

The stoichiometric vectors are straightforward to determine,
for example the vector associated with the transitions between
species S1-S2, which simultaneously increase n2 and decrease n1
by one, is given by ð−1;1;0;…;0Þ. Hence inserting the propensity
functions and stoichiometric vectors into the master equation (2),
we have a stochastic representation of our system via the evolu-
tion of Pðn; tjn0; t0Þ in the master equation. In particular, note from
(3) that the cells are myopic, i.e. they only sense locally which,
although an assumption, is a reasonable hypothesis if the length
scale of the cell is much smaller than the length scale of variation
of the surrounding environment. As discussed in Appendix B, this
is the relevant parameter regime for a cell (without extended
processes) traversing between white and grey matter, where the
interfacial scale is around 100–300 μ.

2.1.1. Stochastic simulations
While the master equation provides a fundamental representa-

tion of the stochastic system, it is rarely implemented directly. For
the stochastic simulations below a single realisation of the classic
Gillespie algorithm (Gillespie, 1976) is implemented with unbiased
motility (i.e. qiL ¼ qiR in Eq. (3) and qiR ¼ si, where si is a signal
localised to box i) via the use of Dizzy 1.11.3 (Ramsey et al., 2005),
using the propensity functions and stoichiometric vectors
described above. Initially, we consider 200 particles in each of
the first two discrete boxes. The fact that single realisations are
sufficient for our purposes below emphasises that the relatively
large cell numbers associated with tumour physiology in the
context of glioma are adequate to consider weak noise limits.

2.1.2. The weak noise, continuum, limit with unbiased motility
In Appendix A a detailed derivation of the continuum limit of

the above stochastic system is presented in the weak noise limit
using van Kampen's (2007) expansion, given unbiased motility,
that is qjR ¼ qjL in Eq. (3). This derivation highlights that one must
assume that the amplitude of the fluctuations scale with the
inverse square root of the system size; however the saturation
dynamics entails cell behaviours are not independent, preventing
the use of the central limit theorem to rigorously justify this
assumption. While this scaling is frequently observed even when
system elements are not independent (Kubo et al., 1973) it is an
explicit assumption, and thus we do need to justify the validity of

the continuum approximation a posteriori below. Equally, the
initial conditions being zero outside a compact set suggest that
the expansion is not justified a priori.

With this caveat, and with c denoting the cell density, scaled so
that the carrying capacity is unity, the result emerging from
Appendix A is the continuum governing equation

∂c
∂t

¼
∂2

∂x2
D

x
ϵ

! "
c

h i
þ cð1−cÞ; ð5Þ

with zero flux boundary conditions. Note that we have non-Fickian
transport. D is assumed to be a positive, smooth and bounded
function for all ϵ40. For the simulations D is specified to be either
of a tanh form or sinusoidal, modelling a single and multiple sharp
transition regions. Further, the parameter ϵ is the ratio of the
diffusive heterogeneity length scale to the reaction-diffusion
length scale (i.e. ½Dn

dim=ρdim&
1=2, where Dn

dim is a measure of the
cellular diffusion scale and ρdim is a measure of the cellular
proliferation rate). Hence, for an interface the parameter ϵ is the
ratio of the interfacial length scale to ½Dn

dim=ρdim&
1=2. Below, we

consider the parameter regime ϵ⪡1 and thus focus on systems
with a separation of scales, with the individual scale much smaller
than that of the interface, which in turn is taken to be much
smaller than the macroscopic “reaction–diffusion” length scale,
½Dn

dim=ρdim&
1=2.

2.2. Unbiased Fickian diffusion in the continuum limit

Analogously, we can consider the microscale dynamics that is
required for Fickian diffusion to emerge in the continuum limit. In
particular, this does not occur for myopic sensing but necessitates
that cells sense non-locally, which requires justification if the
environment is changing on a much longer length scale than
the cell.

For the simpler case of unbiased cell level motility, we must
have stochastic transport coefficients of the form

qiR ¼ si þ siþ1; qiL ¼ si þ si−1; i∈f2;…; k−1g; ð6Þ

where si is a signal localised with box i and thus the above is
clearly non-local. The deduction of Fickian diffusion can proceed as
above and has been presented (without the complication of
microscale kinetics) on numerous occasions in the literature (e.g.
Baker et al., 2010).

Following such derivations with logistic kinetics and appro-
priate rescalings one finds

∂c
∂t

¼
∂
∂x

D
x
ϵ

! " ∂c
∂x

# $
þ cð1−cÞ; ð7Þ

where Dðx=ϵÞ is a (rescaled) continuum interpolation of fs1;…; skg
and ϵ inherits the above interpretation as a ratio of length scales.
Finally, again note that this derivation is also subject to the same
caveat that the fluctuations scale with the inverse square root of
the system size, which is an explicit assumption in the presence of
the non-linear kinetics that requires a posteriori checking.

2.3. Summary

Thus, to explore the effects of the different modelling frameworks
we have four systems. Firstly for myopic cell transport we have

(i) the stochastic system associated with the master equation (2)
plus the propensity functions (4) and the associated stoichio-
metric vectors with the assumption that left ðqiLÞ and right ðqiR)
stochastic transport coefficients are equal so that the micro-
scale dynamics is unbiased.

(ii) the continuum limit in this case, as given by Eq. (5).

Fig. 1. Diagram of the space-jump description of diffusion and proliferation. Rj is
defined as the right diffusion reaction and Lj as the left diffusion reaction. For a cell
in box j, the left and right jumping stochastic coefficients are given by qjL and qjR,
respectively, and the proliferation stochastic coefficient is given by p2. For two cells
in the same box, there is also the possibility of a competition induced, logistic-type,
reduction in cell number with a stochastic coefficient denoted by p1.

J. Belmonte-Beitia et al. / Journal of Theoretical Biology 334 (2013) 1–12 3

(Picture authorship: Belmonte-Beitia, Wooley, Scott, Maini, Gaffney)
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Stochastic Analysis of Reaction–Diffusion Processes

Fig. 1 (A) A deterministic
version of the French flag
problem. (B) One realization of
the French flag model based on
stochastic dynamics. The bars
are color-coded according to the
number of molecules in a cell:
blue—greater than 12 and
white—greater than
6 molecules. (From Kang et al.
2012, with permission)

process, the results illustrate the uncertainty in fixing the location of the boundaries
between cell types. Of course the downstream interpretation of the signal, as well as
feedback from downstream steps may play a role in reducing the effect of signaling
noise, and some examples of this are given in Kang et al. (2012).

In the following section we discuss several different transport processes that occur
on different time and space scales which can lead to a diffusion-based description of
transport. In later sections we describe several methods for estimating an appropriate
cell or compartment size for simulations of stochastic RD equations, we discuss a
new computational algorithm for solving discretized RD equations, and in the last
section we illustrate some of the issues involved in applying the theoretical analysis
to an RD example.

2 Routes to the Diffusion Process

2.1 Classical Diffusion

The motion of point particles under deterministic or random forcing is described by
Newton’s law, which we write in the form

dxi = vi dt + dXi , (1)

mi dvi = Fi dt + dVi . (2)

(Picture authorship: Kang, Zheng, Othmer)
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How to choose a suitable compartment size h?

Ensure that all mobile species within the compartment can
transverse it in the time scale of the fastest reaction -in this way
the compartment can be considered spatially uniform.

This problem is relevant even for zero- and first-order kinetics:
Particle number fluctuations increase with decreasing
compartment size. (e.g. Gadgil, Lee, Othmer, Bull. Math. Biol. 2005)

It is crucial to control the crossover in h from the
diffusion-dominated to the reaction-dominated regime.
Too small compartments⇒ diffusion events dominate.

170901-11 Gillespie, Hellander, and Petzold J. Chem. Phys. 138, 170901 (2013)

in two dimensions for the reversible dimerization reaction by
constructing a master equation in which the propensity func-
tions have been renormalized using concepts from the statis-
tical mechanics of hard sphere molecules.

One way to view the RDME is as a coarse-grained
approximation to the continuous Smoluchowski diffusion-
limited reaction (SDLR) model13 which underlies particle
tracking simulation methods such as Green’s function reac-
tion dynamics.85 There, two molecules are assumed to move
according to Eq. (13) and to react with a certain probability at
the contact point between the two hard spheres. The distance
at which they react is determined by the sum of the molecules’
reaction radii ρ. The probability of a bimolecular reaction is
governed by the diffusion equation supplemented with a par-
tially absorbing boundary condition: given an initial relative
position r0 at time t0, the PDF p of the new relative position
(in a spherical coordinate system r = (r, θ , φ)) is taken to be
the solution of Eq. (13) subject to the initial condition p(r, t0)
= δ(r − r0) and the boundary conditions:

lim
r→∞

p(r, t) = 0, 4πρ2D
∂p(r, t)

∂r

∣∣∣∣
r=ρ

= krp(ρ, t).

Here, D is the sum of the diffusion coefficients of the react-
ing molecules. And kr is an assumed microscopic “association
rate,” which the physics-based derivation of Eq. (3b) shows is
given by kr = πσ 2

12v̄12qj , where σ 12 = ρ.
Motivated by the observation that for highly diffusion

limited reactions, the error in RDME simulations incurred by
too small voxels can be substantial,86, 87 recent work on the
RDME has tried to understand to what extent and in what
sense the RDME approximates the SDLR model on short
length scales, where the assumption h ≫ ρ does not hold.
Isaacson88 considered a bimolecular reaction and expanded
the RDME to second order in the molecules’ reaction radius
to show that, for a given value of ρ, the second order term
in the expansion diverges as h−1 compared to the correspond-
ing term in an expansion of the solution of the Smoluchowski
equation. He suggested that in order for the RDME to better
approximate the microscopic model, it is necessary to “appro-
priately renormalize the bimolecular reaction rate and/or ex-
tend the reaction operator to couple in neighboring voxels.”
Isaacson and Isaacson89 demonstrated that for a given value
of h, the RDME can be viewed as an asymptotic approxima-
tion to the SDLR model in ρ.

Hellander et al.90 gave an alternative explanation of the
RDME breakdown based on the mean binding times of two
particles performing a random walk on the lattice in 2 and 3
dimensions. Figure 3 is adapted from Ref. 90, and shows a

schematic representation of the RDME’s behavior as a func-
tion of the mesh size. For h < ρ, i.e., voxels smaller than
the molecular reaction radius, the RDME makes little sense
physically. In the other extreme, above hmax, discretization er-
rors due to large voxels will be unacceptably high. For hmin

< h < hmax (green region) the RDME will work well, but
for h < hmin it can yield increasingly unphysical results. For
h < h∗ the conventional RDME and the SDLR model cannot
be made consistent in the sense that the mean binding time be-
tween two particles in the RDME converges to that of the mi-
croscopic model.90 The values of hmin, hmax, and h∗ are model
and geometry dependent, but in the limit of perfect diffu-
sion control, a box-geometry, and a uniform Cartesian mesh,
the critical voxel sizes take the values h∗ = πρ (3D) and
h∗ ≈ 5.2ρ (2D).

Two main approaches have been proposed to improve
on the robustness of simulation with the RDME when small
length scales need to be considered. The first relies on modifi-
cation of the bimolecular association reaction rate ka, as sug-
gested by Isaacson and Isaacson.89 For a given ka and a Carte-
sian discretization, Erban and Chapman86 derived a new rate
expression by requiring that the spatially independent steady-
state distribution for a model problem solved with the RDME
be invariant under changes to the voxel size. Fange et al.87 de-
rived mesh dependent propensities in both 2D and 3D based
on the ansatz that the equilibration time for a reversible bi-
molecular reaction should be the same in the SDLR model
and the RDME. Furthermore, they allow for reactions be-
tween molecules in neighboring voxels. In this way, they ob-
tain good agreement in numerical experiments between the
two models, for mesh resolutions close to the reaction ra-
dius ρ. A third set of corrected rate functions was obtained by
Hellander et al.90 in both 2D and 3D. A problematic aspect of
relying on mesh-dependent rate functions is that different ap-
proaches lead to different expressions, and they are dependent
on the nature of the voxels, the geometry, and the test prob-
lem. Another approach to the problem was recently taken by
Isaacson,91 where he constructs a new and convergent form
of the RDME based on a discretization of a particle tracking
model.92 Here, the mesoscopic model is formulated in such
a way as to converge to a specific microscopic, continuum
model per construction.

The other main approach that has been proposed to make
simulations more robust is the use of mesoscopic-microscopic
hybrid methods, that switch to the microscopic model when-
ever microscale resolution is required. Hellander et al.93

use an RDME (mesoscopic) model in combination with a
Smoluchowski GFRD (microscopic) model. The microscopic

FIG. 3. Schematic representation of the RDME’s behavior as a function of the voxel size h. For h < h∗, no local correction to the conventional mesoscopic
reaction rates exists that will make the RDME consistent with the Smoluchowski model for the simple problem of diffusion to a target. Figure adapted from
Ref. 90.

(Picture authorship: A. Hellander, S. Hellander, L. Petzold, D. Gillespie)
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How to choose a suitable compartment size h?

Ensure that all mobile species within the compartment can
transverse it in the time scale of the fastest reaction -in this way
the compartment can be considered spatially uniform.

Warning: The Reaction-Diffusion Master Equation is not
convergent in the limit h→ 0 for spatial dimension d ≥ 2 if
second-order kinetics are present.
(Isaacson, SIAM J. Appl. Math. 2009; Hellander, Hellander, Petzold, Phys.Rev. E 2012)
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in two dimensions for the reversible dimerization reaction by
constructing a master equation in which the propensity func-
tions have been renormalized using concepts from the statis-
tical mechanics of hard sphere molecules.
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approximation to the continuous Smoluchowski diffusion-
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tracking simulation methods such as Green’s function reac-
tion dynamics.85 There, two molecules are assumed to move
according to Eq. (13) and to react with a certain probability at
the contact point between the two hard spheres. The distance
at which they react is determined by the sum of the molecules’
reaction radii ρ. The probability of a bimolecular reaction is
governed by the diffusion equation supplemented with a par-
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(in a spherical coordinate system r = (r, θ , φ)) is taken to be
the solution of Eq. (13) subject to the initial condition p(r, t0)
= δ(r − r0) and the boundary conditions:
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rate,” which the physics-based derivation of Eq. (3b) shows is
given by kr = πσ 2
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Motivated by the observation that for highly diffusion

limited reactions, the error in RDME simulations incurred by
too small voxels can be substantial,86, 87 recent work on the
RDME has tried to understand to what extent and in what
sense the RDME approximates the SDLR model on short
length scales, where the assumption h ≫ ρ does not hold.
Isaacson88 considered a bimolecular reaction and expanded
the RDME to second order in the molecules’ reaction radius
to show that, for a given value of ρ, the second order term
in the expansion diverges as h−1 compared to the correspond-
ing term in an expansion of the solution of the Smoluchowski
equation. He suggested that in order for the RDME to better
approximate the microscopic model, it is necessary to “appro-
priately renormalize the bimolecular reaction rate and/or ex-
tend the reaction operator to couple in neighboring voxels.”
Isaacson and Isaacson89 demonstrated that for a given value
of h, the RDME can be viewed as an asymptotic approxima-
tion to the SDLR model in ρ.

Hellander et al.90 gave an alternative explanation of the
RDME breakdown based on the mean binding times of two
particles performing a random walk on the lattice in 2 and 3
dimensions. Figure 3 is adapted from Ref. 90, and shows a

schematic representation of the RDME’s behavior as a func-
tion of the mesh size. For h < ρ, i.e., voxels smaller than
the molecular reaction radius, the RDME makes little sense
physically. In the other extreme, above hmax, discretization er-
rors due to large voxels will be unacceptably high. For hmin

< h < hmax (green region) the RDME will work well, but
for h < hmin it can yield increasingly unphysical results. For
h < h∗ the conventional RDME and the SDLR model cannot
be made consistent in the sense that the mean binding time be-
tween two particles in the RDME converges to that of the mi-
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sion control, a box-geometry, and a uniform Cartesian mesh,
the critical voxel sizes take the values h∗ = πρ (3D) and
h∗ ≈ 5.2ρ (2D).

Two main approaches have been proposed to improve
on the robustness of simulation with the RDME when small
length scales need to be considered. The first relies on modifi-
cation of the bimolecular association reaction rate ka, as sug-
gested by Isaacson and Isaacson.89 For a given ka and a Carte-
sian discretization, Erban and Chapman86 derived a new rate
expression by requiring that the spatially independent steady-
state distribution for a model problem solved with the RDME
be invariant under changes to the voxel size. Fange et al.87 de-
rived mesh dependent propensities in both 2D and 3D based
on the ansatz that the equilibration time for a reversible bi-
molecular reaction should be the same in the SDLR model
and the RDME. Furthermore, they allow for reactions be-
tween molecules in neighboring voxels. In this way, they ob-
tain good agreement in numerical experiments between the
two models, for mesh resolutions close to the reaction ra-
dius ρ. A third set of corrected rate functions was obtained by
Hellander et al.90 in both 2D and 3D. A problematic aspect of
relying on mesh-dependent rate functions is that different ap-
proaches lead to different expressions, and they are dependent
on the nature of the voxels, the geometry, and the test prob-
lem. Another approach to the problem was recently taken by
Isaacson,91 where he constructs a new and convergent form
of the RDME based on a discretization of a particle tracking
model.92 Here, the mesoscopic model is formulated in such
a way as to converge to a specific microscopic, continuum
model per construction.

The other main approach that has been proposed to make
simulations more robust is the use of mesoscopic-microscopic
hybrid methods, that switch to the microscopic model when-
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FIG. 3. Schematic representation of the RDME’s behavior as a function of the voxel size h. For h < h∗, no local correction to the conventional mesoscopic
reaction rates exists that will make the RDME consistent with the Smoluchowski model for the simple problem of diffusion to a target. Figure adapted from
Ref. 90. (Picture authorship: A. Hellander, S. Hellander, L. Petzold, D. Gillespie)
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How to choose a suitable compartment size h?

A number of criteria have been proposed along the former
lines; they usually amount to have

diffusion timescale� reaction timescale

(Bernstein, Isaacson–Peskin, Erban–Chapman,...)
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How to choose a suitable compartment size h?

A number of criteria have been proposed along the former
lines; they usually amount to have

diffusion timescale� reaction timescale

(Bernstein, Isaacson–Peskin, Erban–Chapman,...)

“Another aspect inadequately addressed in previously-cited
work is the effect of compartment size on the magnitude of the
stochastic fluctuations, as measured by the coefficient of
variation of solutions.”

(Kang, Zheng, Othmer, J. Math. Biol. 2012)
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How to choose a suitable compartment size h?

A number of criteria have been proposed along the former
lines; they usually amount to have

diffusion timescale� reaction timescale

(Bernstein, Isaacson–Peskin, Erban–Chapman,...)

Kang–Zheng–Othmer introduce:
1 a measure based on the stabilization of a generalized

coefficient of variation.
2 a criterion based on convergence to a uniform state

(stationary or time-dependent) for the mean field model.
These two were shown to agree remarkably well.
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Deterministic reaction-diffusion systems

The (well-mixedness) criterion by Kang–Zheng–Othmer based
on convergence to a uniform state at the level of the mean field
equations gives an upper bound for h.

This generalizes previous results by Ashkenazi–Othmer and
Conway–Hoff–Smoller on the (exponential) convergence to
uniform states for systems of reaction-diffusion equations.

Relative entropy methods: recent results showing exponential
convergence to equilibrium for reaction-diffusion systems
arising from complex balanced chemical reaction networks.

(e.g. Desvillettes, Fellner, Tang, SIAM J. Math. Anal. 2017; Fellner, Tang, Z. Angew. Math. Phys. 2018)
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What about (age-)structured models?
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Dynamics of an age-structured population

Intracellular scale:
Replication events, cell cycle model.

Input: oxygen concentration.
Output: replication age.

Resource scale:
Reaction–diffusion equation for oxygen concentration.

Oxygen is consumed by the population.

Cellular scale:
Age-dependent birth-death-diffusion process.

Birth events depend on the cell cycle model.

(de la Cruz, Guerrero, Calvo, Alarcón, J. Comp. Phys. 2017)
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Dynamics of an age-structured population

a    (c,p ,p )
G1/S 3 6

G1S−G2−M

a=0

τp
−1 a    (c,p ,p )

G1/S 3 6
b(a)=      H(a −                     )

Birth rate Death rate

ν

Intracellular

Scale

Resource

Scale

Cellular

Scale

Characteristic

Time Scale (sec)

10−2

10 5

10 3

Oxygen Concentration

c(t,x)

Age−dependent Birth−and−Death

Population Dynamics

Motility rate

D  /ho
2

Process With Diffusion

(de la Cruz, Guerrero, Calvo, Alarcón, J. Comp. Phys. 2017)
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Dynamics of an age-structured population

Birth rates b(a) = τ−1
p H(a− aG1\S(c))

Death rates ν
Diffusion rates Dn/h2.

Mean field model for population n(t ,a, x) and oxygen c(t , x)
densities:

∂n
∂t

+
∂n
∂a

= Dn
∂2n
∂x2 − (b(a) + ν) n

n(t ,a = 0, x) = 2
∫ ∞

0
b(a) n(t ,a, x) da

∂c
∂t

= Dc
∂2c
∂x2 − k c

∫ ∞
0

n(t ,a, x) da + S(t , x)− k2c

(de la Cruz, Guerrero, Calvo, Alarcón, J. Comp. Phys. 2017)
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Homogeneization result

Compartment size determination criterion: the population
should converge to a spatially-uniform solution (fast enough) at
the level of the mean field model.

We study the complete model for x ∈ [0,h] with homogeneous
source term S > 0 and spatial boundary conditions

∂xn(t ,a, x = 0) = ∂xn(t ,a, x = h) = 0 ,

∂xc(t , x = 0) = ∂xc(t , x = h) = 0 .

Define spatial averages

n̄(t ,a) :=
1
h

∫ h

0
n(t ,a, x) dx and c̄(t) :=

1
h

∫ h

0
c(t , x) dx .
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Homogeneization result

Compartment size determination criterion: the population
should converge to a spatially-uniform solution (fast enough) at
the level of the mean field model.

Proposition (T. Alarcón, J.C., H.-W. Kang)

Let (n, c) be a solution pair of the mean field model in
[0, t)× [0,h]× [0,∞) with zero Neumann spatial boundary
conditions. Assume that 1/τp > ν. Then, any choice of h
satisfying

h <

√
Dn

1/τp − ν

ensures that∫ ∞
0

∫ h

0
|n(t)− n̄(t)|dxda→ 0 and

∫ h

0
|c(t)− c̄(t)|dx → 0

exponentially fast.
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Homogeneization result, sketch of proof

Relative entropy (population)

H(f |g) :=

∫ ∞
0

∫ h

0
f (a, x)log

(
f (a, x)

g(a, x)

)
dxda.

Evolution equation for the relative entropy:

d
dt

H(n(t)|n̄(t)) ≤ −Dn

∫ ∞
0

∫ h

0

(nx )2

n
dxda

+

∫ ∞
0

∫ h

0
(b(a)− ν)n log

(n
n̄

)
dxda .

T. Alarcón, J. Calvo, H.-W. Kang Estimating compartment size in age-structured models



Homogeneization result, sketch of proof

Log-Sobolev inequality:∫ h

0
φ2 log

(
h φ2

‖φ‖22

)
dx ≤ 2h2‖φx‖22, φ ∈W 1,2(0,h)

(Stam, Gross, Holley, Stroock, ...)

Lower bound on Fisher’s information:

1
2h2

∫ h

0
n log

(n
n̄

)
≤
∫ h

0
[(
√

n)x ]2 dx .

Final estimate (through Cziszar–Kullback):∫ ∞
0

∫ h

0
|n − n̄|dxda ≤

√
2‖n(0)‖L1

a,x
H(n(0)|n̄(0))

× exp
{
−t
(

Dn
h2 + ν − 1

τp

)}
.
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Homogeneization result, sketch of proof

Define relative entropy (oxygen concentration)

H(f |g) :=

∫ h

0
f (x) log

(
f (x)

g(x)

)
dx .

Using Cziszar–Kullback’s inequality we get∫ h

0
|c − c̄|dx ≤

√
2hc̄

√
H(c|c̄).

We close the loop by means of

H(c|c̄) ≤ H(c(t = 0)|c̄(t = 0)) e−t
(

k2+
2Dc
h2

)
.
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To sum up

compartment size <

√
diffusion coefficient

birth rate - death rate

Work in progress:
Computational testing and comparison with fluctuation
measures
Sensible formulations in spatial dimension higher than one
Extensions of the stochastic tissue model:

Competing populations
Therapies

Project MTM2014-53406-R
Project MTM2011-23384
Project FQM-954
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