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Definition
The Hermitian connection is

1
VxY = D§Y —- J(DFI)Y .

AxY=

» Vg =0, VJ =0, but V may have torsion.
» M Kahler «— V = D8.
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Theorem (U.—Lejmi, 2017)
Let M be a closed almost Kahler 4-manifold of globally constant
Hermitian holomorphic sectional curvature k > 0.

Then M is Kahler—Einstein, holomorphically isometric to:
(k > 0) CP? with the Fubini-Study metric.

(k =10) a complex torus or a hyperelliptic curve with the
Ricci-flat Kahler metric.

Similar result for k < 0 under assumption that Ricci is J-invariant.
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Pointwise Implications (Algebraic Bianchi)

M?* closed almost Kihler

Proposition
Pointwise constant holomorphic sectional curvature H = k is
equivalent to
1. W—=0
2. xp = r for two Ricci contractions of RV .
Moreover,
L Scal® <
12 —
with equality if and only if M is Kahler.
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Sketch of Proof for W~ =0

Use

RV :Rg
xyzw =Rxyzw
+g((VxAy — VyAx — Aix,v))Z, W) — g([Ax, Ay]Z, W).
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Sketch of Proof for W~ =0
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Play off the symmetries of R€ against the assumption on RY
(which gives it a special form).
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Outline of Proof of Main Theorem Il

Global Impliciations

From the differential Bianchi identity:
Proposition

Let M be a closed almost Kahler 4-manifold of pointwise constant
holomorphic sectional curvature k. Then

/M]R00|2=/M\W,jf]2+]W(;B\2+4(5k—7v)(k—2v) (1)

-1

X:82/ W2 4 (60v2 — T2kv + 18K2) 2)
T

3 1

50 =g 2/ QWA + [Wih > +6(2k —3v)® > 0 (3)

_ Scals _ Kk : . .
= 25— = 5 implies Kahler.

Recall: v
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Corollary (Signature zero case)

Let M be closed almost Kahler 4-manifold of pointwise constant
holomorphic sectional curvature k. Suppose o = 0.

Then k =0 and M is Kahler, with a Ricci-flat metric.

Corollary (‘Reverse’ Bogomolov—Miyaoka—Yau inequality)

If M is closed almost Kahler of globally constant holomorphic
sectional curvature k > 0, then for the Euler characteristic

30 > x.

Equality holds if and only if M is Kahler—Einstein.
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End of the proof

Theorem
M?* closed almost Kahler of constant holomorphic sectional
curvature k > 0. Then M is Kahler.

Proof.

» Suppose that M is not Kahler: v < g somewhere.

s 3k _ay
M &T

——
>0

SW-theory == M symplectom. to ruled surface or CP?
» M = CP? has 30 = .
M rational — 0 <0 — o =0.

v

v

v

v

By previous propositions, ‘=" implies Kahler, contradiction!



