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Preliminaries

Definition
An almost Kähler manifold (M, ω, g , J) is equipped with

ω ∈ Ω2(M), J : TM → TM, g metric

such that
dω = 0, J2 = −1, ω = g(J·, ·).

Definition
The Hermitian connection is

∇XY := Dg
XY −

1

2
J(Dg

X J)Y︸ ︷︷ ︸
AXY=

.

I ∇g = 0, ∇J = 0, but ∇ may have torsion.

I M Kähler ⇐⇒ ∇ = Dg .
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Statement of Result

The Hermitian holomorphic sectional curvature is

H(X ) := R∇X ,JX ,X ,JX , X ∈ TM, |X | = 1.

Theorem (U.–Lejmi, 2017)

Let M be a closed almost Kähler 4-manifold of globally constant
Hermitian holomorphic sectional curvature k ≥ 0.

Then M is Kähler–Einstein, holomorphically isometric to:

(k > 0) CP2 with the Fubini–Study metric.

(k = 0) a complex torus or a hyperelliptic curve with the
Ricci-flat Kähler metric.

Similar result for k < 0 under assumption that Ricci is J-invariant.
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Pointwise Implications (Algebraic Bianchi)

M4 closed almost Kähler

Proposition

Pointwise constant holomorphic sectional curvature H = k is
equivalent to

1. W− = 0

2. ∗ρ = r for two Ricci contractions of R∇.

Moreover,

v :=
Scalg

12
≤ k

2

with equality if and only if M is Kähler.



Sketch of Proof for W− = 0

Use

R∇XYZW =Rg
XYZW

+ g((∇XAY −∇YAX − A[X ,Y ])Z ,W )︸ ︷︷ ︸
α∈Λ2⊗Λ2,0+0,2

− g([AX ,AY ]Z ,W )︸ ︷︷ ︸
β∈Λ1,1⊗C·F

.

Play off the symmetries of Rg against the assumption on R∇

(which gives it a special form).

Rg =

[ Λ+ Λ−

W+ + Scalg

12 g R0

RT
0 W− + Scalg

12 g

]
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Outline of Proof of Main Theorem II
Global Impliciations

From the differential Bianchi identity:

Proposition

Let M be a closed almost Kähler 4-manifold of pointwise constant
holomorphic sectional curvature k . Then∫

M
|R00|2 =

∫
M
|W+

F |
2 + |W+

00|
2 + 4(5k − 7v)(k − 2v) (1)

χ =
−1

8π2

∫
M
|W+

00|
2 + (60v2 − 72kv + 18k2) (2)

3

2
σ =

1

8π2

∫
M

2|W+
F |

2 + |W+
00|

2 + 6(2k − 3v)2 ≥ 0 (3)

Recall: v := Scalg

12 = k
2 implies Kähler.



Outline of Proof of Main Theorem III

Corollary (Signature zero case)

Let M be closed almost Kähler 4-manifold of pointwise constant
holomorphic sectional curvature k . Suppose σ = 0.

Then k = 0 and M is Kähler, with a Ricci-flat metric.

Corollary (‘Reverse’ Bogomolov–Miyaoka–Yau inequality)

If M is closed almost Kähler of globally constant holomorphic
sectional curvature k ≥ 0, then for the Euler characteristic

3σ ≥ χ.

Equality holds if and only if M is Kähler–Einstein.
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End of the proof

Theorem
M4 closed almost Kähler of constant holomorphic sectional
curvature k ≥ 0. Then M is Kähler.

Proof.

I Suppose that M is not Kähler: v < k
2 somewhere.

I
∫
M c1(TM) ∪ ω =

∫
M

sC
2π =

∫
M

3k

2π︸ ︷︷ ︸
≥0

+
∫
M

k−2v
2π > 0.

I SW-theory =⇒ M symplectom. to ruled surface or CP2

I M = CP2 has 3σ = χ.

I M rational =⇒ σ ≤ 0 =⇒ σ = 0.

I By previous propositions, ‘=’ implies Kähler, contradiction!
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