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Yamabe Problem (1960)
Given a Riemannian manifold (M, g) of dimension n ≥ 3, up to
conformal changes of g, there exist constant scalar curvature metrics.

Objective: Discuss uniqueness on Ricci solitons
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Yamabe Equation
Let (M, g) be a closed Riemannian manifold. For f ∈ C∞+ (M), the
metric f p−2 · g has constant scalar curvature λ if and only if f satisfies
the Yamabe Equation:

− an4gf + Sgf = λf p−1

Theorem (Yamabe-Trudinger-Aubin-Schoen)
There exists a constant scalar curvature metric in every conformal
class.

Theorem (Hebey-Vaugon, 1993)
If G is a Lie group acting on M by isometries. Then there exist
G−invariant solutions to the Yamabe equation.
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Yamabe Constant

The Yamabe constant is obtained by:

Y(M, [g]) = inf
h∈[g]

∫
M Shdvh

Vol(M, h)
n−2

n

Theorem (Aubin, 1976)
Let (M, g) be a closed Riemannian manifold of dimension n. Then:

Y(M, [g]) ≤ Yn

where Yn := Y(Sn, [gn
o]) = n(n− 1)Vol(Sn, gn

o)
2
n .
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Uniqueness

There is uniqueness:

If Y(M, [g]) ≤ 0.

Obata’s Theorem: If (M, g) is Einstein and not isometric to the
round sphere (Sn, gn

o).
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Ricci Solitons

Definition
Let (M, g) be a Riemannian manifold of dimension n such that

−2Ric(g) = LXg + 2µg

for some µ ∈ R and some complete vector field X on M. We say g is a
Ricci soliton.

If µ < 0, g is said to be a shrinking Ricci soliton.
µ = 0, g is steady.
µ > 0, g is expanding.

If X = grad(u),
Ric(g) + Hess(u) + µg = 0

and g is called gradient Ricci soliton.
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Ricci Solitons −2Ric(g) = LXg + 2µg

We are interested in compact non-Einstein Ricci solitons of positive
scalar curvature.

Results from Hamilton, Ivey and Perelman give that compact non-trivial
solitons have to be shrinking and gradient:

Ric(g) + Hess(u)− g = 0
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Koiso-Cao soliton g Ric(g) + Hess(u)− g = 0

Koiso(1990)-Cao(1996)

It is a compact shrinking Kähler-Ricci soliton on CP2#CP2.

It has positive Ricci curvature.

It admits an action of U(2) with cohomogeneity-one, and the
principal orbits form an open dense subset

S3 × (α, β) ⊂ CP2#CP2.

It has two singular orbits diffeomorphic to S2.
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Construction of the Koiso-Cao soliton
For every t ∈ (α, β), on S3 consider a metric gt such that:

(S1, f 2(t) · go) ↪→ (S3, gt) −→ (S2, h2(t) · g2
o)

is a Riemannian submersion.

Lemma
On S3 × (α, β) the metric g = gt + dt2 is Kähler if and only if

f = −hh′.

We can extend g to CP2#CP2 provided:

h(α)h′′(α) = −h(β)h′′(β) = −1, h(α) 6= h(β) 6= 0,

h2k+1(α) = h2k+1(β) = 0.
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Koiso-Cao soliton g

Proposition
The U(2)−invariant Kähler metric g = dt2 + gt defined on S3 × (α, β) by
the function h, extends to a gradient shrinking Kähler-Ricci soliton g on
CP2#CP2 if, for a constant c ∈ R, h solves the ODE:

2hh′′ + 4h′2 − 4 + h2(1 + ch′2) = 0

with h(α) =
√

6 and h′(α) = 0.
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2hh′′ + 4h′2 − 4 + h2(1 + ch′2) = 0

c ≈ −0.527619519896, h(α) =
√

6 and h′(α) = 0
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Koiso-Cao soliton 2hh′′ + 4h′2 − 4 + h2(1 + ch′2) = 0

c ≈ −0.527619519896

Proposition

The scalar curvature is a decreasing function in [α, β],

Sg = 4ch′2 + 2chh′′ + 4.

The volume is Vol(g) = 16π2.

The total scalar curvature is S(g) = 16π.
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Yamabe Equation of the Koiso-Cao soliton

Proposition
Let φ be a positive U(2)−invariant function on S3 × (α, β) with the
Koiso-Cao soliton g. The metric φ2 · g extends to CP2#CP2 if

φ′(α) = φ′(β) = 0.

The Yamabe equation is:

6φ′
(

h′′

h′
+ 3

h′

h

)
+ 6φ′′ + Sgφ = φ3

The solutions φ are decreasing on (α, β).
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6φ′
(

h′′
h′ + 3h′

h

)
+ 6φ′′ + Sgφ = φ3

φ(α) > 0 and φ′(α) = 0

Theorem
There exists a unique U(2)-invariant solution to the Yamabe equation
on CP2#CP2 with the Koiso-Cao g.
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Yamabe constant

6φ′
(

h′′
h′ + 3h′

h

)
+ 6φ′′ + Sgφ = φ3

φ(α) > 0 and φ′(α) = 0

Y(CP2#CP2, [g])

≈ 50.249772

< S(g) = 16π ≈ 50.26548 < Y4 = 8
√

6π ≈ 61.5623.
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Thank you!
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