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Aim & Plan

1. Introduction

A Brief Review of Sasaki Manifolds.

— Definition, Background, Properties, and Examples.

2. Results

A Compactness Theorem for Sasaki Manifolds.
— A Cheeger-Gromov-Taylor Type Theorem.
Geometry of Gradient Sasaki-Ricci Solitons.

— Some Diameter Bounds and Gap Theorems.



Sasaki Manifolds

Definition A Riemannian manifold (S, g) is a Sasaki manifold if
(C(8),9) = (Ry. x S,dr® +17g)
is a Kdhler manifold. We identify S with the submanifold {r =1} C C(9).

Typical examples of Sasaki manifolds are odd dimensional spheres. For a
(2n 4+ 1)-dimensional Sasaki manifold (S, g), we define a Reeb vector field &,

a contact form 7, and a (1, 1)-tensor field ® by
. M= (\/—1(5 —0) logfr)|r:1, and @(X) := Vx¢,

0
g = (J§> .

respectively. Here X € X(S). We see that

n€) =1, iedn=0, nA(dn)" #0,
&’ =—-id+£®n, g(®X,®Y) =g9(X,Y) —n(X)n(), X, YeX(9).

The 4-tuple (g,&,7n, ®) defines an almost contact metric structure on S.

From now on, (S, g) denotes a (2n + 1)-dimensional Sasaki manifold.



Background and Motivation

e Introduced by Sasaki and Hatakeyama (1962).
e An odd-dimensional counterpart of a Kahler manifold.
— A Hodge decomposition and a Kahler identity hold on Sasaki manifolds.
e Sasaki-Einstein manifolds play important roles in Theoretical Physics.
— Sasaki-Einstein metrics are used to check the AdS/CFT correspondence.
— The AdS/CFT correspondence stems from String Theory.
e Gauntlett et al discovered irregular Sasaki-Einstein manifolds (2004).
Definition A Sasaki manifold (S, g) is

e quasi-regular if all orbits of £ are compact. Then the space of leaves are Kahler
manifolds or Kahler orbifolds. (Example : Boyer-Galicki, Kollar)

e irregular if otherwise. Then the space of leaves never admit the structure of
manifolds. (Example : Gauntlett-Martelli-Sparks-Waldram)



Transverse Geometry

Let (S, g) be a Sasaki manifold. We define a contact bundle by D := Ker 7.
Then the tangent bundle of S splits as

TS =D @®RE

and this induces a transverse Riemannian metric ¢! := 9glpxp on D.
For X € X(S) and Y € I'(D), we may define a transverse Levi-Civita
connection V1 on D by

T~ TF(V)(Y) if X e F(D),
Vil = {w([x, Y] if X e I'(RE),

where 7 : T'S — D is the orthogonal projection.

Proposition V7 is the unique connection on D satisfying
Zg"(X,Y) =g"(VzX,Y)+¢" (X,VZY), VXY -VyX =n(X,Y)),
where XY, Z € I'(D).




We define a transverse curvature, a transverse Riemannian curvature,
a transverse Ricci curvature, and a transverse scalar curvature by

RY(X,Y)Z :=VxVyZ - V3 VxZ —VixyZ
Rm? (X,Y,Z, W) := T(RT(X Y)Z,W),
2n
Rict (X,Y) ZRm (e;, X,Y,e;), and RT Z:ZRiCT(eiaei)a
1=1 )

respectively. Here X,Y,Z, W € I'(D) and {e;}?", is an orthonormal basis of D.

Proposition (Bianchi identity) For all X,Y,Z, W € I'(D),
e RT(X,Y\Z+RY(Y,Z)X +RT(Z,X)Y =0,
e Rm’ (Y, X,Z,W)=—-Rm? (X,Y, Z,W),
e Rm’(X,Y,Z,W)=Rm” (Z,W,X,Y),
o (VZRT)(Y,Z)W + (VIRT)(Z, X)W + (VZRT)(X,Y)W = 0.




A Myers-Type Theorem for
Complete Sasaki Manifolds

Theorem (Hasegawa and Seino 1981, Nitta 2009) Let (S,g) be a
(2n 4+ 1)-dimensional complete Sasaki manifold. If there exists a positive

constant A\ > 0 such that
Ric' (X, X) > \¢¥ (X, X), X eI'(D),

then (S, g) must be compact with finite fundamental group. Moreover, the
diameter of (S, g) has the upper bound

2n — 1
diam(S, g) < 27 'n,)\ :

Remark The key ingredient in proving Theorem above is the Hopf-Rinow-type
theorem, which asserts that any two points on a complete Sasaki manifold (S, g)
may be joined by a length-minimizing normal geodesic ~ such that v € D.



A Cheeger-Gromov-Taylor-Type Theorem for
Complete Sasaki Manifolds

Theorem ( — 2016) Let (S, g) be a (2n+ 1)-dimensional complete Sasaki
manifold. Suppose that there exist a point p € S and positive constants
ro > 0 and v > 0 such that

(3 +)
d*(x,p)

for all z € S satisfying d(x, p) > ro, where d(x, p) is the transverse distance
between x and p. Then (5, g) must be compact. Moreover, the diameter
from p satisfies

Ric’ (z) > (2n — 1)

diam, (S, g) < roexp (:) .

Remark This theorem holds both for quasi-regular and irregular cases. A future
work is to prove the sharpness of this theorem by constructing a complete non-
compact Sasaki manifold satisfying the condition as in Theorem with v = 0.



Recall An almost Hermitian structure (g,J) of an almost Hermitian manifold
(M,g,J) is called a Kahler structure if

VJ =0.
- - dw — 0 -
Hermitian >  Kahler
J : integrable VJ — O J : integrable
almost dw = 0 almost
>
Hermitian Kahler

Definition An almost contact metric structure (g,&,n, ®) of an almost contact
metric manifold (M, g,&,n, ®) is called a transverse Kahler structure if

Vie =0.

Proposition The almost contact metric structure (g,&,n,®) of a Sasaki
manifold (.S, g) is a transverse Kahler structure.




Transverse Hodge Theory

Let (S,g) be a (2n + 1)-dimensional compact Sasaki manifold.

Definition A real r-form o € Q"(S) on S is basic if

e =0 and Lga=0.
A real function f € C*°(S) on S is basic if £f = 0.
Definition

0% (S) :={all basic r-forms on S}, CZ(S) := {all basic functions on S},

dB = d|Q7é(S)

The exterior derivative d : Q" (S) — Q"1(S) preserves basic forms and induces
the basic de Rham complex

0 — CX(S) 28 QL(S) 22 ... 25, Q2n(g) 25, .

We denote by HE(S) the cohomology group given by the complex above.



The almost complex structure ®|p on D induces the decomposition
D®C= D" q D"
where
DY .={XecD®C:®X)=+v—-1X} and D% := DLO,
Then the set of all basic r-forms splits as

W(S)®C= P WIUS), US) := D(A?(DM)* ® YD),

We may define
Op : ORI(S) — QBFH9(S) and Op : QBY(S) — OBITH(S)

satisfying dg = O + Opg. The operators O and Op preserve basic forms and
induce the basic Dolbeault complex

0 — 22(S) -2 azl(9) L .. 2 azn(s) Lo,

We denote by HZ?(.S) the cohomology group given by the complex above.



Definition We define a transverse Hodge star operator xg by
spa:=*x(NAa), acQ(S5).

Definition We define operators 5,95, and U5 by

dp:=—*podpo *p, Up=—x*godpoxp, and ¥p=—x*po dpoxg,

respectively. Put

Ap:=dpdp +dpdp, Up:=0dp+1v¥pdp, and EB = 531934—6353.

Theorem (Boyer, Galicki, and Nakamaye 2003) Let (S, g) be a (2n+1)-
dimensional compact Sasaki manifold. Then

Hp(S)@C= P HFI(S), HEU(S)~Hy""(9),

p+q=r

1 _
§AB = U = Upg.




Definition We define a transverse Ricci form p! by

ol (X,Y) =Ric! (®X,Y), X,Y eI(D).

2m
class is called to be positive or negative if cP(S) is represented by a positive or

negative basic closed form, respectively.

We define a basic first Chern class by ¢’ (S) := [5=p" | 5. The basic first Chern

Definition A Riemannian metric g on a Sasaki manifold is called a transverse
Kahler-Einstein metric if there exists some constant A € R such that

Ricl = g7
Definition For a basic function f € C%(S), we define
e a transverse gradient vector field V7 f by
g (V' f,X):=dpf(X), X eTI(D).
e a transverse Hessian Hess” f by

Hess' f(X,Y) := ¢ (VEXVTLY), X,Y € I'(D).



Sasaki-Einstein Manifolds

Let (S, g) be a (2n + 1)-dimensional Sasaki manifold.

Proposition The following are equivalent :

e (5,9) is Einstein. Then we have Ric, = 2ng.
e The cone manifold (C(S), g) of (S, g) is Calabi-Yau, namely, Ricz = 0.

o ¢! satisfies the transverse Kahler-Einstein equation

Ric’ = (2n + 2)g7.

Definition A (2n + 1)-dimensional Sasaki manifold (S, g) is a Sasaki-Einstein

manifold if one of the above conditions is satisfied. In this case, cP(S) is positive.

e An obstruction to the existence of Sasaki-Einstein metrics.

e A uniqueness of Sasaki-Einstein metrics.



Gradient Sasaki-Ricci Solitons

Definition (Futaki, Ono, and Wang 2006) A (2n + 1)-dimensional compact
Sasaki manifold (S, g) is a gradient Sasaki-Ricci soliton if

Ric! 4+ Hess' f = (2n + 2)g7
for some basic function f : S — R.

e A natural generalization of a Sasaki-Einstein manifold.

e Corresponds to self-similar solutions to the Sasaki-Ricci flow. o = —2Rict

Riemannian Geometry ——  Sasakian Geometry

Sasaki

Einstein Manifold Einstein Manifold

trivial | trivial |

Gradient Gradient Sasaki
Ricci Soliton Ricci Soliton




A Lower Diameter Bound for Compact
Gradient Sasaki-Ricci Solitons

A lower diameter bound for compact shrinking Ricci solitons was studied by

Fernandez-Lépez and Garcia-Rio 2008, Futaki and Sano 2010,
Andrews and Ni 2011, Chu and Hu 2011, Futaki, Li, and Li 2011.

Theorem (Fukushima 2014) Let (S,g9) be a (2n 4+ 1)-dimensional
non-trivial compact gradient Sasaki-Ricci soliton satisfying

Ric! + Hess” f = (2n + 2)g7.

Then the soliton has the diameter bound

107

diam (M, g) > |
lam (M, 9) 13v2n 1 2

Remark Theorem above gives us a gap phenomenon between non-trivial
gradient Sasaki-Ricci solitons and Sasaki-Einstein manifolds.



A Lower Diameter Bound for Compact
Gradient Sasaki-Ricci Solitons

Theorem ( — 2016) Let (S,g9) be a (2n 4 1)-dimensional non-trivial
compact gradient Sasaki-Ricci soliton satisfying

Ric! + Hess” f = (2n + 2)g7.
Then the diameter of (S, g) has the lower bound

RY — —2n(2 2
diam(S, g) > max n( n+ )
2(27?, + 2) \/Rgax o RT

min

Y

where RL —and RI. | respectively, denote the maximum and minimum

values of the transverse scalar curvature.

Remark This theorem holds both for quasi-regular and irregular cases. When
the soliton has positive transverse Ricci curvature, we have

1
diam(S, g) > RT —RL. .
(S, 9) W




A Myers-Type Compactness Theorem for
Complete Gradient Sasaki-Ricci Solitons

Theorem ( — 2018) Let (S,g) be a (2n + 1)-dimensional complete
gradient Sasaki-Ricci soliton satisfying

Ric! + Hess’ f = (2n + 2)g7.

If |Vf| <k for a non-negative constant k < n, then (S,g) must be
compact. Moreover, the diameter of (S, g) has the upper bound

k+ k% + (n— k)nm?
n—k '

diam(M, g) <

Remark Any compact gradient Sasaki-Ricci soliton satisfies

‘Vf‘ < \/Rraax o Rgin'
Hence, if RY . — RT

2 : :
max  “min < n*, then an upper diameter bound for the solitons
may be obtained in terms of the range of the transverse scalar curvature.



A Gap Theorem for Gradient Sasaki-Ricci Solitons

Recall A (2n + 1)-dimensional Sasaki manifold (S, g) is Sasaki-Einstein if

Ric! = (2n + 2)g7.

Theorem ( — 2014) Let (S, g) be a (2n+1)-dimensional compact gradient
Sasaki-Ricci soliton satisfying

Ric! + Hess’ f = (2n + 2)g7.

Then (S, g) is Sasaki-Einstein if and only if

—nF +/n2F2+4n(2n — 1)(2n + 2)F
2(2n — 1) ’

|Rict —(2n + 2)g7| <

where F := : / VT f|2 is the Sasaki-Futaki invariant.
VOI(Sa g) S

Remark This theorem holds both for quasi-regular and irregular cases.



Future Work

Riemannian Geometry ——  Sasakian Geometry

Sasaki
Einstein Manifold

trivial | trivial |
Gradient Gradient Sasaki
Ricci Soliton Ricci Soliton

Einstein Manifold —

We want to establish
e Upper diameter bounds for compact gradient Sasaki-Ricci solitons.

— Nitta 2009 : A Myers type theorem via transverse Ricci curvature.

e Hitchin-Thorpe inequalities for compact gradient Sasaki-Ricci solitons.

— Boyer and Galicki 2002 : Hitchin-Thorpe inequalities for Sasaki-Einstein mfds.

e Moduli spaces of compact gradient Sasaki-Ricci solitons.

— Podesta and Spiro 2013 : Moduli spaces of compact gradient Ricci solitons.
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