Myers-Type Theorems, Diameter Bounds, and Gap Theorems for Sasaki Manifolds

Homare TADANO

Tokyo University of Science, JAPAN

Constant Scalar Curvature Metrics in Kähler and Sasaki Geometry
January 18, 2018
CIRM, Marseille, France

Aim & Plan

1. Introduction

A Brief Review of Sasaki Manifolds.

Definition, Background, Properties, and Examples.

2. Results

A Compactness Theorem for Sasaki Manifolds.

A Cheeger-Gromov-Taylor Type Theorem.

Geometry of Gradient Sasaki-Ricci Solitons.

Some Diameter Bounds and Gap Theorems.

Sasaki Manifolds

Definition A Riemannian manifold (S, g) is a **Sasaki manifold** if

$$(C(S), \bar{g}) := (\mathbb{R}_+ \times S, dr^2 + r^2 g)$$

is a Kähler manifold. We identify S with the submanifold $\{r=1\}\subset C(S)$.

Typical examples of Sasaki manifolds are **odd dimensional spheres**. For a (2n+1)-dimensional Sasaki manifold (S,g), we define a **Reeb vector field** ξ , a **contact form** η , and a (1,1)-tensor field Φ by

$$\xi := \left. \left(J rac{\partial}{\partial r}
ight)
ight|_{r=1}, \quad \eta := \left. \left(\sqrt{-1} (ar{\partial} - \partial) \log r
ight)
ight|_{r=1}, \quad ext{and} \quad \Phi(X) :=
abla_X \xi,$$

respectively. Here $X \in \mathfrak{X}(S)$. We see that

$$\eta(\xi) = 1, \quad i_{\xi} d\eta = 0, \quad \eta \wedge (d\eta)^n \neq 0,$$

$$\Phi^2 = -id + \xi \otimes \eta, \quad g(\Phi X, \Phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad X, Y \in \mathfrak{X}(S).$$

The 4-tuple (g, ξ, η, Φ) defines an almost contact metric structure on S.

From now on, (S,g) denotes a (2n+1)-dimensional Sasaki manifold.

Background and Motivation

- Introduced by Sasaki and Hatakeyama (1962).
- An odd-dimensional counterpart of a Kähler manifold.
 - A Hodge decomposition and a Kähler identity hold on Sasaki manifolds.
- Sasaki-Einstein manifolds play important roles in Theoretical Physics.
 - Sasaki-Einstein metrics are used to check the AdS/CFT correspondence.
 - The AdS/CFT correspondence stems from String Theory.
- Gauntlett et al discovered irregular Sasaki-Einstein manifolds (2004).

Definition A Sasaki manifold (S, g) is

- quasi-regular if all orbits of ξ are compact. Then the space of leaves are Kähler manifolds or Kähler orbifolds. (Example : Boyer-Galicki, Kollár)
- irregular if otherwise. Then the space of leaves never admit the structure of manifolds. (Example : Gauntlett-Martelli-Sparks-Waldram)

Transverse Geometry

Let (S,g) be a Sasaki manifold. We define a **contact bundle** by $D:=\operatorname{Ker} \eta$. Then the tangent bundle of S splits as

$$TS = D \oplus \mathbb{R}\xi$$

and this induces a transverse Riemannian metric $g^T := g|_{D \times D}$ on D.

For $X\in\mathfrak{X}(S)$ and $Y\in \varGamma(D)$, we may define a transverse Levi-Civita connection ∇^T on D by

$$abla_X^T Y := egin{cases} \pi(
abla_X Y) & \text{if} & X \in \Gamma(D), \\ \pi([X,Y]) & \text{if} & X \in \Gamma(\mathbb{R}\xi), \end{cases}$$

where $\pi: TS \to D$ is the orthogonal projection.

Proposition ∇^T is the unique connection on D satisfying

$$Zg^T(X,Y) = g^T(\nabla_Z^TX,Y) + g^T(X,\nabla_Z^TY), \quad \nabla_X^TY - \nabla_Y^TX = \pi([X,Y]),$$

where $X, Y, Z \in \Gamma(D)$.

We define a transverse curvature, a transverse Riemannian curvature, a transverse Ricci curvature, and a transverse scalar curvature by

$$\begin{split} R^T(X,Y)Z &:= \nabla_X^T \nabla_Y^T Z - \nabla_Y^T \nabla_X^T Z - \nabla_{[X,Y]}^T Z, \\ \mathrm{Rm}^T(X,Y,Z,W) &:= g^T (R^T(X,Y)Z,W), \\ \mathrm{Ric}^T(X,Y) &:= \sum_{i=1}^{2n} \mathrm{Rm}^T \left(e_i,X,Y,e_i\right), \quad \text{and} \quad R^T &:= \sum_{i=1}^{2n} \mathrm{Ric}^T (e_i,e_i), \end{split}$$

respectively. Here $X,Y,Z,W\in\Gamma(D)$ and $\{e_i\}_{i=1}^{2n}$ is an orthonormal basis of D.

Proposition (Bianchi identity) For all $X,Y,Z,W\in \Gamma(D)$,

- $R^{T}(X,Y)Z + R^{T}(Y,Z)X + R^{T}(Z,X)Y = 0$,
- $\operatorname{Rm}^T(Y, X, Z, W) = -\operatorname{Rm}^T(X, Y, Z, W)$,
- $\operatorname{Rm}^T(X, Y, Z, W) = \operatorname{Rm}^T(Z, W, X, Y)$,
- $(\nabla_X^T R^T)(Y, Z)W + (\nabla_Y^T R^T)(Z, X)W + (\nabla_Z^T R^T)(X, Y)W = 0.$

A Myers-Type Theorem for Complete Sasaki Manifolds

Theorem (Hasegawa and Seino 1981, Nitta 2009) Let (S,g) be a (2n+1)-dimensional complete Sasaki manifold. If there exists a positive constant $\lambda > 0$ such that

$$\operatorname{Ric}^{T}(X, X) \geqslant \lambda g^{T}(X, X), \quad X \in \Gamma(D),$$

then (S,g) must be compact with finite fundamental group. Moreover, the diameter of (S,g) has the upper bound

$$\operatorname{diam}(S,g) \leqslant 2\pi \sqrt{\frac{2n-1}{\lambda}}.$$

Remark The key ingredient in proving Theorem above is the **Hopf-Rinow-type** theorem, which asserts that any two points on a complete Sasaki manifold (S,g) may be joined by a **length-minimizing normal geodesic** γ such that $\dot{\gamma} \in D$.

A Cheeger-Gromov-Taylor-Type Theorem for Complete Sasaki Manifolds

Theorem (— **2016)** Let (S,g) be a (2n+1)-dimensional complete Sasaki manifold. Suppose that there exist a point $p \in S$ and positive constants $r_0 > 0$ and $\nu > 0$ such that

$$\operatorname{Ric}^{T}(x) \geqslant (2n-1)\frac{\left(\frac{1}{4} + \boldsymbol{\nu}^{2}\right)}{d^{2}(x,p)}$$

for all $x \in S$ satisfying $d(x,p) \ge r_0$, where d(x,p) is the **transverse** distance between x and p. Then (S,g) must be compact. Moreover, the diameter from p satisfies

$$\operatorname{diam}_p(S,g) \leqslant r_0 \exp\left(\frac{\pi}{\nu}\right).$$

Remark This theorem holds both for quasi-regular and **irregular** cases. A future work is to prove the sharpness of this theorem by constructing a complete non-compact Sasaki manifold satisfying the condition as in Theorem with $\nu=0$.

Recall An almost Hermitian structure (g,J) of an almost Hermitian manifold (M,g,J) is called a Kähler structure if

$$\nabla J = 0.$$

Definition An almost contact metric structure (g, ξ, η, Φ) of an almost contact metric manifold (M, g, ξ, η, Φ) is called a **transverse Kähler structure** if

$$\nabla^T \Phi = 0.$$

Proposition The almost contact metric structure (g, ξ, η, Φ) of a Sasaki manifold (S, g) is a transverse Kähler structure.

Transverse Hodge Theory

Let (S,g) be a (2n+1)-dimensional **compact** Sasaki manifold.

Definition A real r-form $\alpha \in \Omega^r(S)$ on S is basic if

$$i_{\xi} \alpha = 0$$
 and $\mathcal{L}_{\xi} \alpha = 0$.

A real function $f \in \mathcal{C}^{\infty}(S)$ on S is **basic** if $\xi f = 0$.

Definition

$$\Omega^r_B(S):=\{ ext{all basic r-forms on S},\quad \mathcal{C}^\infty_B(S):=\{ ext{all basic functions on S}\},$$

$$d_B:=d|_{\Omega^r_B(S)}.$$

The exterior derivative $d:\Omega^r(S)\to\Omega^{r+1}(S)$ preserves basic forms and induces the basic de Rham complex

$$0 \longrightarrow \mathcal{C}_B^{\infty}(S) \xrightarrow{d_B} \Omega_B^1(S) \xrightarrow{d_B} \cdots \xrightarrow{d_B} \Omega_B^{2n}(S) \xrightarrow{d_B} 0.$$

We denote by $H_B^r(S)$ the cohomology group given by the complex above.

The almost complex structure $\Phi|_D$ on D induces the decomposition

$$D\otimes \mathbb{C}=D^{1,0}\oplus D^{0,1},$$

where

$$D^{1,0}:=\{X\in D\otimes\mathbb{C}:\Phi(X)=\sqrt{-1}X\}\quad \text{and}\quad D^{0,1}:=\overline{D^{1,0}}.$$

Then the set of all basic r-forms splits as

$$\Omega_B^r(S) \otimes \mathbb{C} = \bigoplus_{p+q=r} \Omega_B^{p,q}(S), \quad \Omega_B^{p,q}(S) := \Gamma(\wedge^p(D^{1,0})^* \otimes \wedge^q(D^{0,1})^*).$$

We may define

$$\partial_B:\Omega^{p,q}_B(S) o\Omega^{p+1,q}_B(S) \quad \text{and} \quad \bar{\partial}_B:\Omega^{p,q}_B(S) o\Omega^{p,q+1}_B(S)$$

satisfying $d_B=\partial_B+\bar\partial_B$. The operators ∂_B and $\bar\partial_B$ preserve basic forms and induce the basic Dolbeault complex

$$0 \longrightarrow \Omega_B^{p,0}(S) \xrightarrow{\bar{\partial}} \Omega_B^{p,1}(S) \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} \Omega_B^{p,n}(S) \xrightarrow{\bar{\partial}} 0.$$

We denote by $H_B^{p,q}(S)$ the cohomology group given by the complex above.

Definition We define a transverse Hodge star operator $*_B$ by

$$*_B \alpha := *(\eta \wedge \alpha), \quad \alpha \in \Omega_B^r(S).$$

Definition We define operators δ_B, ϑ_B , and $\bar{\vartheta}_B$ by

$$\delta_B:=-*_B\circ d_B\circ *_B,\quad \vartheta_B=-*_B\circ ar\partial_B\circ *_B,\quad \text{and}\quad ar\vartheta_B=-*_B\circ \partial_B\circ *_B,$$
 respectively. Put

$$\Delta_B:=d_B\delta_B+\delta_Bd_B,\quad \Box_B:=\partial_B\vartheta_B+\vartheta_B\partial_B,\quad \text{and}\quad \overline{\Box}_B:=\bar{\partial}_B\bar{\vartheta}_B+\bar{\vartheta}_B\bar{\partial}_B.$$

Theorem (Boyer, Galicki, and Nakamaye 2003) Let (S,g) be a (2n+1)-dimensional compact Sasaki manifold. Then

$$H_B^r(S) \otimes \mathbb{C} = \bigoplus_{p+q=r} H_B^{p,q}(S), \quad H_B^{p,q}(S) \simeq H_B^{n-p,n-q}(S),$$

$$\frac{1}{2}\Delta_B = \square_B = \overline{\square}_B.$$

Definition We define a transverse Ricci form ρ^T by

$$\rho^T(X,Y) := \operatorname{Ric}^T(\Phi X, Y), \qquad X, Y \in \Gamma(D).$$

We define a basic first Chern class by $c_1^B(S) := \left[\frac{1}{2\pi}\rho^T\right]_B$. The basic first Chern class is called to be **positive** or **negative** if $c_1^B(S)$ is represented by a positive or negative basic closed form, respectively.

Definition A Riemannian metric g on a Sasaki manifold is called a **transverse** Kähler-Einstein metric if there exists some constant $\lambda \in \mathbb{R}$ such that

$$\operatorname{Ric}^T = \lambda g^T$$
.

Definition For a basic function $f \in \mathcal{C}_B^{\infty}(S)$, we define

ullet a transverse gradient vector field $abla^T f$ by

$$g^T(\nabla^T f, X) := d_B f(X), \quad X \in \Gamma(D).$$

ullet a transverse Hessian $\operatorname{Hess}^T f$ by

$$\operatorname{Hess}^T f(X,Y) := g^T(\nabla_X^T \nabla^T f, Y), \quad X, Y \in \Gamma(D).$$

Sasaki-Einstein Manifolds

Let (S,g) be a (2n+1)-dimensional Sasaki manifold.

Proposition The following are equivalent:

- (S,g) is Einstein. Then we have $\mathrm{Ric}_g=2ng$.
- The cone manifold $(C(S), \bar{g})$ of (S, g) is Calabi-Yau, namely, $\mathrm{Ric}_{\bar{g}} = 0$.
- ullet g^T satisfies the transverse Kähler-Einstein equation

$$\operatorname{Ric}^T = (2n+2)g^T.$$

Definition A (2n+1)-dimensional Sasaki manifold (S,g) is a **Sasaki-Einstein** manifold if one of the above conditions is satisfied. In this case, $c_1^B(S)$ is positive.

- An obstruction to the existence of Sasaki-Einstein metrics.
- A uniqueness of Sasaki-Einstein metrics.

Gradient Sasaki-Ricci Solitons

Definition (Futaki, Ono, and Wang 2006) A (2n+1)-dimensional compact Sasaki manifold (S,g) is a **gradient Sasaki-Ricci soliton** if

$$\operatorname{Ric}^T + \operatorname{Hess}^T f = (2n+2)g^T$$

for some **basic** function $f: S \to \mathbb{R}$.

- A natural generalization of a Sasaki-Einstein manifold.
- Corresponds to self-similar solutions to the Sasaki-Ricci flow.

$$\frac{\partial g^T}{\partial t} = -2\operatorname{Ric}^T$$

A Lower Diameter Bound for Compact Gradient Sasaki-Ricci Solitons

A lower diameter bound for compact shrinking Ricci solitons was studied by

Fernández-López and García-Río 2008, Futaki and Sano 2010,

Andrews and Ni 2011, Chu and Hu 2011, Futaki, Li, and Li 2011.

Theorem (Fukushima 2014) Let (S,g) be a (2n+1)-dimensional non-trivial compact gradient Sasaki-Ricci soliton satisfying

$$\operatorname{Ric}^T + \operatorname{Hess}^T f = (2n+2)g^T.$$

Then the soliton has the diameter bound

$$\operatorname{diam}(M,g) \geqslant \frac{10\pi}{13\sqrt{2n+2}}.$$

Remark Theorem above gives us a gap phenomenon between non-trivial gradient Sasaki-Ricci solitons and Sasaki-Einstein manifolds.

A Lower Diameter Bound for Compact Gradient Sasaki-Ricci Solitons

Theorem (— **2016)** Let (S,g) be a (2n+1)-dimensional non-trivial compact gradient Sasaki-Ricci soliton satisfying

$$\operatorname{Ric}^T + \operatorname{Hess}^T f = (2n+2)g^T$$
.

Then the diameter of (S, g) has the lower bound

diam
$$(S,g) \ge \frac{R_{\text{max}}^T - 2n(2n+2)}{2(2n+2)\sqrt{R_{\text{max}}^T - R_{\text{min}}^T}},$$

where R_{\max}^T and R_{\min}^T , respectively, denote the maximum and minimum values of the transverse scalar curvature.

Remark This theorem holds both for quasi-regular and irregular cases. When the soliton has positive transverse Ricci curvature, we have

$$\operatorname{diam}(S,g) \geqslant \frac{1}{2(2n+2)} \sqrt{R_{\max}^T - R_{\min}^T}.$$

A Myers-Type Compactness Theorem for Complete Gradient Sasaki-Ricci Solitons

Theorem (— **2018)** Let (S,g) be a (2n+1)-dimensional complete gradient Sasaki-Ricci soliton satisfying

$$\operatorname{Ric}^T + \operatorname{Hess}^T f = (2n+2)g^T.$$

If $|\nabla f| \leq k$ for a non-negative constant k < n, then (S, g) must be compact. Moreover, the diameter of (S, g) has the upper bound

$$\operatorname{diam}(M,g) \leqslant \frac{k + \sqrt{k^2 + (n-k)n\pi^2}}{n-k}.$$

Remark Any compact gradient Sasaki-Ricci soliton satisfies

$$|\nabla f| \leqslant \sqrt{R_{\max}^T - R_{\min}^T}.$$

Hence, if $R_{\rm max}^T - R_{\rm min}^T < n^2$, then an upper diameter bound for the solitons may be obtained in terms of the range of the transverse scalar curvature.

A Gap Theorem for Gradient Sasaki-Ricci Solitons

Recall A (2n+1)-dimensional Sasaki manifold (S,g) is Sasaki-Einstein if

$$Ric^T = (2n+2)g^T.$$

Theorem (— **2014)** Let (S,g) be a (2n+1)-dimensional compact gradient Sasaki-Ricci soliton satisfying

$$\operatorname{Ric}^T + \operatorname{Hess}^T f = (2n+2)g^T.$$

Then (S,g) is **Sasaki-Einstein** if and only if

$$|\operatorname{Ric}^{T} - (2n+2)g^{T}| \le \frac{-n\mathcal{F} + \sqrt{n^{2}\mathcal{F}^{2} + 4n(2n-1)(2n+2)\mathcal{F}}}{2(2n-1)},$$

where
$$\mathcal{F}:=rac{1}{\mathrm{vol}(S,g)}\int_{S}|
abla^{T}f|^{2}$$
 is the Sasaki-Futaki invariant.

Remark This theorem holds both for quasi-regular and irregular cases.

Future Work

We want to establish

- Upper diameter bounds for compact gradient Sasaki-Ricci solitons.
 - Nitta 2009: A Myers type theorem via transverse Ricci curvature.
- Hitchin-Thorpe inequalities for compact gradient Sasaki-Ricci solitons.
 - Boyer and Galicki 2002: Hitchin-Thorpe inequalities for Sasaki-Einstein mfds.
- Moduli spaces of compact gradient Sasaki-Ricci solitons.
 - Podestà and Spiro 2013: Moduli spaces of compact gradient Ricci solitons.

References

Lower and Upper Diameter Bounds for Compact Ricci Solitons

- 1. ____, J. Math. Phys. **58** (2017).
- 2. ____, Diff. Geom. Appl. **44** (2016).

Myers Type Theorems for Ricci Solitons

- 3. ____, Pacific J. Math. **294** (2018).
- 4. ____, Rend. Semin. Mat. Univ. Politec. Torino 73 (2015).
- 5. ___, submitted to Complex Manifolds (2017).

Some Generalizations of Ricci Solitons

6. ____, Internat. J. Math. **26** (2015).

Thank You for Your Attention!

Sakurajima Volcano (Kagoshima, JAPAN)