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Set-up

We study spaces (M, g) which generalize the space-time: complete
manifolds with ends modeled by ((R2n \ Ball)/Γ, gEucl) with Γ finite
subgroup of SO(2n), called asymptotically locally Euclidean (ALE)

Require that the manifolds are endowed with a complex structure J
such that the metric g is Kähler

Preferred Kähler metrics:
I ALE Ricci-flat Kähler if c1(KM) = 0 in H2(M,R), or hyperkähler if M

simply connected (KM=trivial line bundle)
I ALE scalar flat Kähler metrics (scalar curvature sg = 0) in the general

case

Questions:

Can we classify the ALE Ricci-flat Kähler manifolds?
Can we classify the ALE scalar flat Kähler manifolds?
How does the classification depend on the complex dimension n?
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Complete Kähler manifolds with prescribed asymptotics

Definition

(M, J, g) is an Asymptotically Locally Euclidean (ALE) Kähler
manifold with asymptotics Cn/Γi , with Γi ⊂ U(n) is a finite group acting
freely on Cn∗, if there exists a compact subset K ⊂ M and for each
connected component Ui ⊂ M \ K there is a map f : Ui → Cn/Γi which is
a diffeomorphism between Ui and a subset {z ∈ Cn/Γi | r(z) > Ri} for
some fixed Ri ≥ 0, such that f∗(g)− g0 = O(r−2) and appropriate decay
in the derivatives, where g0 is the Euclidean metric on Cn/Γi .

Remark:

Hein-LeBrun (2016) show that an ALE Kähler manifold has only one end.
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Complex dimension 2: classification of ALE Ricci-flat
Kähler surfaces

Theorem (Kronheimer 1989, S. 2012)

Let (M, J, g , ωg ) be a smooth ALE Ricci-flat Kähler surface, asymptotic to
C2/Γ, where Γ is a finite subgroup of U(2) acting freely on C2 \{0}. Then

the complex manifold (M, J) can be obtained as the minimal
resolution of a fiber of a one-parameter Q−Gorenstein
deformation of the quotient singularity C2/Γ,

given the Kähler class Ω = [ωg ] ∈ H2(M,R), then g is the unique
ALE Ricci-flat Kähler metric in this class,

Any complex surface (M, J) obtained by the above construction admits a
unique ALE Ricci-flat Kähler metric in any Kähler class Ω.
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Key ingredients

The case of simply connected manifolds is due to Kronheimer and his
proof is based on the twistor theory of hyperkähler 4-manifolds
(holonomy SU(2)), and Γ ⊂ SU(2) of type A, D, E.

On Ak−1-surfaces the metric is of the form (Hitchin, Eguchi-Hanson,
Gibbons-Hawking):

g = γdzdz̄ + γ−1(
2dy

y
+ δ̄dz)(

2dȳ

ȳ
+ δdz̄)

γ =
k∑

i=1

((b − bi )
2 + |z̄ + ai |2)−

1
2 , δ =

k∑
i=1

(b − bi )−∆i

∆i (z̄ + ai )

I parameters (ai , bi ) ∈ C× R = R3, i = 1, . . . , k
I b and ∆i are defined in terms of (ai , bi ) and local coordinates y , z .
I parameters {ai} ⊂ C determine the complex on

(M, J) = (xy −
∏

(z + āi ) = 0),
I the Kähler class is determined by the coefficients 8π(bi − bi+1) ∈ R on

a preferred basis of H2(M,R).
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The metrics are explicit, constructed by Eguchi-Hanson,
Gibbons-Hawking, Hitchin and Kronheimer, in the simply connected
case.

The hyperkähler parameters (g , J1, J2, J3 = J1J2) can be reinterpreted
in terms of Kähler data (J, ωg ).

The non simply connected case is proved via an equivariant twistor
construction and uses a one point conformal compactification at
infinity.

In the non-simply connected case we have in addition only free
quotients of A∗-surfaces with asymptotics given by

C2/
1

dn2
(1, dnm − 1), (n,m) = 1.
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Remarks:

Given an asymptotic behavior the diffeotype of the ALE Ricci flat
Kähler manifold is unique.

the order of the decay of the metric is O(r−4).

If Γ cyclic, in each Kähler class there exists also an Asymptotically
Locally Flat (ALF) Ricci-flat Kähler metric, which has cubic volume
growth. (Hawking, Cherkis-Hitchin, S.)
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Q-Gorenstein smoothings of quotient singularities

Definition

A flat surjective map π : X → ∆, where ∆ ⊂ C is an open neighborhood
of 0, is called a one-parameter Q−Gorenstein smoothing of a normal
variety X0 if π−1(0) = X0 and the following conditions are satisfied:

i) X is Q−Gorenstein,

ii) Xt = π−1(t) is smooth for every t ∈ ∆ \ {0}.

Q−Gorenstein: X is normal, Cohen-Macaulay and a multiple of the
canonical divisor is Cartier.
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Kollár and Shepherd-Barron’s classification

Theorem (Kollár and Shepherd-Barron, 1988)

An isolated quotient surface singularity (N0 = C2/Γ, 0) which admits a
one-parameter Q−Gorenstein smoothing is either a rational double point
or a cyclic singularity of type C2/ 1

dn2
(1, dnm − 1) for d > 0, n ≥ 2 and

n,m relatively prime.
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Rational double points

Rational double points correspond to the case when Γ ⊂ SU(2). They
are singularities of type Ak ,Dk or E6,E7,E8. All of them are isolated
hypersurface singularities (f (x , y , z) = 0), where f ∈ C[x , y , z ].

The total space X → ∆ is smooth.

The minimal resolution and the generic fiber of a deformation are
diffeomorphic, but endowed with distinct complex structures. In
particular the deformation Xt is simply connected.

A complex complex structure on these spaces is given by a mixed
construction: a Q-Gorenstein deformation, possibly with isolated
rational double points which can be resolve by considering the minimal
resolutions. The singular fiber is the canonical model of the manifold.
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Cyclic quotients of type C2/ 1
dn2 (1, dnm − 1)

Remark: If n = m = 1 then this is an Ad−1 singularity.

0→ Zdn → Zdn2 → Zn → 0 with Zdn ⊂ SU(2)

C2/
1

dn
(1,−1) ↪→ M0 = (xy = zdn) ⊂ C3

(z1, z2) → (x , y , z) = (zdn1 , zdn2 , z1z2) ∈ C3

Moduli space of deformations:

C2/Zdn ⊂ M = (xy = zdn + e1z
dn−1 + · · ·+ edn) ⊂ C3+dn

↓ π ↓ π

0 ∈ Cdn 3 (e1, . . . , edn)

Then, N0 = M0/Zn, where Zn acts on C3 as follows:

ξ(x , y , z) = (ξx , ξ−1y , ξmz), ξn = 1.
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Let M′ ⊂ C3 × Cd , M′ = (xy = zdn +
∑d

j=1 ejnz
(d−j)n).

We extend trivially the Zn action on M′ ⊂ C3+d . Let N =M′/Zn.

Then
C2/Zdn2 ⊂ N
↓φ ↓φ
0 ∈ Cd 3 (en, . . . , edn)

Proposition (Kollár, Shepherd-Barron)

The map φ : N → Cd is a Q−Gorenstein deformation of the cyclic

singularity of type
1

dn2
(1, dnm − 1). Moreover, every one-parameter

Q−Gorenstein deformation X → ∆ of a singularity of type
1

dn2
(1, dnm − 1) is isomorphic to the pullback through φ of a germ of a

holomorphic map (∆, 0)→ (Cd , 0).
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A complex analysis approach

Problem (Yau, ICM 1978)

Can the complete Ricci-flat Kähler metric be obtained via complex
Monge-Ampère techniques?

Theorem (Tian-Yau, 1990, 2-dimensional simplified version)

Let X be a compact Kähler orbifold of complex dimension 2. Let D be an
admissible, almost ample divisor in X , such that −KX = βD, β > 1.
Assume that D admits a Kähler-Einstein metric with positive scalar
curvature. Then X = X \ D admits a complete Ricci-flat Kähler metric g ,
which has Euclidean volume growth.

Recent improvements to the Tian-Yau theorem are due to Joyce, Van
Coevering, Hein, Conlon, Haskins, Tosatti, Weinkove, Santoro, others
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Compactifications

Preferred compactification induced by the Kähler structure:

Theorem (Rasdeaconu-S. 2014)

Let (M, J, g) be an ALE Ricci-flat Kähler surface. Then there exists a
complex compactification (M, J̄,D), where M is an orbifold surface and
D = M \M is the divisor at infinity, such that D is admissible, almost
ample, admits a Kähler-Einstein metric and −KM = β[D], β > 1. In
particular, any ALE Ricci-flat Kähler metric g can be obtained as a
Tian-Yau metric.

Corollary (Rasdeaconu-S. 2014)

The explicit ALE Ricci-flat Kähler metrics on complex surfaces constructed
by Eguchi-Hanson, Gibbons-Hawking, Hitchin, Kronheimer, and their finite
free quotients can be obtained by the Tian-Yau construction.
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Other algebraic compactifications:

Theorem (Rasdeaconu-S. 2014)

The fiber of a one-parameter Q−Gorenstein deformation of a quotient
singularity embeds into a log del Pezzo surface as the complement of a
smooth, rational curve, which is a rational multiple of the anticanonical
divisor. The singularities along the divisor at infinity are all finite cyclic
quotients. In the case of a finite cyclic singularity there are infinitely many
minimal compactifications.

Example:

N = (xy = zdn + 1)/Zn ⊆ C3/
1

n
(1,−1,m)

admits a compactification as a hypersurface in a weighted projective space:

N = (xy = zdn + wdc) ⊆ P3(a, b, c , n)

where a + b = dnc, am = c mod n, and gcd(c , n) = gcd(a, c) = 1.

Infinitely many compactifications, parametrized by c.
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Using analytical compactifications, Conlon-Hein gave a new proof of the
Kronheimer’s classification.
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ALE Ricci flat Kähler manifolds of dimension n ≥ 3

Given an ALE Ricci flat Kähler manifolds (M, J, g) of dimension
dimCM = n ≥ 3, then:

(M, J) is a crepant resolution of Cn/Γ with Γ ⊂ SU(n) acting freely
on Cn \ {0}, consequence of Schlessinger’s Rigidity Theorem and
KM =trivial

on (M, J) there exists a unique ALE Ricci flat Kähler metric in each
Kähler class, by Joyce.

metrics also constructed by Calabi, Tian-Yau
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ALE scalar flat Kähler surfaces (n = 2)

Existence known on:

minimal resolution of C2/Γ, Γ ⊂ U(2), by LeBrun, Joyce,
Calderbank-Singer if Γ =cyclic group, Lock-Viaclovsky if Γ non-cyclic

deformations of the minimal resolution by Honda (using twistor
spaces) and Han-Viaclovsky

Deformations of C2/Γ, examples:

The reduced deformation space of the singularities of the type
1

n2
(1, n − 1), n ≥ 2 or

1

4d
(1, 2d − 1), d ≥ 1 has exactly two

components, the Q−Gorenstein component and the component
corresponding to the (minimal) resolution.

For the singularity
1

(2k + 1)2
(1, 4k + 1), k ≥ 2, in addition to the

Artin and the Q−Gorenstein components, the reduced deformation
space has exactly one more component.
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ALE Kähler manifolds

General setting of ALE Kähler manifolds.

Open Questions:

Can we classify the ALE Kähler manifolds?

What is the underlying complex structure?

Do they admit ALE scalar flat Kähler metrics?

Are the metrics unique in a given Kähler class?
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A characterization of ALE Kähler manifolds

Theorem (Hein-Rasdeaconu-S. 2016)

Every ALE Kähler manifold asymptotic to Cn/Γ is isomorphic to a
resolution of a deformation of the isolated quotient singularity (Cn/Γ, 0).

Corollary (Rigidity in higher dimensions, Hein-Rasdeaconu-S. 2016)

Every ALE Kähler manifold asymptotic to Cn/Γ, n ≥ 3, is the resolution of
the quotient Cn/Γ.

Consequence of the Schlessinger Rigidity Theorem.

Corollary (Finiteness in dimension two, Hein-Rasdeaconu-S. 2016)

For every finite subgroup Γ ⊂ U(2) there exist only finitely many
diffeomorphism types underlying minimal ALE Kähler surfaces which are
asymptotic to C2/Γ. All of them have finite fundamental group.
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Main steps to prove the theorem:

Hein-LeBrun: use the asymptotic behavior to compactify (M, J) to
(M, J) with a divisor at infinity D = D∞ = P(Cn/Γ).

the normal orbi-bundle ND|M = OD(D) is ample and its ring of

sections R(D,OD(D)) is isomorphic to the coordinate ring of the
isolated quotient singularity Cn/Γ.

the Q-Cartier divisor OM(D) is pseudo-ample

M is projective variety, as the singularities of M are rational
singularities
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Consider φ : M → CPN the morphism defined by the linear system
|mD| for m large enough, and let M ′ = φ(M) and D ′ = φ(D).

Proposition

The complex variety M ′ is normal and the map φ is an isomorphism in a
neighborhood of D. In particular, no φ-exceptional divisor intersects D.

Proposition

There exists a one-parameted family π :M⊂ CPN+1 → C such that
π−1(1) = M ′ and π−1(0) = CD′= cone over D ′, given by the sweeping of
the cone construction.

Key ingredient: R(M ′,O(D ′)) ' R(D ′,OD′(D ′))[S ], where S is a
degree 1 homogeneous element of R(M ′,O(D ′)).
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Thank you!
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