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Aim Classify all homogeneous Kähler manifolds (h.K.m.) which

admit a Kähler immersion into a given finite or infinite dimen-

sional complex space form.

Advertising for the book: -, M. Zedda, Kähler immersions of

Kähler manifolds into complex space forms, https://arxiv.org/abs/1712.04298.
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.
3



1. General definitions: Kähler manifolds,

complex space forms and their classification
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Kähler manifolds

Let (M, g) = (M, g, ω, J) be a Kähler manifold of complex dimen-

sion n.

ω(X,Y ) = g(X, JY ), X,Y ∈ X(M), dω = 0.

The form ω is called the Kähler form associated to the metric g.

On a contractible open set U ⊂M

ω =
i

2
∂∂̄Φ =

i

2

n∑
j=1

∂2Φ

∂zj∂z̄k
dzj ∧ dz̄k,

where Φ : U → R is a strictly PSH function called a Kähler

potential for the metric g.
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Complex space forms

A complex space form (S, gS) = (S, gS, ωS, JS) is a finite or infinite

dimensional Kähler manifold of constant holomorphic sectional

curvature.
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Classification of complex space forms

Complex Euclidean space CN≤∞ := (CN≤∞, g0)

C∞ := `2(C) (z = {zj} ∈ `2(C) iff
∑∞
j=1 |zj|

2 <∞)

ω0 = i
2∂∂̄|z|

2 = i
2
∑N
j=1 dzj ∧ dz̄j, |z|

2 = |z1|2 + · · ·+ |zN |2.

Complex hyperbolic space CHN≤∞ := ({z ∈ CN | |z|2 < 1}, ghyp)

ωhyp = − i
2∂∂̄ log(1− |z|2).

Complex projective space CPN≤∞ = (CN+1 \ {0}/z ∼ λz, gFS)

ωFS|U0
= i

2∂∂̄ log(1+|z|2), zj =
Zj
Z0

, j = 1, . . . , N , U0 = {Z0 6= 0}.
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2. Kähler immersions into complex space forms

(E. Calabi, Ann. Math. 1953)
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Kähler immersions into complex space forms

Let (M, g) be a Kähler manifold. A Kähler immersion

f : (M, g)→ (S, gS)

is a holomorphic map (i.e. df ◦ J = JS ◦ df) which is isometric

(i.e. f∗gS = g).

Remark The “starting” manifold M will be always finite dimen-

sional.

Terminology A Kähler metric g on a complex manifold M is

projectively induced if (M, g) can be Kähler immersed into a

finite or infinite dimensional complex projective space.
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Calabi’s results on Kähler immersions (1953)

Theorem (Calabi’s rigidity) Let f : (M, g)→ (S, gS) be a Kähler

immersion. Then any other Kähler immersion of (M, g) into

(S, gS) is given by U ◦ f where U is a unitary transformation, i.e.

U ∈ Aut(S) ∩ Isom(S, gS).

Theorem (Calabi’s extension theorem) A simply-connected Kähler

manifold (M, g) admits a Kähler immersion into a given complex

space form (S, gS) iff there exists an open set U ⊂ M such that

(U, g|U) can be Kähler immersed into (S, gS).
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Complex Euclidean spaces into complex space forms

Cn 9 CHN≤∞,CPN<∞ Cn ↪→ CN≤∞, n ≤ N

We have the following Calabi’s immersion

Cn → CP∞ : z 7→ (. . . ,

√
1

j!
zj, . . .), |j| ≥ 0

zj = z
j1
1 · · · z

jn
n |j| = j1 + · · ·+ jn, j! = j1! · · · jn!
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Complex hyperbolic spaces into complex space forms

Let CHn
λ = (CHn, λghyp), λ > 0, CHn := CHn

1 = (CHn, ghyp)

CHn
λ 9 CN<∞,CPN<∞ CHn

λ → CHN≤∞ ⇔ λ = 1, n ≤ N

We have the following Calabi’s immersions

CHn
λ → `2(C) : z 7→

√
λ(. . . ,

√
(|j| − 1)!

j!
zj, . . .), |j| ≥ 1

CHn
λ → CP∞ : z 7→ (. . . ,

√
λ(λ+ 1) · · · (λ− 1 + |j|)

j!
zj, . . .), |j| ≥ 0

zj = z
j1
1 · · · z

jn
n , |j| = j1 + · · ·+ jn, j! = j1! · · · jn!
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Complex projective spaces into complex space forms

Let CPnλ = (CPn, λgFS), λ > 0, CPn := CPn1 = (CPn, gFS)

CPnλ 9 CN≤∞,CHN≤∞

Let k ∈ Z and Nk := (n+k)!
n!k! − 1. Then the map

CPnk
Vk→ CPNk : [Z] 7−→ [. . . ,

√
|j|!
j!

Zj, . . .], |j| ≥ 0

Zj = Z
j0
0 · · ·Z

jn
n , |j| = j0 + · · ·+ jn, j! = j0! · · · jn! satisfies

V ∗k gFS = kgFS
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3. H.K.m. and their classification

(J. Dorfmeister, K. Nakajima, 1988)

14



Homogeneous Kähler manifolds

A homogeneous Kähler manifold (h.K.m.) is a Kähler manifold

(M, g) such that the Lie group G = Aut(M) ∩ Isom(M, g) acts

transitively on M .

Remark. The metric g is not uniquely determined by G. The-

re exist different (neither homothetic or isometric) G-invariant

homogeneous metrics.

Examples: Complex space forms are h.K.m.
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Homogeneous bounded domains

Let Ω ⊂ Cn, Ω bounded domain endowed with a homogeneous
Kähler metric gΩ. Then (Ω, gΩ) is called a homogeneous boun-
ded domain (h.b.d.).

If Aut(Ω) acts transitively on Ω ⊂ Cn then (Ω, gΩ = gB) is a
bounded symmetric domain ∗, gB is is the Bergman metric whose
associated Kähler form ωB = i

2∂∂̄ logK, where K is the reprodu-
cing kernel for the Hilbert space of holomorphic L2-functions on
Ω.

Remark. Every bounded symmetric domain (Ω, gB) is a h.b.d.
but there exist (Pyatetskii-Shapiro, 1969) h.b.d. (Ω, gB) which
are not bounded symmetric domains.
∗A bounded symmetric domain Ω ⊂ Cn is a domain where the geodesic
symmetry expx(v) 7→ expx(−v) is a Kähler map.
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Other examples of h.K.m.

Flat h.K.m. E = Ck×F where F is a non simply-connected (either

compact or non compact) flat Kähler manifold.

Compact simply-connected h.K.m. These are also called Kähler

C-spaces or rational homogeneous varieties.

Compact h.K.m. (M, g) = C×T1×· · ·×Tl, C-space, Tj flat torus.

Products of homogeneous Kähler manifolds The products of h.K.m.

is a h.K.m.
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Solution of the fundamental conjecture (FC) for h.K.m.

Theorem FC (J. Dorfmeister, K. Nakajima, 1988) A h.K.m.

(M, g) is the total space of a holomorphic fiber bundle over a

h.b.d. (Ω, gΩ). Moreover the fiber F = E×C is (with the induced

Kähler metric) the Kähler product of a flat homogeneous Kähler

manifold E = Ck × F and a C-space C.

F = E × C Kähler
↪−→ (M, g)

π↓
(Ω, gΩ)

Remark. M
top
= Ω×F as a complex manifold.
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4. Kähler immersions of h.K.m.

into complex space forms (Theorems 1, 2, 3, 4)

19



Homogeneous Kähler manifolds into CN≤∞

Theorem 1 (-, A. J. Di Scala, H Hishi, 2012) Let (M, g) be a

n-dimensonal h.K.m. which can be Kähler immersed into CN≤∞.

Then (M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
. Moreover, the immersion

is given, up to a unitary transformation of CN by

f0 × f1 × · · · × fl,

where f0 is the linear inclusion Ck tot.geod.−→ CN and each fr :

CHnr
λr
−→ `2(C), r = 1, . . . , l, are Calabi’s immersions.
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Homogeneous Kähler manifolds into CHN≤∞

Theorem 2 (-, A. J. Di Scala, H Hishi, 2012) Let (M, g) be a n-

dimensional h.K.m. which can be Kähler immersed into CHN≤∞.

Then, up to a unitary transformation of CHN ,

(M, g) = CHn tot.geod.−→ CHN .
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Two theorems on h.K.m. into CPN≤∞

Theorem 3 (-, A. J. Di Scala, H Hishi, 2012) Let (M, g) be a n-
dimensional h.K.m. which can be Kähler immersed into CPN≤∞.
Then ω is integral, π1(M) = 1 and the immersion is injective.

Theorem 4 (-, R. Mossa, 2014) Let (M, g) be a simply-connected

h.K.m. such that its associated Kähler form ω is integral. Then

there exists m0 ∈ Z such that

(M,m0g)→ CPN≤∞.
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Remarks on the compact case

When M is compact Theorem 3 and Theorem 4 were proved by

M. Takeuchi (1978) using the theory of semisimple Lie groups

and Dynkin diagrams (one can take m0 = 1 in Theorem 4).

Notice that if a h.K.m. can be Kähler immersed into CPN<∞

then M is a C-space, i.e. is a compact (simply-connected) Kähler

manifold.

Viceversa if M is any compact (not necessarily homogeneous)

Kähler manifold which can be Kähler immersed into CPN≤∞ one

can assume N <∞.
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The necessity of taking m0 in Theorem 4

Let Ω be an irreducible bounded symmetric domain. The Wal-

lach set† W (Ω) ⊂ R is a subset of R which “looks like”:

0 · · · ·︸ ︷︷ ︸—————————

↑
discrete part of W (Ω)

↑
continuous part of W (Ω)

Important property of the Wallach set: W (Ω) = R (and

hence the discrete part of W (Ω) is empty) if and only if Ω = CHn.

†W (Ω) consists of all λ ∈ R such that there exists a Hilbert space Hλ whose
reproducing kernel is K

λ

γ , γ the genus of Ω, where K is the reproducing
kernel for the Hilbert space of holomorphic L2-functions on Ω.
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The Wallach set and Kähler immersions into CP∞

Theorem W (–, M. Zedda, 2010) Let (Ω, gB) be a irreducible

bounded symmetric domain. Then (Ω, λgB) can be Kähler im-

mersed into CP∞ if and only if λγ ∈W (Ω)\{0}, where γ denotes

the genus of Ω.
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Two consequences of Theorem W

First consequence: Let (Ω, gB) 6= CHn be a irreducible bounded

symmetric domain. One can find λ > 0 such that λγ /∈W (Ω):

0 · · · · ∗ —————————

↑
λγ /∈W (Ω)

By Theorem W, λgB is not projectively induced and λωB is in-

tegral (this shows the necessity of taking m0 > 1 in Theorem

4).

Second consequence: The complex hyperbolic space is the

only irreducible bounded symmetric domain (Ω, gB) where λgB is

projectively induced, for all λ > 0.
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A Lemma for homogeneous bounded domains

Lemma H (-, A. J. Di Scala, H Hishi, 2012) Let (Ω, gΩ) be

a h.b.d. If (Ω, λgΩ) can be Kähler immersed into CP∞ for all

λ > 0, then (Ω, gΩ) = CHn1
λ1
× · · · × CHnl

λl
.

Ingredients for the proof. Unitary representation of semisimple

Lie groups; reproducing kernels of weighted Bergman spaces.
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5. Sketch of the proofs of Theorem 1, 2, 3, 4
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Sketch of the proof of Theorem 1

(M, g)
f→ CN≤∞ we want to prove that:

(M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
and f = f0 × f1 × · · · × fl.

1. Theorem FC + Calabi’s rigidity theorem+ max principle ⇒

F = Ck × 6F × 6C Kähler
↪−→ (M, g) → CN≤∞

π↓
(Ω, gΩ)

2. Riemannian geometry + homogeneity ⇒

(M, g)
Kähler

= Ck × (Ω, gΩ) ⇒ (Ω, λgΩ)→ CN≤∞, ∀λ > 0.
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3. S. Bochner (1947) ⇒ (Ω, λgΩ)→ CP∞, ∀λ > 0.

4. Lemma H ⇒ (Ω, gΩ) = CHn1
λ1
× · · · × CHnl

λl
⇒

⇒ (M, g) = Ck × CHn1
λ1
× · · · × CHnl

λl
.

5. The fact that the immersion f is, up to a unitary tran-

sformation of CN , of the form f = f0 × f1 × · · · × fl follows by

the reducibility of a Kähler product into CN≤∞ and by Calabi’s

rigidity theorem. �
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Sketch of the proof of Theorem 2 (based on Theorem 1)

If (M, g)→ CHN≤∞ we want to prove that

(M, g) = CHn tot.geod.−→ CHN .

1. (M, g)→ CHN≤∞ ⇒ (M, g)→ `2(C).

2. Theorem 1 ⇒ (M, g) = Ck×CHn1
λ1
×· · ·×CHnl

λl
⇒M = CHn. �
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Sketch of the proof of Theorem 3

Let f : (M, g)→ CPN≤∞ be a Kähler immersion.

The integrality of ω = f∗ωFS is immediate since ωFS is integral.

Th. FC⇒
F = Ck × 6F×C Kähler

↪−→ (M, g) → CPN≤∞
π↓

(Ω, gΩ)

⇒M
top
=

Ω× Cn × C is simply-connected.

Calabi’s rigidity ⇒ f ◦ g = Ug ◦ f , ∀g ∈ G = Aut(M) ∩ Isom(M, g)
⇒ f(M) is a h.K.m. ⇒ f(M) ⊂ CPN is simply-connected.

f : M → f(M) is a local isometry ⇒ f is a covering map ⇒ f is
injective. �

32



Sketch of the proof of Theorem 4

Let (M, g) be a simply-connected h.K.m. with ω integral we want

to show that (M,m0g)→ CPN≤∞, for some m0 ∈ Z.

1. Let L be a holomorphic line bundle with c1(L) = [ω] and

consider the Hilbert space

Hm = {s ∈ H0(L) |
∫
M
hm(s, s)

ωn

n!
<∞}

where hm is an Hermitian metric on Lm such that Ric(hm)‡ = mω.

2. There exists m0 ∈ Z such that Hm0 6= {0} (J. Rosenberg, M.

Vergne, 1984);

‡Ric(hm) = − i
2
∂∂̄ loghm(σ(x), σ(x)), where σ : U → Lm is a trivialising

holomorphic section of Lm.
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3. Consider the smooth function on M given by:

εm0(x) =

dm0∑
j=0

hm0(sj(x), sj(x)),

where {s0, . . . , sdm0
} is an orthonormal basis of Hm0.

Homogeneity + π1(M) = 1 ⇒ εm0(x) is a positive constant.

4. Therefore the “Kodaira map”

ϕm0 : M → CP dm0, x 7→ [s0(x), . . . , sdm0
(x)]

is well-defined and it satisfies

ϕ∗m0
ωFS = m0ω +

i

2
∂∂̄ log εm0 = m0ω.

�
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5.The Kähler-Einstein case
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The Kähler-Einstein case

Theorem (M. Umehara, 1987) Let (M, g) be a complete KE ma-

nifold of complex dimension n which admits a Kähler immersion

into CN (resp. CHN). Then (M, g) = Cn (resp.(M, g) = CHn).

Conjecture A: A compact KE manifold which admits a Kähler

immersion into a complex projective space is homogeneous (Chern

(1967), Tsukada (1986), Hulin (2000)).

Remark: The conjecture cannot be weakened to the noncom-

pact case. There exist examples (even continuous family) of

noncompact and nonhomogeneous KE submanifolds of CP∞ (–,

M. Zedda, 2010).
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The Ricci flat case

Conjecture B: A Ricci flat projectively induced Kähler metric is

flat.

Theorem (-, F. Salis, F. Zuddas, 2018) A projectively induced

Ricci flat and radial Kähler metric is flat.
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Conjecture B cannot be weakened to scalar flat metrics

Let S be the blow-up of C2 at the origin and denote by E the

exceptional divisor. Simanca constructs a scalar flat Kähler com-

plete (not Ricci-flat) metric gS on S whose Kähler potential on

S \ E = C2 \ {0} can be written as

ΦS(|z|2) = |z|2 + log |z|2, |z|2 = |z1|2 + |z2|2.

The holomorphic map

ϕ : S\E → CP∞ : (z1, z2) 7→ (z1, z2, . . . ,

√
j + k

j!k!
z
j
1z
k
2, . . .), j+k 6= 0,

is a Kähler immersion. By Calabi’s extension theorem it extends

to a Kähler immersion of (S, gS) into CP∞.
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Thank you for your attention!
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