Non-projective K3 surfaces containing Levi-flat hypersurfaces

Takayuki Koike (j.w. Takato Uehara)

Department of Mathematics, Graduate School of Science, Osaka City University

January 18, 2018

2 Construction of a K3 surface X

L Introduction

2 Construction of a K3 surface X

Goal of this talk:

Gluing construction of non-projective K3 surfaces.

We will construct a K3 surface X by holomorphically patching two open complex surfaces, say M and M'.

- M (M') is the complement of a (appropriate) tubular neighborhood of an elliptic curve in the blow-up S (S') of the projective plane P² at (appropriate) nine points.
- Neither S nor S' admit elliptic fibration structure (nine points are "general")
- In order to patch M and M' holomorphically, we need to take "nice neighborhood". For this purpose, we need to choose nine points carefully.
- Use a technique from Complex Dynamics for taking "nice neighborhood" (Arnol'd's theorem).

Introduction

Remarks, Known results

- For the case where S and S' are elliptic, a similar construction of K3 surfaces is known. The resulting K3 surfaces are also elliptic.
- M. Doi showed that a similar construction of K3 surfaces if one admit (slight) deformations of the complex structures of M and M'.

(Doi, Mamoru, Gluing construction of compact complex surfaces with trivial canonical bundle. J. Math. Soc. Japan 61 (2009), no. 3, 853–884)

• The idea to use Arnol'd-type theorem for patching two open manifolds is also used by H. Tsuji in order to study complex structures on $S^3 \times S^3$.

(H. Tsuji, Complex structures on $S^3\times S^3,$ Tohoku Math. J. (2) Volume 36, Number 3 (1984), 351–376)

K3 surfaces with Levi-flat hypersurfaces

 \square Construction of a K3 surface X

2 Construction of a K3 surface X

\Box Construction of a K3 surface X

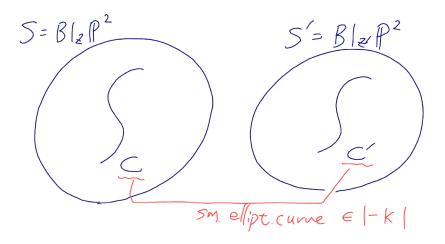
Take a smooth elliptic curve $C_0 \subset \mathbb{P}^2$ and nine points $Z := \{p_1, p_2, \dots, p_9\} \subset C_0.$ • $S := \operatorname{Bl}_Z \mathbb{P}^2 \xrightarrow{\pi} \mathbb{P}^2$: blow-up at Z• $C := \pi_*^{-1}C_0$: the strict transform of C_0 Note that $N_{C/S} \cong \mathcal{O}_{\mathbb{P}^2}(3)|_{C_0} \otimes \mathcal{O}_{C_0}(-p_1 - p_2 - \dots - p_9)$. When Z is special, S is an elliptic surface $(N_{C/S} \in \operatorname{Pic}^0(C))$ is torsion in this case). We are interested in the case where \underline{Z} is general.

Let (S', C') be another model which is constructed by another choice of an elliptic curve C'_0 and another nine points configuration $Z' := \{p'_1, p'_2, \ldots, p'_9\} \subset C'_0$.

(日) (同) (三) (三) (三) (○) (○)

K3 surfaces with Levi-flat hypersurfaces

 \Box Construction of a K3 surface X



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

K3 surfaces with Levi-flat hypersurfaces

 \Box Construction of a K3 surface X

Assumptions

In what follows, we always assume the following:

Assumption

$$\blacksquare \exists g \colon C \cong_{\text{bihol.}} C'$$

•
$$N_{C/S} = g^* N_{C'/S'}^{-1}$$

•
$$N_{C/S} \in \operatorname{Pic}^0(C)$$
 is Diophantine

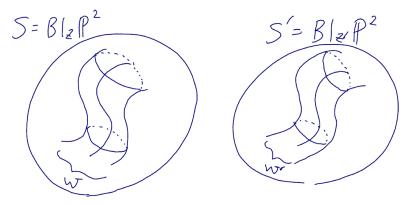
 $N_{C/S} \in \operatorname{Pic}^0(C)$ is said to be *Diophantine* if $\exists A, \alpha > 0$ such that $\operatorname{dist}(\mathbb{I}_C, N_{C/S}^{\otimes n}) \geq A \cdot n^{-\alpha}$ for $\forall n > 0$.

- $N_{C/S} \in \operatorname{Pic}^0(C)$ is Diophantine for almost every choice of Z in the sense of Lebesgue measure.
- We will explain why do we need this condition latter.

 \square Construction of a K3 surface X

Outline of the construction –Step 1

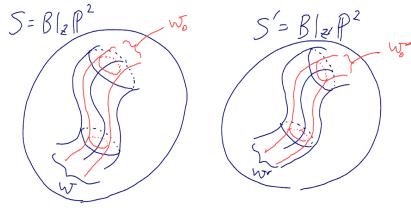
First, we take "nice" neighborhoods W of C in S and W' of C' in S':



Construction of a K3 surface X

Outline of the construction –Step 2

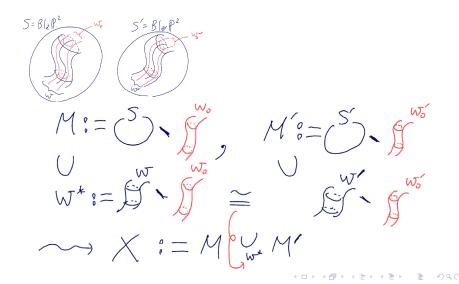
Next, we take "nice" neighborhoods $W_0 \Subset W$ of C and $W'_0 \Subset W'$ of C' appropriately:



K3 surfaces with Levi-flat hypersurfaces

 \square Construction of a K3 surface X

Outline of the construction –Step 3



 \Box Construction of a K3 surface X

Question

How should we choose "nice" neighborhoods W, W_0 , W', and W'_0 (in order to patch M and M' holomorphically)?

Here we use the following:

Theorem (Arnol'd (1976))

Assume C is a smooth elliptic curve and $N_{C/S} \in \operatorname{Pic}^0(C)$ is Diophantine.

Then C admits a holomorphic tubular neighborhood W (i.e. W can be chosen so that W is biholomorphic to a neighborhood of the zero-section in $N_{C/S}$).

Arnol'd's theorem is shown by using complex dynamical technique as in the proof of **Siegel's linearization theorem**, which is the reason why Diophantine condition is needed in our assumption. \square Construction of a K3 surface X

What follows from Arnol'd's theorem and our assumptions

- " $N_{C/S}$: Diophantine" + Arnol'd's thm $\Rightarrow W, W_0$: holomorphic tubular neighborhoods of C $\Rightarrow W \setminus W_0 \cong_{\text{bihol.}}$ (an annulus bundle over C)
- " $N_{C/S}$: Diophantine" + " $N_{C/S} = g^* N_{C'/S'}^{-1}$ " + Arnol'd's thm $\Rightarrow W', W'_0$: holomorphic tubular neighborhoods of C' $\Rightarrow W' \setminus W'_0 \cong_{\text{bihol.}}$ (an annulus bundle over C')
- "g: $C \cong C'$ " + " $N_{C/S} = g^* N_{C'/S'}^{-1}$ " + observations above $\Rightarrow (W^* :=) W \setminus W_0 \cong_{bihol.} W' \setminus W'_0$ \Rightarrow One can glue M and M' holomorphically by using W^* as a "tab for gluing".

 \Box Construction of a K3 surface X

Observation

 W^* admits a foliation \mathcal{F} which is naturally defined by considering the flat connection on $N_{C/S}$. Each leaf is biholomorphic to \mathbb{C} or $\mathbb{C}^* := \mathbb{C} \setminus \{0\}.$

It is easily observed that $\pi_1(X) = 0$. Therefore, for proving that X is a K3 surface, it is sufficient to show the following:

Proposition

There exists a nowhere vanishing holomorphic 2-form σ on X.

Outline of the proof: As $K_S = -C$, there exists a meromorphic 2-form η on S with $\operatorname{div}(\eta) = -C$. We can also take a meromorphic 2-form η' on S' with $\operatorname{div}(\eta') = -C'$. σ is obtained by patching $\eta|_M$ and $-\eta'|_{M'}$ after appropriate normalizations.

 \square Construction of a K3 surface X

Some remark on the construction of the 2-form σ on X

For patching $\eta|_M$ and $-\eta'|_{M'}$ on W^* , we use the following:

Key Lemma

 $H^0(W^*, \mathcal{O}_{W^*}) = \mathbb{C}.$

Key Lemma is shown by considering the restriction of a given holomorphic function on W^* to a leaf of \mathcal{F} and considering the Maximum principle.

By using this Key Lemma, one can describe the 2-form $\sigma|_{W^*}$ very explicitly.

⇒ We could explicitly compute the integrations $\int \sigma$ along 20 2-cycles of 22 appropriately chosen 2-cycles ("marking" of X).

1 Introduction

2 Construction of a K3 surface X

Main results

We constructed K3 surfaces in such a manner with independent (at least) 19 parameters. As an conclusion of the construction, we have the following:

Theorem (K-, T. Uehara. improved version of the main result in arXiv:1703.03663)

There exists a deformation $\pi: \mathcal{X} \to B$ of K3 surfaces over a (at least) 19 dimensional complex manifold B with injective Kodaira-Spencer map such that each fiber $X_b := \pi^{-1}(b)$ admits a holomorphic map $F_b: \mathbb{C} \to X_b$ with the following property: The Euclidean closure of $F_b(\mathbb{C})$ is a real analytic compact hypersurface of X_b . Especially, $F_b(\mathbb{C})$ is Zariski dense whereas it is not Euclidean dense. X_b is non-Kummer and non-projective for general $b \in B$.

"Degrees of freedom" in our construction

- Choice of C₀, C'₀, and a Diophantine line bundle L on C₀ (dimension=1 because of C₀ ≅ C'₀ and Dioph. condition).
- Choice of points $p_1, p_2, \ldots, p_8 \in C_0$ (dimension=8).
- Choice of points $p'_1, p'_2, \ldots, p_8' \in C'_0$ (dimension=8).
- Points $p_9 \in C_0$ and $p'_9 \in C'_0$ are automatically decided by the condition $N_{C/S} = g^* N_{C'/S'}^{-1} = L$ (dimension=0).
- Choice of an isomorphism $g: C \cong C'$ (dimension=1).
- Choice of the "size" of the tab for gluing W^* (dimension=1)

		1 0	
lattice	cycle	$\frac{1}{2\pi\sqrt{-1}}\int\sigma$	corresponding parameter
U	$A_{\beta,\gamma}$	au	choice of C_0 (and C'_0)
	B_{α}	???	choice of w_j 's ($R, R',$)
U	$A_{\gamma,\alpha}$	1	—
	B_{β}	???	choice of w_j 's (R , R' ,)
	$C_{1,2}$	" $p_2 - p_1$ " in C	choice of $p_2 - p_1$
	$C_{2,3}$	" $p_3 - p_2$ " in C	choice of $p_3 - p_2$
$E_8(-1)$	÷	:	:
	$C_{7,8}$	" $p_8 - p_7$ " in C	choice of $p_8 - p_7$
	$C_{6,7,8}$	" $p_6 + p_7 + p_8$ " in C	choice of $p_6 + p_7 + p_8$
	$C'_{1,2}$	" $p_2' - p_1'$ " in C'	choice of $p_2^\prime - p_1^\prime$
	$C'_{2,3}$	" $p'_3 - p'_2$ " in C'	choice of $p_3' - p_2'$
$E_8(-1)$:		:
	$C'_{7,8}$	" $p_8' - p_7'$ " in C'	choice of $p_8^\prime - p_7^\prime$
	$C'_{6,7,8}$	" $p_6' + p_7' + p_8'$ " in C	choice of $p_6' + p_7' + p_8'$
U	$A_{\alpha,\beta}$	$a_{\beta} - \tau \cdot a_{\alpha}$	choice of p_9 and p_9^\prime (i.e. $N_{C/S}$ and N_{C^\prime/S^\prime})
	B_{γ}	$p_{9}' - g(p_{9})''$	choice of $g \colon C \cong C'$

Question

For the previous example $(C_0, Z = \{p_1, p_2, \dots, p_9\}, C, S)$, does C admit a holomorphic tubular neighborhood when $N_{C/S} \in \text{Pic}^0(C)$ is <u>not</u> Diophantine?