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Introduction

Goal of this talk:

Gluing construction of non-projective K3 surfaces.

We will construct a K3 surface X by holomorphically patching two
open complex surfaces, say M and M ′.

M (M ′) is the complement of a (appropriate) tubular
neighborhood of an elliptic curve in the blow-up S (S′) of the
projective plane P2 at (appropriate) nine points.

Neither S nor S′ admit elliptic fibration structure (nine points
are “general”)

In order to patch M and M ′ holomorphically, we need to take
“nice neighborhood”. For this purpose, we need to choose
nine points carefully.

Use a technique from Complex Dynamics for taking “nice
neighborhood” (Arnol’d’s theorem).
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Remarks, Known results

For the case where S and S′ are elliptic, a similar construction
of K3 surfaces is known. The resulting K3 surfaces are also
elliptic.

M. Doi showed that a similar construction of K3 surfaces if
one admit (slight) deformations of the complex structures of
M and M ′.
(Doi, Mamoru, Gluing construction of compact complex surfaces with trivial

canonical bundle. J. Math. Soc. Japan 61 (2009), no. 3, 853–884)

The idea to use Arnol’d-type theorem for patching two open
manifolds is also used by H. Tsuji in order to study complex
structures on S3 × S3.
(H. Tsuji, Complex structures on S3 × S3, Tohoku Math. J. (2) Volume 36,

Number 3 (1984), 351–376)
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Construction of a K3 surface X

Take a smooth elliptic curve C0 ⊂ P2 and nine points
Z := {p1, p2, . . . , p9} ⊂ C0.

S := BlZP2 π−→ P2: blow-up at Z

C := π−1
∗ C0: the strict transform of C0

Note that NC/S
∼= OP2(3)|C0 ⊗OC0(−p1 − p2 − · · · − p9). When

Z is special, S is an elliptic surface (NC/S ∈ Pic0(C) is torsion in
this case). We are interested in the case where Z is general.

Let (S′, C ′) be another model which is constructed by another
choice of an elliptic curve C ′

0 and another nine points configuration
Z ′ := {p′1, p′2, . . . , p′9} ⊂ C ′

0.
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Construction of a K3 surface X

Assumptions

In what follows, we always assume the following:

Assumption

∃g : C ∼=bihol. C
′

NC/S = g∗N−1
C′/S′

NC/S ∈ Pic0(C) is Diophantine

NC/S ∈ Pic0(C) is said to be Diophantine if ∃A,α > 0 such that

dist(IC , N⊗n
C/S) ≥ A · n−α for ∀n > 0.

NC/S ∈ Pic0(C) is Diophantine for almost every choice of Z
in the sense of Lebesgue measure.

We will explain why do we need this condition latter.
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Outline of the construction –Step 1

First, we take “nice” neighborhoodsW of C in S andW ′ of C ′ in S′:
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Outline of the construction –Step 2

Next, we take “nice” neighborhoods W0⋐ W of C and W ′
0⋐ W ′

of C ′ appropriately:
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Outline of the construction –Step 3
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Construction of a K3 surface X

Question

How should we choose “nice” neighborhoods W , W0, W
′, and W ′

0

(in order to patch M and M ′ holomorphically)?

Here we use the following:

Theorem (Arnol’d (1976))

Assume C is a smooth elliptic curve and NC/S ∈ Pic0(C) is
Diophantine.
Then C admits a holomorphic tubular neighborhood W
(i.e. W can be chosen so that W is biholomorphic to a
neighborhood of the zero-section in NC/S).

Arnol’d’s theorem is shown by using complex dynamical technique
as in the proof of Siegel’s linearization theorem, which is the
reason why Diophantine condition is needed in our assumption.
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Construction of a K3 surface X

What follows from Arnol’d’s theorem and our assumptions

“NC/S : Diophantine” + Arnol’d’s thm
⇒ W , W0: holomorphic tubular neighborhoods of C
⇒ W\W0

∼=bihol. (an annulus bundle over C)

“NC/S : Diophantine” + “NC/S = g∗N−1
C′/S′” + Arnol’d’s thm

⇒ W ′, W ′
0: holomorphic tubular neighborhoods of C ′

⇒ W ′\W ′
0
∼=bihol. (an annulus bundle over C ′)

“g : C ∼= C ′” + “NC/S = g∗N−1
C′/S′” + observations above

⇒ (W ∗ :=) W\W0
∼=bihol. W

′\W ′
0

⇒ One can glue M and M ′ holomorphically by using W ∗ as a
“tab for gluing”.



K3 surfaces with Levi-flat hypersurfaces

Construction of a K3 surface X

Observation

W ∗ admits a foliation F which is naturally defined by considering
the flat connection on NC/S . Each leaf is biholomorphic to C or
C∗ := C \ {0}.

It is easily observed that π1(X) = 0. Therefore, for proving that X
is a K3 surface, it is sufficient to show the following:

Proposition

There exists a nowhere vanishing holomorphic 2-form σ on X.

Outline of the proof: As KS = −C, there exists a meromorphic
2-form η on S with div(η) = −C. We can also take a
meromorphic 2-form η′ on S′ with div(η′) = −C ′. σ is obtained
by patching η|M and −η′|M ′ after appropriate normalizations.
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Some remark on the construction of the 2-form σ on X

For patching η|M and −η′|M ′ on W ∗, we use the following:

Key Lemma

H0(W ∗,OW ∗) = C.

Key Lemma is shown by considering the restriction of a given
holomorphic function on W ∗ to a leaf of F and considering the
Maximum principle.

By using this Key Lemma, one can describe the 2-form σ|W ∗ very
explicitly.
⇒ We could explicitly compute the integrations

∫
σ along 20

2-cycles of 22 appropriately chosen 2-cycles (“marking” of X).
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Main results

We constructed K3 surfaces in such a manner with independent
(at least) 19 parameters. As an conclusion of the construction, we
have the following:

Theorem (K-, T. Uehara. improved version of the main result in
arXiv:1703.03663)

There exists a deformation π : X → B of K3 surfaces over a (at
least) 19 dimensional complex manifold B with injective
Kodaira-Spencer map such that each fiber Xb := π−1(b) admits a
holomorphic map Fb : C → Xb with the following property: The
Euclidean closure of Fb(C) is a real analytic compact hypersurface
of Xb. Especially, Fb(C) is Zariski dense whereas it is not Euclidean
dense. Xb is non-Kummer and non-projective for general b ∈ B.
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“Degrees of freedom” in our construction

Choice of C0, C
′
0, and a Diophantine line bundle L on C0

(dimension=1 because of C0
∼= C ′

0 and Dioph. condition).

Choice of points p1, p2, . . . , p8 ∈ C0 (dimension=8).

Choice of points p′1, p
′
2, . . . , p8

′ ∈ C ′
0 (dimension=8).

Points p9 ∈ C0 and p′9 ∈ C ′
0 are automatically decided by the

condition NC/S = g∗N−1
C′/S′= L (dimension=0).

Choice of an isomorphism g : C ∼= C ′ (dimension=1).

Choice of the “size” of the tab for gluing W ∗ (dimension=1)
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lattice cycle 1
2π

√
−1

∫
σ corresponding parameter

U Aβ,γ τ choice of C0 (and C ′
0)

Bα ??? choice of wj ’s (R, R′,...)

U Aγ,α 1 —
Bβ ??? choice of wj ’s (R, R′,...)

C1,2 “p2 − p1” in C choice of p2 − p1
C2,3 “p3 − p2” in C choice of p3 − p2

E8(−1)
...

...
...

C7,8 “p8 − p7” in C choice of p8 − p7
C6,7,8 “p6 + p7 + p8” in C choice of p6 + p7 + p8
C ′
1,2 “p′2 − p′1” in C ′ choice of p′2 − p′1

C ′
2,3 “p′3 − p′2” in C ′ choice of p′3 − p′2

E8(−1)
...

...
...

C ′
7,8 “p′8 − p′7” in C ′ choice of p′8 − p′7

C ′
6,7,8 “p′6 + p′7 + p′8” in C choice of p′6 + p′7 + p′8

U Aα,β aβ − τ · aα choice of p9 and p′9 (i.e. NC/S and NC′/S′)
Bγ “p′9 − g(p9)” choice of g : C ∼= C ′
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Question

For the previous example (C0, Z = {p1, p2, . . . , p9}, C, S), does C
admit a holomorphic tubular neighborhood when NC/S ∈ Pic0(C)
is not Diophantine?
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