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Building blocks: 1) Base Kcsc or extremal Orbifold




2) Local ALE scalar flat resolutions of singularities

We assume the existence of
local resolutions:

1) ALE
2) Kahler
3) Scalar flat

Such models are known to
exist for any finite subgroup of
U(2) [Kronheimer-Calderbank-

Singer-Lock-Viaclovsky] and
SU(3) [Nakajimal]
plus some sporadic examples.

It is well known that such a metric has the following shape
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for some real constants ex,. and cx,. In particular the number ex,. is called the ADM mass of the
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model.



Generalized connected sums
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The above strategy has been described for the first time
in the 70’s by the Cambridge physicists applied to the
Calabi-Yau equation (KE, Ricci flat), in the case when the
base orbifold is a flat torus quotient by an involution.

By this procedure one gets some feeling of how a

Ricci-tflat metric actually looks like at least on

some special K3 surfaces, and it has then
been called “Kummer construction”.

A rigorous proot in this case was given by Topinwala-
LeBrun-Singer.

It was then used in 1997 by Joyce to construct, starting
again from quotients of flat 7-tori, the first compact
manifolds with holonomy G2 and Spin(7).




The Extremal case A.-Lena-Mazzieri

The extremal case

If g is an extremal metric and X its extremal vector field, we denote with
G := Isop (M, g) N Ham (M, w) the identity component of the group of
Hamiltonian isometries and with g its Lie algebra. Moreover we denote with
T C G the maximal torus whose Lie algebra t contains the extremal vector
field X; and T its lift to the resolution.

The key observation is the following:

Theorem

If X € t and denoted with X its lift to Xr, we can always find a Hamiltonian

potential <u,,,)~(> such that5<u,,,)~(> = 5(.:7).

Let (M, g,w) be a compact extremal orbifold with T -invariant metric g and
singular points {x,...,xs}. Then there exists &€ such that for every € € (0, &)

the resolution
M = M UXl,E,‘ Xrl I—IXZ’E U UXS’S er

has a T-invariant extremal Kihler metric.

This fits well with the deformation theory of LeBrun-Simanca for extremal
metrics on smooth manifolds when keeping the complex structure fixed
and moving the Kahler class.



e (M,w,g) a compact m-dimensional Kcsc orbifold with isolated singularities,

e S = {p1,...,pn} € M the set of points with neighborhoods biholomorphic to a ball of
C™/I'; where, for j = 1,..., N, the I';’s are nontrivial subgroups of U(m),

e C™/I'j admits an ALE Kahler scalar-flat resolution (Xr;,n;),

e m: M — M the resolution of singularities from the generalised connected sum of M minus
small balls replaced by copies of (X,,np).

Theorem 1.1. If (M,7* [w] + ZJ\:I e*™bz™ [7);]) is K-stable, then M has a Kcsc metric in the

class ™ (w] + ZJ\:I e4™bE™ [7;].

The converse implication (restricting K-stability to smooth test configurations) was proved by
Szekelyhidi




The Kcsc case: the PDE approach

The linearized equation

For a smooth real function f € C>°(M) such that w -+ i9df > 0, we set
wf = w + i8OF

Since we want to understand the behavior of the scalar curvature under
deformations of this type, it is convenient ta consider the following differential

operator

S.(): CF(M) — CT (M), f — S,(f):=5,. 057>

S.,(f) = s, — %u,u,r + %N,,.(f),

where the linearized scalar curvature operator L is given by

Lof = ALf + 4(p., |idor).

@ The subspace of ker(LL) given by the elements with zerc mean is in one to
one correspondence with the space of holomorphic vector fields which
vanish somewhere in M.

@ From now on we set

ker(L.) =spanr {1,¢1,...,%4} -




The extremal case is unsensitive of the geometry of the local
models. But the Kcsc is not. We need to distinguish two very
different cases:

Let q := {q1,...,9x} € M is the set of points with neighborhoods biholomorphic to a ball of
C™ /T x4 such that C™ /T 4, admits a scalar flat ALE resolution (Yr,  ,, ki, 0;) withe(Yr, ) # 0.

Let p = {p1,...,pn} C M the set of points with neighborhoods biholomorphic to a ball of C™/T';
such that C™/T'; admits a scalar flat ALE resolution (X, h;,n;) with e (Xr,) = 0.

If there ezist a:= (a1,...,ax) € (R such that

'Z{; aie Cnii) pi (@) =0 i=1,...,d

(1.1)

(ae(Tn1i)ei (@) 1<i<d has rank d
| 1<I<K

then there exists €9 > 0 such that, for any € < €y and any b = (by,...,b,) € (R+)N, the manifold

~

M:=M Up, e Xr, Upa,e *** Upn e XF:\' Lg, e XFN—%-I Uga,e "+ Ugn i e XFN—%—KS

admits a Kcsc metric.




The tollowing improvement of the classical estimates for

ALE Ricci-flat is essential to solve the zero mass case:

Theorem

Asymptotics of scalar flat ALE

Let (Xr, h,n) be a scalar flat ALE Kahler resolution of an isolated quotient
singularitiy. Moreover assume ' < U(m) be nontrivial and e (') = 0. Then for

R > 0 large enough, we have that on Xr \ m~*(BRr) the Kahler form can be
written as

[x*

n = i00 ( o T c(N) |x[*7*™ + 4, (x)) : with , = O(|x|™*™),

for some positive real constant c(I') > 0. Moreover, the radial component 7,05,0)
in the Fourier decomposition of 1, is such that

~ o (Ixf) = O (IxP™*") .



“Zero Mass” Singularities
A.-Della Vedova-Lena-Mazzier

Theorem 1.2. Suppose that each (Xp,np) has vanishing ADM mass and let spang {1,1,...,9d}
be the space of Hamiltonian potentials of Killing fields with zeros. Suppose moreover that for all
p € S there exists b, > 0 such that

{ 2_pes bp (Bupj +8,05) (p) =0

((Aw‘Pj + 3w99j) (p))1gjgd,pes has rank d.
Then there exists € such that for every e € (0,€) M has a Kcsc metric in the class
w W]+ ) e2m (i)  with i [;] = [n]
peS
where i; the natural embedding of Xr, r. into M. Moreover

12m I P|bP ¥
by, X 1) Ce for some v>0,

where |I';,| denotes the order of the group.




On the Futaki invariant for generalized

connected sums A.-Della Vedova-Mazzier

For any singular p, let 7, be an ALE Kéahler metric on the resolution X,. We will assume that
it has the form

Mp — &p — dd®YPp,
where §, is a (1.1)-form supported in m; Y(B(r)/T,), and v, is a smooth function. Since we
constructed M by replacing each singular ball Up with the resolved ball 7 Y(B(r)/T',), we can
think of each £, as a (1, 1)-form on M. Thus, for all real €, we can consider the following (1, 1)-form
on M
we =mw4+e)y &

pCS

Lemma 9.5. For e > 0 sufficiently small, w, defines a Kdihler metric on M.

Lemma 9.6. Any holomorphic vector field V on M descends to an holomorphic vector field on
m.V on M wich vanishes at all points of S.

Proof. Since 7 is a biholomorphism on the complement of 7= (.S), pushing down the restriction to
that set of V' defines a vector field V/ an M \ S. Given p € S, the restriction of V' to U, \ {p} lifts
to a I' -invariant vector field on the punctured ball B'(r) of C™. By Hartog’s theorem such a vector
field extends to a holomorphic vector field on the whole ball B(r). Of course such a vector field
is I'p-invariant, and so it gives a holomorphic vector field on U, which is equal to V’ an U, \ {p}.
Therefore one ends up with a holomorphic vector field 7,V on M.



Lemma 9.7. If V is a holomorphic vector field on M, which is Ilamiltonian with respect to we,
then .V is Hamiltonian with respect to w on M. Moreover, if ¢. and ¢ are Hamiltonian potentials
for V and 7.V respectively, then one has

be =T+ Y By +cle), (9.14)
pES

where @, is a smooth function supported in n=1(U,) satisfying dp, = iv€y, and c(€) is a constant.

Given an holomorphic vector field V on the resolution M, and supposing that V is Hamiltonian
with respect to w. with potential ¢., one can form the Futaki invariant

R Oe /\wé‘:”_1
F‘Ut(‘vac"’s) - / ¢g — ng .
| M( _) (n—1)!

where p. is the Ricci form of w,, and ¢, = f Pew?/ [ w is the mean value of ¢, with respect to w,.

On the other hand, thanks to Lemmata 9.6 and 9.?, V descends to a holomorphic vector field
m.V on M wich is Hamiltonian with respect to w with potential, say, ¢. Thus one can also consider
the [futaki invariant
p N w1
(n—1)"

where p is the Ricci form of w, and ¢ = [¢w™/ | w™. The Futaki invariants Fut(V,w,) and
Fut(7,V,w) are related by the following

Fut(mV,w) = | (¢— &)
M



Theorem 3.1. As £ — 0 one has

Fut(V,w.) = Fut(mV,w) - "~ ) (¢(p) — ¢
peES

—e Y (5(60) - ) - 20) [ +0EM. @)

PES

where p, 18 the Ricct form of the chosen ALE Kahler metric n, on the model resolution X,, and
s=n[pAw /[ w™ is the mean scalar curvature of w.

T
—’: = lim
x, ' =400 Joo1(B(R)/T,)

Moral: our “balancing conditions” are the first order terms
In the expansion of the Futaki invariants of the

resolved orbifolds.

So Fut = 0 at first order iff =0 at any order for small perturbation of
cohomology classes.



Qutputs:

1) New Proofs of the existence Theorems via the extremal
construction.

2) Non existence results:

Theorem 1.4. Under the assumptions of Theorem 1.2, given b € (RT)Y and ¢ € RN such that

(bjAwpi (pj) + ¢ji (P5)) 1<i<a has rank d.
1< SN

N
ijAwgoi (p;) + cjpi (p;) #0 for somei=1,...,d

=1

then there exists & such that for every e € (0,€) M has no Kesc metric in the class

N
* [w] 4 Z &.me?m [ﬁ]]
j=1




Applications:
-xamples: =

Corsider (P* x P*, n{wrs + 71 wrs) and let Z; act in the “ollowing way

(%0 ] o 2n]) — ([0 —x]. [w : —n])
I-'s immediate to check that this action is in SU(2) with fcur fixed poinzs
or=([1:0],[1:0])
p2 = ([1:0].[0 1])
pa=([0: 1], [1 - 0])
pr=([0: 1], [0 1])

The quotien: space X2 :=P' x P' /72 is a Kihler-Einstein, Fano crbifole and
thanks to the embadding into P*

(b z ], [ n]) = DBye 6 y8 : XE¥6 - X3yt @ xaxiyan]

it is isomorphic tc the intersection of singular quadrics

Example

Consider (P*,wrs) and lez Z; zct in the following way

{-’-023—23=0}”{-'-’:22—2,.2=0}

B:z:z] —Pbo:@x:¢ix] G#FLE=1
It's immediate to check thzt this action is in SU(2) with three fixed pcints

pr=[1:0:0]
p2=[0:1:0]
p3—=[0:0:1]

noincent The quotient space X; := P°/Z; is a Kahler-Einswein, Fanc orbifold
and it is isomorphic, via the emhedding

S 3..3..3. : 1
[ x1 x| — g oo x] C X xpxxa
to the singular cubic surface in P

{202122 — z'? = 0} .




Ezample 8.5. Let Y be the toric Kdhler-Einstein threefold whose 1-dimensional fan ¥, is generated
by points

2 = {(2.-1,0),(1,3,1),(0,0,1), (-3, —2,—2)}

and its 3-dimensional fan 23 is generated by 6 cones

Cy :=((1,3,1),(0,0,1),(—3,—2,-2),)
Cy :=((2,-1,0),(0,0,1), (—3,-2,-2))
C; :=((2,-1,0),(1,3,1),(-3,-2,-2))
Cy :=((2,-1,0),(1,3,1),(0,0,1))
The cone C is relative to affine open subsets of Y containing a SU(3) singularity and the other

cones are relative to affine open subsets of Y containing & U{3) singularity.
The 7-anticanonical polytope P_7 K (o) is the convex hull of vertices

P_7;(A,(G) =((1,9,-7),(-3,1,-7),(9,-3.=7), (—7.—7,21))
With 2-faces

((=3,1,—7),(9,—3,—T7), (=7, —7,21))
(1, 9 7),\9 ~3,—-7),(=7,—17,21))
(1,9, -7),(—3,1,=7),(=7,—7,21))
F4 =((1,9,-7),(—3,1,=7), (9, -3,-7)}

We have the ollowing correspondences between cones containing a SU (3)-singularity and vertices
of P_~ K

x(8)

Cl «—> F1 N F2 N F.4 = {(g, —3, —7)}

It is now clear that this example does not satisfy either the balancing condition on the SU(3)
point, ncr the one found in [2] on the remaining 3 U(3) singularities. So even if a local model
exists (and we do not know if this is indeed the case) Theorem 1.2 shows that Kese metries on its
resolution do not exist in the adiabatic classes.




Extensions to non-compact spaces

(work in progress with C. Spotti)

Theorem 0.1. Let I'aU(m) finite acting freely on 8271, let (X ,w;") be a scalar-flat ALE Kahler
manifold such that there is a compact K C X such that

Xr\ K = (C™\ Bg)/T.

where =~ stands for biholomorphic. Let q € Xy, then there is € > 0 such that for any € € 0,8)
Bl,Xr, the blow up at q of Xr, carries a scalar-flat ALE Kahler metric w, in the class

Ba) = wr] — €2 %a[c (O(E,))]  Va >0

with E, the exceptional divisor. Moreover m (Bl,Xr,@.), the mass of Bl Xr, is a small perturba-
tton of m(Xr,wr) i.e.

.
-

lim m (Bl,Xr, &) = m (Xr,wr) .

()

Theorem 0.2. Let I'aU(m) finite acting freely on 8°™ 1, let (Xr,wr) be a scalar-flat ALE Kdhler
orbifold with isolated singular points such that there is a compact K C Xr such that

Xr\K ~(C™\ Bg)/T. Interesting problem:
how does this construction
depend on the distance
from the exceptional divisor?

Let g € K be a singular point with nontirvial (finite) local orbifold group G <U(m). Suppose there
is a scalar-flat ALE Kdahler manifold (Xg,n) that is a resolution of C™/G. Then there is € > 0
such that for any € € (0,8) X, the orbifold obtained by gluing topologically Xr \ ¢ and X¢ , carries
a scalar-flat ALE Kdhler metric &, in the class

[@a) := [wr] + 2™ %%a [7)] Va > 0

witha=1ifm(Xg,n) #0anda =0 ifm(Xg,n) =0 and [7j] € H? ()Z'F,R) induced by [n] via the

natural embedding in Xr of a neighborhood of the exceptional locus of Xg. Moreover m (X p,d}a) ,

the mass of Xr, is a small perturbation of m (Xp,wr) ie.

1in})m (Xr,cﬁa) =m (Xr,wr) .




